植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 792-803.DOI: 10.17521/cjpe.2022.0333
所属专题: 菌根真菌
收稿日期:
2022-08-18
接受日期:
2022-11-11
出版日期:
2023-06-20
发布日期:
2022-11-11
通讯作者:
* (作者简介:
ORCID:胡同欣: 0000-0003-3197-5145
基金资助:
HU Tong-Xin, LI Bei, LI Guang-Xin, REN Yue-Xiao, DING Hai-Lei, SUN Long()
Received:
2022-08-18
Accepted:
2022-11-11
Online:
2023-06-20
Published:
2022-11-11
Contact:
* (Supported by:
摘要:
火烧是北方森林生态系统的重要扰动因子, 而黑碳作为火烧后的产物在森林土壤中普遍存在。虽然黑碳对树木生长有积极影响, 但对黑碳和促进树木生长的微生物(如菌根真菌)之间的协同作用还知之甚少。外生菌根(ECM)真菌作为北方森林生态系统中针叶树种与土壤联系的桥梁, 探究火烧后ECM真菌群落的变化可为火烧后北方森林生态系统碳库恢复与科学管理提供理论依据。该研究以大兴安岭地区兴安落叶松(Larix gmelinii)林为研究对象, 利用高通量测序的方法对ECM真菌进行鉴定, 探究生长季中火烧和黑碳添加处理下ECM真菌群落的变化特征及其关键影响因子。研究结果显示: (1)在生长季中, 与对照相比, 火烧处理下ECM真菌的α多样性显著下降了31.52%, 而黑碳添加处理下的α多样性显著增加了49.02%。β多样性分析也显示生长季中火烧和黑碳添加处理下ECM真菌群落物种组成存在显著差异。(2)在生长季中, 火烧处理的ECM真菌的丰度显著下降了46.35%, 但火烧处理对担子菌门物种丰度的增加影响显著, 而黑碳添加处理对子囊菌门与担子菌门物种丰度的增加均有影响。(3)在生长季中, 火烧和黑碳添加处理中ECM真菌群落物种组成均受到土壤pH、含水率和全氮含量的显著影响, 但在黑碳添加处理中与土壤pH和全氮含量正相关, 与土壤含水率负相关。该研究表明, 火烧降低了生长季中兴安落叶松林ECM真菌的多样性, 并显著降低了其丰度。但是, 火烧后黑碳的添加通过影响土壤pH以及土壤氮含量, 促进了ECM真菌恢复并增加了其多样性。
胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响. 植物生态学报, 2023, 47(6): 792-803. DOI: 10.17521/cjpe.2022.0333
HU Tong-Xin, LI Bei, LI Guang-Xin, REN Yue-Xiao, DING Hai-Lei, SUN Long. Effects of fire originated black carbon on species composition of ectomycorrhizal fungi in a Larix gmelinii forest in growing season. Chinese Journal of Plant Ecology, 2023, 47(6): 792-803. DOI: 10.17521/cjpe.2022.0333
样地 Plot | 树木胸径 Diameter at breast height of trees (cm) | 香农-维纳多样性指数 Shannon-Wiener diversity index | 生物量 Biomass (g·m-2) |
---|---|---|---|
CK | 16.63 ± 0.96 | 1.23 ± 0.50 | 84.86 ± 21.14 |
F | 15.57 ± 0.75 | 1.42 ± 0.41 | 114.20 ± 28.45 |
F-C | 17.47 ± 1.03 | 1.39 ± 0.29 | 96.10 ± 32.07 |
F+C | 17.83 ± 0.67 | 1.50 ± 0.62 | 120.82 ± 87.17 |
表1 大兴安岭毕拉河样地基本信息 (平均值±标准差)
Table 1 Basic information of the plots in Bila river of Da Hinggan Mountains (mean ± SD)
样地 Plot | 树木胸径 Diameter at breast height of trees (cm) | 香农-维纳多样性指数 Shannon-Wiener diversity index | 生物量 Biomass (g·m-2) |
---|---|---|---|
CK | 16.63 ± 0.96 | 1.23 ± 0.50 | 84.86 ± 21.14 |
F | 15.57 ± 0.75 | 1.42 ± 0.41 | 114.20 ± 28.45 |
F-C | 17.47 ± 1.03 | 1.39 ± 0.29 | 96.10 ± 32.07 |
F+C | 17.83 ± 0.67 | 1.50 ± 0.62 | 120.82 ± 87.17 |
月份 Month (df = 1) | 组别 Group (df = 3) | 月份×组别 Month × group (df = 3) | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH | 33.31 | ** | 18.96 | ** | 2.67 | ns |
