植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 469-482.DOI: 10.17521/cjpe.2023.0013 cstr: 32100.14.cjpe.2023.0013
臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎*()()
收稿日期:
2023-01-16
接受日期:
2023-05-30
出版日期:
2024-04-20
发布日期:
2023-06-01
通讯作者:
* (quanxiankui@nefu.edu.cn)
基金资助:
ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui*()()
Received:
2023-01-16
Accepted:
2023-05-30
Online:
2024-04-20
Published:
2023-06-01
Contact:
* (quanxiankui@nefu.edu.cn)
Supported by:
摘要:
研究气候变暖对树木生态化学计量特征的影响, 对深入了解树木对气候变化的响应机理具有重要意义。在2004年将4个不同纬度的落叶松(Larix gmelinii)种源幼树移植到其自然分布区南缘的黑龙江帽儿山生态站的同质园内, 模拟气候变暖, 测定叶、枝、根的碳(C)、氮(N)、磷(P)含量。结果表明: 新枝叶和各级根的C、N、P含量以及老枝叶的N、P含量均存在显著的种源差异, 高纬度种源的树木具有较低的C、N含量和较高的P含量。气候变暖显著增加了各器官(1-2 mm径级根除外)的C含量, 增加了叶、老枝和<1 mm径级根的N含量, 也显著提高了各器官(枝除外)的P含量。随着变暖程度的增加, C和P含量的暖化效应减弱, N含量的暖化效应增强。各器官的C:N、C:P和N:P均存在显著的种源差异(枝的C:P除外), 高纬度种源的树木具有较大的C:N和较小的C:P和N:P。气候变暖显著降低了除枝以外其他器官的C:N、C:P和N:P。综合而言, 落叶松资源获取型器官叶和根化学计量特征具有明显的地理变异, 气候变暖主要缓解了叶和根的N和P的需求限制, 降低了其N和P的固碳效率; 气候变暖对C和P化学计量特征的影响随暖化程度的增大而减弱, 但N含量除外。
臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应. 植物生态学报, 2024, 48(4): 469-482. DOI: 10.17521/cjpe.2023.0013
ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation. Chinese Journal of Plant Ecology, 2024, 48(4): 469-482. DOI: 10.17521/cjpe.2023.0013
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Mean annual air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 无霜期 Frost-free duration (d) | Nsoil-c (g·kg-1) | Nsoil-t (g·kg-1) |
---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | 140.0 | (8.10 ± 0.45)a | 无 None |
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | 139.0 | (6.75 ± 0.31)b | (6.83 ± 0.33)a |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | 90.0 | (3.11 ± 0.26)c | (3.13 ± 0.23)b |
松岭 Songling | 50.72 | 124.42 | −0.54 | 525.36 | 93.8 | (3.07 ± 0.21)c | (3.03 ± 0.19)b |
塔河 Tahe | 52.52 | 124.65 | −2.30 | 463.44 | 89.7 | (2.47 ± 0.11)d | (2.31 ± 0.15)c |
表1 落叶松4个移栽地和帽儿山同质园的地理和气候基本特征
Table 1 Geographical and climatic conditions of Larix gmelinii at the four transplanting sites and common garden in Mao’ershan
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Mean annual air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 无霜期 Frost-free duration (d) | Nsoil-c (g·kg-1) | Nsoil-t (g·kg-1) |
---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | 140.0 | (8.10 ± 0.45)a | 无 None |
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | 139.0 | (6.75 ± 0.31)b | (6.83 ± 0.33)a |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | 90.0 | (3.11 ± 0.26)c | (3.13 ± 0.23)b |
松岭 Songling | 50.72 | 124.42 | −0.54 | 525.36 | 93.8 | (3.07 ± 0.21)c | (3.03 ± 0.19)b |
塔河 Tahe | 52.52 | 124.65 | −2.30 | 463.44 | 89.7 | (2.47 ± 0.11)d | (2.31 ± 0.15)c |
图1 同质园和移栽地落叶松不同器官碳(C)、氮(N)、磷(P)含量比较(平均值±标准误)。每个地点统计样本量n = 4, 总体统计样本量n = 32。不同大写字母表示移栽地间差异显著(p < 0.05), 不同小写字母表示同质园内地点间差异显著(p < 0.05), *表示暖化处理影响显著(p < 0.05)。
Fig. 1 Comparisons of carbon (C), nitrogen (N) and phosphorus (P) concentration in different organs of Larix gmelinii by treatments and sites (mean ± SE). DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. n = 4 for each site, n = 32 for all sites. Different uppercase letters indicate significant differences between trees at transplanting sites (p < 0.05), different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), * indicates significant effects of warming treatment on C, N and P concentrations (p < 0.05).
