植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1105-1115.DOI: 10.17521/cjpe.2022.0366
收稿日期:
2022-09-09
接受日期:
2022-09-28
出版日期:
2023-08-20
发布日期:
2023-02-28
通讯作者:
*ORCID: 任明迅: 0000-0002-4707-2656,(基金资助:
Received:
2022-09-09
Accepted:
2022-09-28
Online:
2023-08-20
Published:
2023-02-28
Contact:
*REN Ming-Xun(Supported by:
摘要:
环南海区域是围绕中国南海的陆地形成的相对独立的半封闭地理单元, 分为华南沿海、台湾岛、海南岛、中南半岛、马来半岛、加里曼丹岛(婆罗洲)、巴拉望岛、吕宋岛等8个地区。环南海区域是全球红树植物分布最集中的区域之一。为了揭示红树物种在环南海区域的地理分布格局及其形成原因, 该研究通过文献和网站等确定环南海区域及全球主要红树分布区的物种分布点, 并用ArcGIS绘制分布图; 利用DIVA-GIS 7.5.0构建红树科、锦葵科、海桑属(Sonneratia)、海榄雌属(Avicennia)等4个典型红树植物类群的1° × 1°物种多样性分布格局。红树物种的迁移历史及路线主要通过在ISI Web of Science查找文献, 通过文献整合揭示环南海区域红树物种的迁移规律及主要影响因素。主要结果有: (1)环南海区域分布有真红树39种、半红树14种, 红树物种数量仅次于邻近的大洋洲及新几内亚, 远高于全球其他区域; 环南海区域的马来半岛和加里曼丹岛红树物种多样性最高, 其次是中南半岛、海南岛和吕宋岛, 巴拉望岛红树物种多样性最低。(2)环南海区域红树物种都是广布种, 这可能是因为南海在夏季和冬季具有完全不同的洋流方向和季风方向, 促进了红树植物在环南海区域的长距离扩散。(3)南海北部和南部的洋流存在一定的内循环, 导致海漆(Excoecaria agallocha)、蜡烛果(Aegiceras corniculatum)和榄李(Lumnitzera racemosa)等真红树物种在中南半岛金兰湾、巴拉望岛北端连线的两侧出现了相对隔离的遗传谱系。(4)南海海平面在更新世曾下降了120 m左右, 深刻影响了环南海区域红树植物的分布格局及迁移路线。建议未来的研究利用现代分子生物学技术解析整个环南海区域的代表性红树类群的谱系地理学格局, 以揭示该区域红树植物演化历史及其在全球气候变化影响下的变迁趋势。
杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制. 植物生态学报, 2023, 47(8): 1105-1115. DOI: 10.17521/cjpe.2022.0366
YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea. Chinese Journal of Plant Ecology, 2023, 47(8): 1105-1115. DOI: 10.17521/cjpe.2022.0366
图2 环南海区域红树物种多样性分布格局。饼图大小对应红树物种数量。分布点数据来源于Global Biodiversity Information Facility (GBIF)网站(http://www.gbif.org/)。浅灰色部分是末次盛冰期(约600万年前)海平面下降120 m后的出露陆地(Voris, 2000)。HI, 海南岛; IP, 中南半岛; K, 加里曼丹岛; LI, 吕宋岛; MP, 马来半岛; PI, 巴拉望岛; SC, 华南沿海; TI, 台湾岛。
Fig. 2 Distribution pattern of mangrove species around the South China Sea. The pie size corresponds to species richness. Data obtained from Global Biodiversity Information Facility (GBIF, http://www.gbif.org/). The light gray areas indicate the emersed lands in the Last Glacial Maximum (about 6 million years ago) when the sea level decreased 120 m (Voris, 2000). HI, Hainan Island; IP, Indo-China Peninsula; K, Kalimantan Island; LI, Luzon Island; MP, Malay Peninsula; PI, Palawan Island; SC, South China; TI, Taiwan Island.
图3 环南海区域4个典型红树植物类群的地理分布。数据来源于Global Biodiversity Information Facility (GBIF)网站(http://www.gbif.org/)。
Fig. 3 Species distribution pattern of four typical mangrove taxa around the South China Sea. Data obtained from Global Biodiversity Information Facility (GBIF) (http://www.gbif.org/).