SWC | 33.48 | ** | 19.30 | ** | 4.57 | ** |
NH+ 4-N | 107.05 | ** | 10.08 | ** | 9.70 | ** |
NO- 3-N | 2.21 | ns | 3.10 | ** | 2.26 | ns |
TN | 22.99 | ** | 2.63 | ns | 5.63 | ** |
TC | 11.32 | ** | 12.79 | ** | 2.06 | ns |
Chao1 | 5.09 | * | 0.97 | ns | 4.43 | ** |
Shannon | 0.95 | ns | 4.85 | ** | 7.61 | ** |
Simpson | 2.02 | ns | 3.48 | * | 6.50 | ** |
表2 不同处理和月份对兴安落叶松林土壤理化性质和菌根真菌多样性影响的双因素检验
Table 2 Two factors test of effects of different treatments and months on soil physical and chemical properties, and ectomycorrhizal fungi diversity in a Larix gemelinii forest
月份 Month (df = 1) | 组别 Group (df = 3) | 月份×组别 Month × group (df = 3) | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH | 33.31 | ** | 18.96 | ** | 2.67 | ns |
SWC | 33.48 | ** | 19.30 | ** | 4.57 | ** |
NH+ 4-N | 107.05 | ** | 10.08 | ** | 9.70 | ** |
NO- 3-N | 2.21 | ns | 3.10 | ** | 2.26 | ns |
TN | 22.99 | ** | 2.63 | ns | 5.63 | ** |
TC | 11.32 | ** | 12.79 | ** | 2.06 | ns |
Chao1 | 5.09 | * | 0.97 | ns | 4.43 | ** |
Shannon | 0.95 | ns | 4.85 | ** | 7.61 | ** |
Simpson | 2.02 | ns | 3.48 | * | 6.50 | ** |
图2 火烧黑碳对兴安落叶松林生长季初期(6月份)和生长季末期(9月份)土壤理化性质的影响(平均值±标准误)。CK, 未火烧对照; F, 火烧样地; F-C, 去除黑碳样地; F+C, 添加黑碳样地。不同大写字母表示同一处理不同月份之间的差异显著(p < 0.05), 不同小写字母表示同一月份不同处理之间的差异显著(p < 0.05)。NH+ 4-N, 土壤铵态氮含量; NO- 3-N, 土壤硝态氮含量; SWC, 土壤含水率; TC, 土壤全碳含量; TN, 土壤全氮含量。
Fig. 2 Effects of adding black carbon after fire on soil physical and chemical properties at the beginning (June) and the end (September) of the growing season in a Larix gmelinii forest (mean ± SE). CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots. Different uppercase letters indicate significant differences between months of the same treatment (p < 0.05), different lowercase letters indicate significant differences among different treatments in the same month (p < 0.05). NH+ 4-N, soil ammonium nitrogen content; NO- 3-N, soil nitrate nitrogen content; SWC, soil water content; TC, soil total carbon content; TN, soil total nitrogen content.
图3 火烧黑碳影响下的兴安落叶松林生长季初期(6月份, A)和生长季末期(9月份, B)的外生菌根真菌群落alpha指数稀疏曲线图。CK, 未火烧对照; F, 火烧样地; F-C, 去除黑碳样地; F+C, 添加黑碳样地。
Fig. 3 Sparse plots of alpha index of the ectomycorrhiza fungi community under fire originated black carbon at the beginning (June, A) and the end (September, B) of the growing season in a Larix gmelinii forest. CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots.