图2 四个地点落叶松不同器官碳(C)、氮(N)、磷(P)含量和纬度的关系(n = 4)。
Fig. 2 Relationships between carbon (C), nitrogen (N), phosphorus (P) concentration in different organs of Larix gmelinii and latitude of four sites (n = 4).
图3 同质园和移栽地落叶松不同器官C:N、C:P、N:P比较(平均值±标准误)。C, 碳; N, 氮; P, 磷。每个地点统计样本量n = 4, 总体统计样本量n = 32。不同大写字母表示移栽地间差异显著(p < 0.05), 不同小写字母表示同质园内地点间差异显著(p < 0.05), *表示气候变暖影响显著(p < 0.05)。
Fig. 3 Comparisons of C:N, C:P and N:P in different organs of Larix gmelinii by treatments and sites (mean ± SE). C, carbon; N, nitrogen; P, phosphorus. DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. n = 4 for each site, n = 32 for all sites. Different uppercase letters indicate significant differences between trees at transplanting sites (p < 0.05), different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), * indicates significant effects of climate warming on C:N, C:P and N:P (p < 0.05).
主效应 Main effect | C | N | P | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
处理 Treatment | 32.35 | <0.01 | 47.04 | <0.01 | 68.37 | <0.01 | 10.80 | <0.01 | 77.68 | <0.01 | 73.26 | <0.01 |
地点 Site | 9.86 | <0.01 | 113.64 | <0.01 | 131.61 | <0.01 | 65.65 | <0.01 | 114.42 | <0.01 | 511.26 | <0.01 |
器官 Organ | 14.65 | <0.01 | 1 801.69 | <0.01 | 244.38 | <0.01 | 888.05 | <0.01 | 205.56 | <0.01 | 267.42 | <0.01 |
处理×地点 Treatment × site | 1.58 | 0.21 | 276.32 | <0.05 | 8.17 | <0.01 | 198.62 | <0.01 | 9.43 | <0.01 | 325.99 | <0.01 |
处理×器官 Treatment × organ | 3.35 | <0.01 | 26.48 | <0.01 | 5.73 | <0.01 | 14.08 | <0.01 | 10.98 | <0.01 | 10.24 | <0.01 |
地点×器官 Site × organ | 1.05 | 0.40 | 22.13 | <0.01 | 10.86 | <0.01 | 18.90 | <0.01 | 4.43 | <0.01 | 43.34 | <0.01 |
处理×地点×器官 Treatment × site × organ | 2.00 | 0.05 | 27.44 | <0.01 | 4.22 | <0.01 | 14.91 | <0.01 | 2.00 | 0.05 | 25.71 | <0.01 |
表2 落叶松不同器官碳(C)、氮(N)、磷(P)化学计量特征的方差分析(n = 224)
Table 2 Variance analysis of carbon (C), nitrogen (N) and phosphorus (P) stoichiometric characteristics in different organs of Larix gmelinii (n = 224)
主效应 Main effect | C | N | P | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
处理 Treatment | 32.35 | <0.01 | 47.04 | <0.01 | 68.37 | <0.01 | 10.80 | <0.01 | 77.68 | <0.01 | 73.26 | <0.01 |
地点 Site | 9.86 | <0.01 | 113.64 | <0.01 | 131.61 | <0.01 | 65.65 | <0.01 | 114.42 | <0.01 | 511.26 | <0.01 |
器官 Organ | 14.65 | <0.01 | 1 801.69 | <0.01 | 244.38 | <0.01 | 888.05 | <0.01 | 205.56 | <0.01 | 267.42 | <0.01 |
处理×地点 Treatment × site | 1.58 | 0.21 | 276.32 | <0.05 | 8.17 | <0.01 | 198.62 | <0.01 | 9.43 | <0.01 | 325.99 | <0.01 |