图4 环南海区域夏季(A)和冬季(B)的红树植物扩散路线。浅灰色部分是末次盛冰期(约600万年前)海平面下降120 m后的出露陆地(Voris, 2000)。A图中的虚线表示物种迁移发生几率较低。洋流模式修改自Fang等(2012)。
Fig. 4 Main dispersal routes of mangrove plants around the South China Sea in summer (A) and winter (B). The light gray areas indicate the emerged lands in the Last Glacial Maximum (about 6 million years ago) when the sea level decreased 120 m (Voris, 2000). The dash line in A indicates limited species dispersal in the history. Ocean current patterns modified from Fang et al. (2012).
[1] |
Alongi DM (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349.
DOI URL |
[2] |
Banerjee AK, Guo WX, Qiao ST, Li WX, Xing F, Lin YT, Hou ZW, Li S, Liu Y, Huang YL (2020). Land masses and oceanic currents drive population structure of Heritiera littoralis, a widespread mangrove in the Indo-West Pacific. Ecology and Evolution, 10, 7349-7363.
DOI PMID |
[3] | Canini ND, Metill EB, Azanza RV (2013). Monsoon-influenced phytoplankton community structure in a Philippine mangrove estuary. Tropical Ecology, 54, 331-343. |
[4] |
Chiang TY, Chiang YC, Chen YJ, Chou CH, Havanond S, Hong TN, Huang S (2001). Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Molecular Ecology, 10, 2697-2710.
PMID |
[5] |
Das AB, Jena S, Pradhan C, Chand PK (2011). Genetic variability among male populations of a minor mangrove Excoecaria agallocha L. as evident by chromosome morphology and DNA markers. The Nucleus, 54, 39-47.
DOI URL |
[6] | Duke NC (2006). Australia’s Mangroves: the Authoritative Guide to Australia’s Mangrove Plants. University of Queensland, Brisbane, Australia. |
[7] |
Duke NC, Lo E, Sun M (2002). Global distribution and genetic discontinuities of mangroves-emerging patterns in the evolution of Rhizophora. Trees, 16, 65-79.
DOI URL |
[8] |
Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007). A world without mangroves? Science, 317, 41-42.
DOI PMID |
[9] |
Ellison AM, Farnsworth EJ, Merkt RE (1999). Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95-115.
DOI URL |
[10] | Fang GH, Wang G, Fang Y, Fang WD (2012). A review on the South China Sea western boundary current. Acta Oceanologica Sinica, 31, 1-10. |
[11] | Giesen W, Wulffraat S, Zieren M, Scholten L (2007). Mangrove Guidebook for Southeast Asia. Food and Agriculture Organization and Wetlands International, Bangkok, Thailand. |
[12] |
Guo WX, Banerjee AK, Ng WL, Yuan Y, Li WX, Huang YL (2020). Chloroplast DNA phylogeography of the holly mangrove Acanthus ilicifolius in the Indo-West Pacific. Hydrobiologia, 847, 3591-3608.
DOI |
[13] | Guo WX, Banerjee AK, Wu HD, Ng WL, Feng H, Qiao ST, Liu Y, Huang YL (2021). Contrasting phylogeographic patterns in Lumnitzera mangroves across the Indo-West Pacific. Frontiers in Plant Science, 12, 637009. DOI: 10.3389/fpls.2021.637009. |
[14] |
Guo WX, Ng WL, Wu HD, Li WX, Zhang L, Qiao ST, Yang XY, Shi XG, Huang YL (2018a). Chloroplast phylogeography of a widely distributed mangrove species, Excoecaria agallocha, in the Indo-West Pacific region. Hydrobiologia, 807, 333-347.
DOI URL |
[15] |
Guo ZX, Guo WX, Wu HD, Fang XT, Ng WL, Shi XG, Liu Y, Huang ZC, Li WX, Gan L, He SN, Zhong CR, Jian SG, Gong X, Shi SH, Huang YL (2018b). Differing phylogeographic patterns within the Indo-West Pacific mangrove genus Xylocarpus (Meliaceae). Journal of Biogeography, 45, 676-689.
DOI URL |
[16] |
Guo ZX, Huang YL, Chen YM, Duke NC, Zhong CR, Shi SH (2016). Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malesian region. Journal of Biogeography, 43, 1856-1868.
DOI URL |
[17] |
Guo ZX, Li XN, He ZW, Yang YC, Wang WQ, Zhong CR, Greenberg AJ, Wu CI, Duke NC, Shi SH (2018c). Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Global Change Biology, 24, 1741-1748.