图4 火烧黑碳对兴安落叶松林生长季初期(6月份)和生长季末期(9月份)外生菌根真菌多样性指数的影响(平均值±标准误)。不同大写字母表示同一处理不同月份之间的差异显著(p < 0.05), 不同小写字母表示同一月份不同处理之间的差异显著(p < 0.05)。CK, 未火烧对照; F, 火烧样地; F-C, 黑碳去除样地; F+C, 黑碳添加样地。
Fig. 4 Effects of adding black carbon after fire on diversity index at the beginning (June) and the end (September) of the growing season in a Larix gmelinii forest (mean ± SE). Different uppercase letters indicate significant differences between months of the same treatment (p < 0.05), different lowercase letters indicate significant differences among different treatments in the same month (p < 0.05). CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots.
图5 火烧黑碳对兴安落叶松林生长季初期(6月份, A)和生长季末期(9月份, B)外生菌根真菌群落影响的非度量多维尺度(NMDS)分析。CK, 未火烧对照; F, 火烧样地; F-C, 去除黑碳样地; F+C, 添加黑碳样地。
Fig. 5 Non-metric multidimensional scaling (NMDS) analysis of adding black carbon after fire at the beginning (June, A) and the end (September, B) of the growing season in a Larix gmelinii forest. CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots.
图6 兴安落叶松林外生菌根真菌属水平的群落物种组成。A, 生长季初期(6月份)。B, 生长季末期(9月份)。CK, 未火烧对照; F, 火烧样地; F-C, 去除样地; F+C, 添加黑碳样地。
Fig. 6 Species composition of ectomycorrhizal fungi at the genus level in a Larix gmelinii forest. A, At the beginning of the growing season (June). B, At the end of the growing season (September). CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots.
图7 环境因子与兴安落叶松外生菌根真菌群落属水平上物种相对丰度之间的冗余分析(RDA)。A, 生长季初期(6月份)。B, 生长季末期(9月份)。CK, 未火烧对照; F, 火烧样地; F-C, 去除黑碳样地; F+C, 添加黑碳样地。NH+ 4-N, 土壤铵态氮含量; NO- 3-N, 土壤硝态氮含量; SWC, 土壤含水率; TC, 土壤全碳含量; TN, 土壤全氮含量; Treatments, 处理。Fuscoboletinus, 褐小牛肝菌属; Hygrophorus, 蜡伞属; Lachnum, 粒毛盘菌属; Phialocephala, 瓶头霉属; Russula, 红菇属; Sebacina, 蜡壳菌属; Tomentella, 棉革菌属; Trichophaea, 长毛盘菌属。
Fig. 7 Redundancy analysis (RDA) between environmental factors and ectomycorrhizal fungi species relative abundance at the genus level of Larix gmelini. A, Early growth season (June). B, End of growing season (September). CK, unburned control; F, burned plots; F-C, black carbon removal plots; F+C, black carbon addition plots. NH+ 4-N, soil ammonium nitrogen content; NO- 3-N, soil nitrate nitrogen content; SWC, soil water content; TC, soil total carbon content; TN, soil total nitrogen content.
[1] | Allen M (1992). Mycorrhizal Functioning: an Integrative Plant-fungal Process. Springer, Berlin. |
[2] |
Arocena JM, Glowa KR (2000). Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. Forest Ecology and Management, 133, 61-70.
DOI URL |
[3] |
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, et al. (2018). Structure and function of the global topsoil microbiome. Nature, 560, 233-237.
DOI |
[4] |
Bahureksa W, Young RB, McKenna AM, Chen H, Thorn KA, Rosario-Ortiz FL, Borch T (2022). Nitrogen enrichment during soil organic matter burning and molecular evidence of maillard reactions. Environmental Science & Technology, 56, 4597-4609.
DOI URL |
[5] |
Bird MI, Ascough PL (2012). Isotopes in pyrogenic carbon: a review. Organic Geochemistry, 42, 1529-1539.
DOI URL |
[6] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[7] |
Buscardo E, Freitas H, Santos Pereira J, de Angelis P (2011). Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest. Mycorrhiza, 21, 549-558.
DOI PMID |
[8] |
Buscardo E, Rodríguez-Echeverría S, Freitas H, de Angelis P, Santos Pereira J, Muller LAH (2015). Contrasting soil fungal communities in Mediterranean pine forests subjected to different wildfire frequencies. Fungal Diversity, 70, 85-99.