处理×器官 Treatment × organ | 3.35 | <0.01 | 26.48 | <0.01 | 5.73 | <0.01 | 14.08 | <0.01 | 10.98 | <0.01 | 10.24 | <0.01 |
地点×器官 Site × organ | 1.05 | 0.40 | 22.13 | <0.01 | 10.86 | <0.01 | 18.90 | <0.01 | 4.43 | <0.01 | 43.34 | <0.01 |
处理×地点×器官 Treatment × site × organ | 2.00 | 0.05 | 27.44 | <0.01 | 4.22 | <0.01 | 14.91 | <0.01 | 2.00 | 0.05 | 25.71 | <0.01 |
图4 落叶松不同器官碳(C)、氮(N)、磷(P)含量相对增长率和气温增量(ΔT)间关系(n = 4)。ΔT =同质园年平均气温-移栽地年平均气温。相对增长率(%) = (C2 - C1)/C1 × 100%, 式中C1是移栽地树木C (或N、P)含量, C2是同质园树木C (或N、P)含量。
Fig. 4 Relationships between relative increasing rate of carbon (C) concentration, nitrogen (N) concentration, phosphorus (P) concentration in different organs of Larix gmelinii and warming amount (ΔT) (n = 4). ΔT is the difference in annual mean air temperature between the common garden and the transplanting sites. Relative increasing rate (%) = (C2 - C1)/C1 × 100%, C1 is the C (or N, P) concentration of trees at transplanting sites, C2 is the C (or N, P) concentration of trees in common garden.
图5 落叶松不同器官碳(C)、氮(N)、磷(P)含量气候暖化效应(n = 4)。气候暖化效应= (C2 - C1)/ΔT (C1是移栽地树木C (或N、P)含量, C2是同质园树木C (或N、P)含量, ΔT =同质园年平均气温-移栽地年平均气温)。
Fig. 5 Climate warming effects of carbon (C), nitrogen(N), phosphorus (P) concentration in different organs of Larix gmelinii (n = 4). Climate warming effect = (C2 - C1)/ΔT (C1 is the C (or N, P) concentration of trees at transplanting sites, C2 is the C (or N, P) concentration of trees in common garden, ΔT is the difference in annual mean air temperature between the common garden and the latitudinal sites).
[1] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[2] | Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B (2017). Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology, 23, 3808-3824. |
[3] |
Cai Q, Ding JX, Zhang ZL, Hu J, Wang QT, Yin MZ, Liu Q, Yin HJ (2019). Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 43, 1048-1060.
DOI |
[蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军 (2019). 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素. 植物生态学报, 43, 1048-1060.]
DOI |
|
[4] | Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184. |
[5] | Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19. |
[6] |
Crous KY, O’Sullivan OS, Zaragoza-Castells J, Bloomfield KJ, Negrini ACA, Meir P, Turnbull MH, Griffin KL, Atkin OK (2017). Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. New Phytologist, 215, 992-1008.