DOI URL |
[18] | Han BP (1995). Study on the floristic composition similarity of mangrove among their global distribution regions. Journal of Integrative Plant Biology, 37, 624-629. |
[韩博平 (1995). 世界红树植物分布区域间种类组成的相似性研究. 植物学报, 37, 624-629.] | |
[19] | He ZW, Feng X, Chen QP, Li LW, Li S, Han K, Guo ZX, Wang JY, Liu M, Shi CC, Xu SH, Shao S, Liu X, Mao XM, Xie W, et al. (2022). Evolution of coastal forests based on a full set of mangrove genomes. Nature Ecology & Evolution, 6, 738-749. |
[20] |
He ZW, Li XN, Yang M, Wang XF, Zhong CR, Duke NC, Wu CI, Shi SH (2019). Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. National Science Review, 6, 275-288.
DOI PMID |
[21] |
Hewitt G (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
DOI |
[22] |
Jiang C, Tan K, Ren MX (2017). Effects of monsoon on distribution patterns of tropical plants in Asia. Chinese Journal of Plant Ecology, 41, 1103-1112.
DOI |
[姜超, 谭珂, 任明迅 (2017). 季风对亚洲热带植物分布格局的影响. 植物生态学报, 41, 1103-1112.]
DOI |
|
[23] |
Jin FJ, Yao ZL, Chen Z (2021). Development characteristics and construction prospects for an integrated economic zone in the South China Sea region. Acta Geographica Sinica, 76, 428-443.
DOI |
[金凤君, 姚作林, 陈卓 (2021). 环南海区域发展特征与一体化经济区建设前景. 地理学报, 76, 428-443.]
DOI |
|
[24] |
Lester SE, Ruttenberg BI, Gaines SD, Kinlan BP (2007). The relationship between dispersal ability and geographic range size. Ecology Letters, 10, 745-758.
DOI PMID |
[25] | Li X (2017). A preliminary study on the historical geography of the South China Sea area. Borderland Studies of China, (2), 216-231. |
[李欣 (2017). 环南海地区历史地理研究初探. 中国边疆学, (2), 216-231.] | |
[26] | Liao BW, Zhang QM (2014). Area, distribution and species composition of mangroves in China. Wetland Science, 12, 435-440. |
[廖宝文, 张乔民 (2014). 中国红树林的分布、面积和树种组成. 湿地科学, 12, 435-440.] | |
[27] |
Liao PC, Havanond S, Huang S (2007). Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conservation Genetics, 8, 89-98.
DOI URL |
[28] | Lin P (1987). Distribution of mangrove species. Scientia Silvae Sinicae, 23, 481-490. |
[林鹏 (1987). 红树林的种类及其分布. 林业科学, 23, 481-490.] | |
[29] | Matos P, Batista MT, Figueirinha A (2022). A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). Journal of Ethnopharmacology, 293, 115271. DOI: 10.1016/j.jep.2022.115271. |
[30] |
Ng WL, Onishi Y, Inomata N, Teshima KM, Chan HT, Baba S, Changtragoon S, Siregar IZ, Szmidt AE (2015). Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conservation Genetics, 16, 137-150.
DOI URL |
[31] |
Plaziat JC, Cavagnetto C, Koeniguer JC, Baltzer F (2001). History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetlands Ecology and Management, 9, 161-180.
DOI URL |
[32] | Primavera J, Sadaba R, Lebata M, Hazel J, Altamirano J (2004). Handbook of Mangroves in the Philippines-Panay. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines. |
[33] | Rumney TA (2010). The Geography of Southeast Asia: a Scholarly Bibliography and Guide. University Press of America, Lanham, USA. |
[34] | Saenger P, Ragavan P, Sheue CR, López-Portillo J, Yong JWH, Mageswaran T (2019). Mangrove biogeography of the Indo-Pacific//Gul B, Böer B, Khan MA, Clüsener-Godt M, Hameed A. Sabkha Ecosystems. Springer, Cham, Switzerland. 379-400. |
[35] | Sarmiento RT (2020). Floristic diversity of the biodiversity monitoring plots and its environs within agata mining ventures, Inc., Tubay, Agusan del Norte, Philippines. Tubay, Agusan del Norte, Philippines. Ambient Science, 7, 11-18. |
[36] |
Sheue CR, Liu HY, Yong JW (2003). Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. TAXON, 52, 287-294.
DOI URL |
[37] |
Takayama K, Tateishi Y, Murata J, Kajita T (2008). Gene flow and population subdivision in a pantropical plant with sea-drifted seeds Hibiscus tiliaceus and its allied species: evidence from microsatellite analyses. Molecular Ecology, 17, 2730-2742.