DOI URL |
[9] |
Cai WH, Yang J, Liu ZH, Hu YM, Weisberg PJ (2013). Post-fire tree recruitment of a boreal larch forest in Northeast China. Forest Ecology and Management, 307, 20-29.
DOI URL |
[10] |
Certini G (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
DOI PMID |
[11] |
Christensen NL (1973). Fire and the nitrogen cycle in california chaparral. Science, 181, 66-68.
PMID |
[12] |
Coleman MD, Bledsoe CS, Lopushinsky W (1989). Pure culture response of ectomycorrhizal fungi to imposed water stress. Canadian Journal of Botany, 67, 29-39.
DOI URL |
[13] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
DOI PMID |
[14] |
Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010). The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology & Biochemistry, 42, 679-698.
DOI URL |
[15] |
Covington WW, Sackett SS (1992). Soil mineral nitrogen changes following prescribed burning in ponderosa pine. Forest Ecology and Management, 54, 175-191.
DOI URL |
[16] |
Dahlberg A, Schimmel J, Taylor AFS, Johannesson H (2001). Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biological Conservation, 100, 151-161.
DOI URL |
[17] |
Dai ZM, Enders A, Rodrigues JLM, Hanley KL, Brookes PC, Xu JM, Lehmann J (2018). Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biology & Biochemistry, 126, 159-167.
DOI URL |
[18] |
Domisch T, Finér L, Lehto T, Smolander A (2002). Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant and Soil, 239, 173-185.
DOI URL |
[19] |
Ficken CD, Wright JP (2017). Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions. PLoS ONE, 12, e0186292. DOI: 10.1371/journal.pone.0186292.
DOI |
[20] |
Fierer N, Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626-631.
DOI PMID |
[21] | Ge W, Dong CB, Zhang ZY, Han YF, Liang ZQ (2021). Symbiotic interaction between ectomycorrhizal fungi and endobacteria: a review. Microbiology China, 48, 3810-3822. |
[葛伟, 董醇波, 张芝元, 韩燕峰, 梁宗琦 (2021). 外生菌根真菌与内生细菌共生互作的研究进展. 微生物学通报, 48, 3810-3822.] | |
[22] |
Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016). Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. The ISME Journal, 10, 1228-1239.
DOI |
[23] |
Grime JP (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347.
DOI |
[24] |
Hedwall PO, Gruffman L, Ishida T, From F, Lundmark T, Näsholm T, Nordin A (2018). Interplay between N-form and N-dose influences ecosystem effects of N addition to boreal forest. Plant and Soil, 423, 385-395.
DOI URL |
[25] |
Holden SR, Gutierrez A, Treseder KK (2013). Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems, 16, 34-46.
DOI URL |
[26] |
Hu L, Cao LX, Zhang RD (2014). Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World Journal of Microbiology and Biotechnology, 30, 1085-1092.
DOI URL |
[27] |
Jany JL, Martin F, Garbaye J (2003). Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant and Soil, 255, 487-494.
DOI URL |
[28] |
Jones MD, Durall DM, Cairney JWG (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist, 157, 399-422.
DOI PMID |
[29] |
King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154, 389-398.
DOI PMID |
[30] |
Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34-43.
DOI URL |
[31] |
Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011). Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia, 167, 219-228.
DOI PMID |
[32] |
Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, et al. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271-5277.
DOI PMID |
[33] |
Laird D, Fleming P, Wang BQ, Horton R, Karlen D (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436-442.
DOI URL |
[34] |
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43, 1812-1836.
DOI URL |
[35] |
Lilleskov EA, Fahey TJ, Lovett GM (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11, 397-410.
DOI URL |
[36] | Liu SC, Chen XZ, Qin XL, Sun GF, Li XT (2018). Remote sensing assessment of forest fire damage degree in Bilahe forest farm Inner Mongolia. Forest Resources Management, (1), 90-95. |
[刘树超, 陈小中, 覃先林, 孙桂芬, 李晓彤 (2018). 内蒙古毕拉河林场森林火灾受害程度遥感评价. 林业资源管理, (1), 90-95.] | |
[37] |
Longo MS, Urcelay C, Nouhra E (2011). Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. Forest Ecology and Management, 262, 348-354.