DOI PMID |
[7] | Crous KY, Quentin AG, Lin YS, Medlyn BE, Williams DG, Barton CVM, Ellsworth DS (2013). Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Global Change Biology, 19, 3790-3807. |
[8] | Crous KY, Wujeska-Klause A, Jiang MK, Medlyn BE, Ellsworth DS (2019). Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Frontiers in Plant Science, 10, 664. DOI: 10.3389/fpls.2019.00664. |
[9] | Ding D, Arif M, Liu M, Li J, Hu X, Geng Q, Yin F, Li C (2022). Plant-soil interactions and C:N:P stoichiometric homeostasis of plant organs in riparian plantation. Frontiers in Plant Science, 13, 979023. DOI: 10.3389/fpls.2022.979023. |
[10] | Dong N, Prentice I, Wright I, Evans B, Togashi HF, Caddy- Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe A (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228, 82-94. |
[11] | Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259, 59-69. |
[12] | Dusenge ME, Sasha M, Way DA (2020). Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Global Change Biology, 26, 3639-3657. |
[13] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[14] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI PMID |
[15] | Fang Z, Li DD, Jiao F, Yao J, Du HT (2019). The latitudinal patterns of leaf and soil C:N:P stoichiometry in the Loess Plateau of China. Frontiers in Plant Science, 10, 85. DOI: 10.3389/fpls.2019.00085. |
[16] | Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, Kort H, Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology, 101, 784-795. |
[17] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[18] | Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass N:P ratios as indicators of nutrient limitation limitation for plant populations in wetlands. Ecological Applications, 13, 372-384. |
[19] | He J, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122. |
[20] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[21] | He MZ, Song X, Tian FP, Zhang K, Zhang ZS, Chen N, Li XR (2016). Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Scientific Reports, 6, 20124. DOI: 10.1038/srep20124. |
[22] | Hong JT, Wu JB, Wang XD (2013). Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants. Chinese Journal of Applied Ecology, 24, 2658-2665. |
[洪江涛, 吴建波, 王小丹 (2013). 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响. 应用生态学报, 24, 2658-2665.] | |
[23] | Jiang PP, Han XJ, Liu ZY, Fan SJ, Zhang XJ (2023). C:N:P stoichiometric variations of herbs and its relationships with soil properties and species relative abundance along the Xiaokai River irrigation in the Yellow River Delta, China. Frontiers in Plant Science, 14, 1130477. DOI: 10.3389/fpls.2023.1130477 |
[24] | Jiang Q, Chen GS, Guo RQ, Song TT, Chen TT, Chen YH, Jia LQ, Xiong DC (2020). Effects of warming and nitrogen addition on fine root stoichiometry of Chinese fir seedlings. Chinese Journal of Ecology, 39, 723-732. |
[姜琦, 陈光水, 郭润泉, 宋涛涛, 陈廷廷, 陈宇辉, 贾林巧, 熊德成 (2020). 增温与氮添加对杉木幼苗细根化学计量学的影响. 生态学杂志, 39, 723-732.] | |
[25] |
Ju YL, Wang CK, Wang N, Quan XK (2022). Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity. Tree Physiology, 42, 2521-2533.
DOI PMID |
[26] | Kramer-Walter KR, Laughlin DC (2017). Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 416, 539-550. |
[27] | Li A, Guo DL, Wang ZQ, Liu HY (2010). Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Functional Ecology, 24, 224-232. |
[28] | Li H, Crabbe MJC, Xu F, Wang W, Ma L, Niu R, Gao X, Li X, Zhang P, Ma X, Chen H (2017). Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China. PLoS ONE, 12, e0185163. DOI: 10.1371/journal.pone.0185163. |
[29] | Li M, Huang C, Yang T, Drosos M, Wang J, Kang X, Liu F, Xi B, Hu Z (2019). Role of plant species and soil phosphorus concentrations in determining phosphorus: nutrient stoichiometry in leaves and fine roots. Plant and Soil, 445, 231-242. |
[30] | Li TA, Zhang ZH, Sun JK, Fu ZY, Zhao YH, Xu WJ (2022). Seasonal variation characteristics of C, N, and P stoichiometry and water use efficiency of Messerschmidia sibirica and its relationship with soil nutrients. Frontiers in Ecology and Evolution, 10, 948682. DOI: 10.1371/journal.pone.0185163. |