DOI PMID |
[38] | Tan K, Malabrigo PL, Ren MX (2020). Origin and evolution of biodiversity hotspots in Southeast Asia. Acta Ecologica Sinica, 40, 3866-3877. |
[谭珂, Malabrigo PL, 任明迅 (2020). 东南亚生物多样性热点地区的形成与演化. 生态学报, 40, 3866-3877.] | |
[39] | Tomizawa Y, Tsuda Y, Saleh MN, Wee AK, Takayama K, Yamamoto T, Yllano OB, Salmo III SG, Sungkaew S, Adjie B, Ardli E, Suleiman M, Tung NX, Soe KK, Kandasamy K, et al. (2017). Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific region. Forests, 8, 480. DOI: 10.3390/f8120480. |
[40] | Tomlinson PB (2016). The Botany of Mangroves. Cambridge University Press, Melbourne, Australia. |
[41] |
Urashi C, Teshima KM, Minobe S, Koizumi O, Inomata N (2013). Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecology and Evolution, 3, 2251-2261.
DOI PMID |
[42] | van der Stocken T, Vanschoenwinkel B, de Ryck DJ, Bouma TJ, Dahdouh-Guebas F, Koedam N (2015). Interaction between water and wind as a driver of passive dispersal in mangroves. PLoS ONE, 10, e0121593. DOI: 10.1371/journal.pone.0127132. |
[43] |
Voris HK (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153-1167.
DOI URL |
[44] | Wang BS, Liang SC, Zhang WY, Zan QJ (2003). Mangrove Flora of the World. Acta Botanica Sinica, 45, 644-653. |
[45] | Wang RJ, Chen ZY (2002). Systematics and biogeography study on the family Sonneratiaceae. Guihaia, 22, 214-219. |
[王瑞江, 陈忠毅 (2002). 海桑科的系统进化及地理分布. 广西植物, 22, 214-219.] | |
[46] | Wang WQ, Wang M (2007). Chinese Mangrove. Science Press, Beijing. |
[王文卿, 王瑁 (2007). 中国红树林. 科学出版社, 北京.] | |
[47] | Wee AK, Takayama K, Chua JL, Asakawa T, Meenakshisundaram SH, Adjie B, Ardli ER, Sungkaew S, Malekal NB, Tung NX, Salmo III SG, Yllano OB, Saleh MN, Soe KK, Tateishi Y, et al. (2015). Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evolutionary Biology, 15, 57. DOI: 10.1186/s12862-015-0331-3. |
[48] | Wee AK, Teo JXH, Chua JL, Takayama K, Asakawa T, Meenakshisundaram SH, Onrizal O, Adjie B, Ardli ER, Sungkaew S, Suleiman M, Tung NX, Salmo III SG, Yllano OB, Saleh MN, et al. (2017). Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba J. Sm in the Indo-West Pacific. Forests, 8, 483. DOI: 10.3390/f8120483. |
[49] | Yang YC, Duke NC, Peng FF, Li JF, Yang SH, Zhong CR, Zhou RC, Shi SH (2016). Ancient geographical barriers drive differentiation among Sonneratia caseolaris populations and recent divergence from S. lanceolata. Frontiers in Plant Science, 7, 1618. DOI: 10.3389/fpls.2016.01618. |
[50] |
Yang YC, Li JF, Yang SH, Li XN, Fang L, Zhong CR, Duke NC, Zhou RC, Shi SH (2017). Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evolutionary Biology, 17, 1-14.
DOI URL |
[51] | Ye Y, Lu CY, Wong YS, Tam NFY (2004). Diaspore traits and inter-tidal zonation of non-viviparous mangrove species. Acta Botanica Sinica, 46, 896-906. |
[52] | Zhang RF, Guo ZX, Fang L, Zhong CR, Duke NC, Shi SH (2022). Population subdivision promoted by a sea-level-change-driven bottleneck: a glimpse from the evolutionary history of the mangrove plant Aegiceras corniculatum. Mo lecular Ecology, 31, 780-797. |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 陈雨婷, 马松梅, 张丹, 张林, 王春成. 新疆同域分布梭梭和白梭梭多样性格局及其形成机制[J]. 植物生态学报, 2024, 48(1): 56-67. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[6] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[7] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[8] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[9] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[10] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[11] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[12] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[13] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[14] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[15] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19