DOI URL |
[38] |
Millar CI, Stephenson NL (2015). Temperate forest health in an era of emerging megadisturbance. Science, 349, 823-826.
DOI PMID |
[39] |
Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71.
DOI URL |
[40] |
Palansooriya KN, Wong JTF, Hashimoto Y, Huang LB, Rinklebe J, Chang SX, Bolan N, Wang HL, Ok YS (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3-22.
DOI |
[41] | Reazin C, Morris S, Smith JE, Cowan AD, Jumpponen A (2016). Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. Forest Ecology and Management, 377, 118-127. |
[42] |
Rincón A, Pueyo JJ (2010). Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. Forest Ecology and Management, 260, 361-369.
DOI URL |
[43] |
Rincón A, Santamaría B, Ocaña L, Verdú M (2014). Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza, 24, 131-141.
DOI PMID |
[44] | Sagara N (1995). Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Canadian Journal of Botany, 73, 1423-1433. |
[45] |
Santín C, Doerr SH, Preston CM, González-Rodríguez G (2015). Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology, 21, 1621-1633.
DOI PMID |
[46] | Scharenbroch BC, Nix B, Jacobs KA, Bowles ML (2012). Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183- 184, 80-91. |
[47] |
Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395-402.
DOI PMID |
[48] |
Smit IPJ, Asner GP, Govender N, Vaughn NR, van Wilgen BW (2016). An examination of the potential efficacy of high-intensity fires for reversing woody encroachment in savannas. Journal of Applied Ecology, 53, 1623-1633.
DOI URL |
[49] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, New York. |
[50] |
Soto B, Diaz-Fierros F (1993). Interactions between plant ash leachates and soil. International Journal of Wildland Fire, 3, 207-216.
DOI URL |
[51] |
Sun H, Santalahti M, Pumpanen J, Köster K, Berninger F, Raffaello T, Jumpponen A, Asiegbu FO, Heinonsalo J (2015). Fungal community shifts in structure and function across a boreal forest fire chronosequence. Applied and Environmental Microbiology, 81, 7869-7880.
DOI PMID |
[52] |
Taudière A, Richard F, Carcaillet C (2017). Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. Forest Ecology and Management, 391, 446-457.
DOI URL |
[53] |
Taylor DL, Bruns TD (1999). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Molecular Ecology, 8, 1837-1850.
PMID |
[54] |
Tedersoo L, Suvi T, Larsson E, Kõljalg U (2006). Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycological Research, 110, 734-748.
PMID |
[55] |
Tian XR, Cui WB, Shu LF (2020). Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China. Canadian Journal of Forest Research, 50, 670-679.
DOI URL |
[56] |
Tryon EH (1948). Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs, 18, 81-115.
DOI URL |
[57] |
Tsvetkov PA (2004). Pyrophytic properties of the larch Larix gmelinii in terms of life strategies. Russian Journal of Ecology, 35, 224-229.
DOI URL |
[58] |
van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235-246.
DOI URL |
[59] |
Visser S (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist, 129, 389-401.
DOI URL |
[60] |
Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Mack MC (2019). Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572, 520-523.
DOI |
[61] |
Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007). Mycorrhizal responses to biochar in soil—Concepts and mechanisms. Plant and Soil, 300, 9-20.
DOI URL |
[62] |
Yang T, Tedersoo L, Lin XW, Fitzpatrick MC, Jia YS, Liu X, Ni YY, Shi Y, Lu PP, Zhu JG, Chu HY (2020). Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. New Phytologist, 227, 572-587.
DOI PMID |
[63] | Yin YF, Yang YS, Gao R, Chen GS, Xie JS, Qian W, Zhao YC (2009). Effects of slash and burning on soil organic carbon and black carbon in Chinese fir plantation. Acta Pedologica Sinica, 46, 352-355. |
[尹云锋, 杨玉盛, 高人, 陈光水, 谢锦升, 钱伟, 赵月彩. (2009). 皆伐火烧对杉木人工林土壤有机碳和黑碳的影响. 土壤学报, 46, 352-355.] | |
[64] |
Zhou ZH, Wang CK, Luo YQ (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. DOI: 10.1038/s41467-020-16881-7.
DOI |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[6] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[9] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[10] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[11] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[12] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[13] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[14] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[15] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19