[31] | Li X, Tan ND, Wu T, Cheng Y, Liu SZ, Fu SL, Li YY, Liu JX (2021). Plant growth and C:N:P stoichiometry characteristics in response to experimental warming in four co-occurring subtropical forest tree seedlings. Acta Ecologica Sinica, 41, 6146-6158. |
[李旭, 谭钠丹, 吴婷, 程严, 刘世忠, 傅松玲, 李义勇, 刘菊秀 (2021). 增温对南亚热带常绿阔叶林4种幼树生长和碳氮磷化学计量特征的影响. 生态学报, 41, 6146-6158.] | |
[32] | Li XX, Du TY, Wei YW, Zhou YB (2018). Characteristics of ecological stoichiometry in broad-leaved and Korean pine mixed forest and its response to latitude gradient in Northeast China. Acta Ecologica Sinica, 38, 3952-3960. |
[李喜霞, 杜天雨, 魏亚伟, 周永斌 (2018). 阔叶红松林生态化学计量学特征及其对纬度梯度的响应. 生态学报, 38, 3952-3960.] | |
[33] | Lin Y, Medlyn BE, Ellsworth DS (2012). Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiology, 32, 219-231. |
[34] | Liu JX, Fang X, Tang XL, Wang WT, Zhou GY, Xu S, Huang WJ, Wang GX, Yan JH, Ma KP, Du S, Li SG, Han SJ, Ma YX (2019). Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry, 143, 191-205. |
[35] | Liu MS, Wang CK, Quan XK (2022). Transcriptome analysis on responses of leaf photosynthesis and nitrogen metabolism of Larix gmelinii to environmental change. Chinese Journal of Applied Ecology, 33, 957-962. |
[刘梅朔, 王传宽, 全先奎 (2022). 兴安落叶松叶光合与氮代谢对环境变化响应的转录组分析. 应用生态学报, 33, 957-962.]
DOI |
|
[36] | Luo Y, Peng QW, Li KH, Gong YM, Liu YY, Han WX (2021). Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena, 199, 105100. DOI: 10.1016/j.catena.2020.105100. |
[37] | Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology, 39, 159-166. |
[马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
DOI |
|
[38] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401. |
[39] |
Minden V, Kleyer M (2014). Internal and external regulation of plant organ stoichiometry. Plant Biology, 16, 897-907.
DOI PMID |
[40] | Pearse IS, McIntyre P, Cacho NI, Strauss SY (2022). Fitness homeostasis across an experimental water gradient predicts species’ geographic range and climatic breadth. Ecology, 103, e3827. DOI: 10.1002/ecy.3827 |
[41] | Quan XK, Wang CK (2018). Acclimation and adaptation of leaf photosynthesis, respiration and phenology to climate change: a 30-year Larix gmelinii common-garden experiment. Forest Ecology and Management, 411, 166-175. |
[42] | Quan XK, Wang NN, Wang CK (2020). Thermal acclimation of leaf dark respiration of Larix gmelinii: a latitudinal transplant experiment. Science of the Total Environment, 743, 140634. DOI: 10.1016/j.scitotenv.2020.140634. |
[43] | Rastetter EB, Kwiatkowski BL, Kicklighter DW, Barker Plotkin A, Genet H, Nippert JB, O’Keefe K, Perakis SS, Porder S, Roley SS, Ruess RW, Thompson JR, Wieder WR, Wilcox K, Yanai RD (2022). N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, 32, e2684. DOI: 10.1002/eap.2684. |
[44] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[45] | Ren SJ, Yu GR, Tao B, Guan LL, Fang HJ, Jiang CM (2009). Spatial patterns for variations in leaf nutrient contents of Dahurian larch (Larix gmelinii Rupr.). Acta Ecologica Sinica, 29, 1989-1996. |
[任书杰, 于贵瑞, 陶波, 官丽莉, 方华军, 姜春明 (2009). 兴安落叶松(Larix gmelinii Rupr.)叶片养分的空间分布格局. 生态学报, 29, 1989-1996.] | |
[46] | Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186. |
[47] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47. |
[48] | Shi WQ, Wang GA, Han WX (2012). Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China. PLoS ONE, 7, e44628. DOI: 10.1371/journal.pone.0044628. |
[49] | Sun Y, Wang C, Chen HYH, Luo X, Qiu N, Ruan H (2021). Asymmetric responses of terrestrial C:N:P stoichiometry to precipitation change. Global Ecology and Biogeography, 30, 1724-1735. |
[50] | Tang Z, Xu W, Zhou G, Bai Y, Li J, Tang X, Chen D, Liu Q, Ma W, Xiong G, He H, He N, Guo Y, Guo Q, Zhu J, et al. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[51] | Tian D, Kattge J, Chen Y, Han W, Luo Y, He J, Hu H, Tang Z, Ma S, Yan Z, Lin Q, Schmid B, Fang J (2019). A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 100, e02812. DOI: 10.5167/uzh-180655. |
[52] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[53] | Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739. |
[54] |
Tomlinson KW, Poorter L, Bongers F, Borghetti F, Jacobs L, van Langevelde F (2014). Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 114, 315-324.
DOI PMID |
[55] |
Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical rain forests. Ecology, 88, 107-118.
DOI PMID |
[56] | Wan LN (2019). The Response of Dark Respiration for Larix gmelinii Needles to Climate Warming. Master degree dissertation, Northeast Forestry University, Harbin. 13-14. |
[万丽娜 (2019). 纬度梯度移栽对兴安落叶松叶片暗呼吸的影响. 硕士学位论文, 东北林业大学, 哈尔滨. 13-14.] | |
[57] | Wang M, Murphy MT, Moore TR (2014). Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia, 174, 365-377. |
[58] |
Wang RL, Wang QF, Zhao N, Yu GR, He NP (2017). Complex trait relationships between leaves and absorptive roots: coordination in tissue N concentration but divergence in morphology. Ecology and Evolution, 7, 2697-2705.
DOI PMID |
[59] | Xing W, Wu HP, Shi Q, Liu H, Liu GH (2015). Ecological stoichiometry theory: a review about applications and improvements. Ecological Science, 34, 190-197. |
[邢伟, 吴昊平, 史俏, 刘寒, 刘贵华 (2015). 生态化学计量学理论的应用、完善与扩展. 生态科学, 34, 190-197.] | |
[60] | Yan ZB, Li P, Chen YH, Han WX, Fang JY (2016). Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports, 6, 20099. DOI: 10.1038/srep20099. |
[61] |
Yu Q, Wilcox K, La Pierre K, Knapp AK, Han X, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
PMID |
[62] |
Yue K, Fornara DA, Yang W, Peng Y, Li Z, Wu F, Peng C (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI PMID |
[63] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
DOI |
|
[64] | Zhang L, Liu H, Zhang L, Chen Y, Baskin CC (2022). Effects of increased precipitation on C, N and P stoichiometry at different growth stages of a cold desert annual. Global Ecology and Conservation, 37, e02158. DOI: 10.1016/j.gecco.2022.e02158. |
[65] | Zhang QF, Zhou JC, Li XJ, Yang ZJ, Zheng Y, Wang J, Lin WS, Xie JS, Chen Y, Yang YS (2019). Are the combined effects of warming and drought on foliar C:N:P:K stoichiometry in a subtropical forest greater than their individual effects? Forest Ecology and Management, 448, 256-266. |
[66] |
Zhao N, Yu GR, He NP, Xia FC, Wang QF, Wang RL, Xu ZW, Jia YL (2016). Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research, 129, 647-657.
DOI PMID |
[67] |
Zhou Y, Tang J, Melillo JM, Butler S, Mohan JE (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707-717.
DOI PMID |
[1] | 李林 孙毅 杨晓琼 方海东 闫帮国. 七彩花生根瘤内生菌对氮添加的响应及其与植物化学计量学特征的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[3] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[4] | 孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 770-779. |
[5] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(6): 760-769. |
[6] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[7] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[10] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[11] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[12] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19