植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 952-960.DOI: 10.17521/cjpe.2021.0101
所属专题: 生态化学计量
收稿日期:
2021-03-19
接受日期:
2021-06-03
出版日期:
2021-09-20
发布日期:
2021-07-22
通讯作者:
金光泽
作者简介:
ORCID: *金光泽: 0000-0002-9852-0965(taxus@126.com)
基金资助:
SONG Yu-Han1, ZHANG Peng1, JIN Guang-Ze1,2,*()
Received:
2021-03-19
Accepted:
2021-06-03
Online:
2021-09-20
Published:
2021-07-22
Contact:
JIN Guang-Ze
Supported by:
摘要:
灌木是森林生态系统的重要组成部分, 对于演替进程中灌木叶片化学计量特征的研究, 有助于全面理解和预测森林演替过程。该研究以黑龙江凉水国家自然保护区内处于阔叶红松(Pinus koraiensis)林不同演替阶段中的白桦(Betula platyphylla)次生林、落叶阔叶混交林、针阔混交林、阔叶红松林的灌木为研究对象, 分析其叶片的碳(C)、氮(N)、磷(P)化学计量特征差异, 并利用层次分割方法检验其与土壤、物种多样性的关系。主要结果为: 1)随着演替的进行, 阔叶红松林的叶片N含量显著高于其他3种林型, P含量与白桦次生林无显著差异, 但显著高于其他两种林型; 2)土壤N、P含量与个体尺度上的叶片N含量均呈显著正相关关系, 土壤P含量与叶片P含量呈显著正相关关系; 3)群落尺度上, 物种多样性和土壤化学性质共解释叶片N含量变异的82%和叶片P含量变异的62%; 4)群落尺度上Shannon多样性指数与灌木叶片的N、P含量呈显著正相关关系, 与灌木叶片的C:N、C:P呈显著负相关关系。总之, 阔叶红松林4个演替阶段灌木均受到氮限制; 相较于土壤的化学性质, 物种多样性更好地解释了灌木化学计量的变异。
宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素. 植物生态学报, 2021, 45(9): 952-960. DOI: 10.17521/cjpe.2021.0101
SONG Yu-Han, ZHANG Peng, JIN Guang-Ze. Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages. Chinese Journal of Plant Ecology, 2021, 45(9): 952-960. DOI: 10.17521/cjpe.2021.0101
演替阶段 Successional stage | 乔木组成 Tree composition | 灌木组成 Shrub composition |
---|---|---|
演替阶段I (白桦次生林) Successional stage I (Secondary birch forest) | 5白桦; 2红松; 1兴安落叶松; 1水曲柳+春榆+色木槭+山杨+黄檗-枫桦-红皮云杉-裂叶榆-臭冷杉-胡桃楸-紫椴 5 Betula platyphylla; 2 Pinus koraiensis; 1 Larix gmelinii; 1 Fraxinus mandschurica + Ulmus davidiana var. japonica + Acer pictum subsp. mono + Populus davidiana + Phellodendron amurense - Betula costata - Picea koraiensis - Ulmus laciniata - Abies nephrolepis - Juglans mandshurica - Tilia amurensis | 7暴马丁香; 1东北山梅花; 1刺五加+珍珠梅+早花忍冬+毛榛子-光萼溲疏 7 Syringa reticulata subsp. amurensis; 1 Philadelphus schrenkii; 1 Acanthopanax senticosus + Sorbaria sorbifolia + Lonicera praeflorens + Corylus mandshurica - Deutzia glabrata |
演替阶段II (落叶阔叶混交林) Successional stage II (Mixed deciduous broad-leaved forest) | 4水曲柳; 2山杨; 1紫椴; 1色木槭; 1白桦+胡桃楸+鱼鳞云杉-春榆-红松-红皮云杉-青楷槭-稠李-裂叶榆-蒙古栎 4 Fraxinus mandschurica; 2 Populus davidiana; 1 Tilia amurensis; 1 Betula platyphylla + Juglans mandshurica + Picea jezoensis var. microsperma - Ulmus laciniata - Pinus koraiensis - Picea koraiensis - Acer tegmentosum - Padus racemose - Ulmus laciniata - Quercus mongolica | 7暴马丁香; 2毛榛; 1瘤枝卫矛+东北山梅花+刺五加+光萼溲疏-早花忍冬 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica; 1 Euonymus verrucosus + Philadelphus schrenkii + Acanthopanax senticosus + Deutzia glabrata - Lonicera praeflorens |
演替阶段III (针阔混交林) Succession stage III (Mixed coniferous and broad-leaved forest) | 4臭冷杉; 4红松; 1春榆; 1红皮云杉+鱼鳞云杉+白桦+色木槭-花楷槭-枫桦-紫椴-胡桃楸-稠李 4 Abies nephrolepis; 4 Pinus koraiensis; 1 Ulmus davidiana var. japonica; 1 Picea koraiensis + Picea jezoensis var. microsperma + Betula platyphylla + Acer pictum subsp. mono - Acer ukurunduense - Betula costata - Tilia amurensis - Juglans mandshurica - Padus racemosa | 7暴马丁香; 2毛榛+瘤枝卫矛+早花忍冬-刺五加-光萼溲疏-珍珠梅 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica + Euonymus verrucosus + Lonicera praeflorens - Acanthopanax senticosus - Deutzia glabrata - Sorbaria sorbifolia |
演替阶段IV (阔叶红松林) Succession stage IV (Mixed broadleaved-Korean pine forest) | 4红松; 2枫桦; 1色木槭; 1鱼鳞云杉; 1红皮云杉+青楷槭+紫椴+白桦+黄檗+裂叶榆-水曲柳-山杨-稠李-臭冷杉-花楷槭-春榆-胡桃楸 4 Pinus koraiensis; 2 Betula costata; 1 Acer pictum subsp. mono; 1 Picea jezoensis var. microsperma; 1 Picea koraiensis + Acer tegmentosum + Tilia amurensis + Betula platyphylla + Phellodendron amurense + Ulmus laciniata - Fraxinus mandschurica - Populus davidiana - Padus racemosa - Abies nephrolepis - Acer ukurunduense - Ulmus davidiana var. japonica - Juglans mandshurica | 2东北山梅花; 2瘤枝卫矛; 1暴马丁香; 1光萼溲疏; 1毛榛; 1早花忍冬; 1刺五加; 1龙牙楤木-绣线菊-东北茶藨子 2 Philadelphus schrenkii; 2 Euonymus verrucosus; 1 Syringa reticulata subsp. amurensis; 1 Deutzia glabrata; 1 Corylus mandshurica; 1 Lonicera praeflorens; 1 Acanthopanax senticosus; 1 Aralia elata - Spiraea salicifolia - Ribes mandshuricum |
表1 阔叶红松林不同演替阶段乔木和灌木组成
Table 1 Tree and shrub composition at different successional stages in mixed broadleaved-Korean pine forest
演替阶段 Successional stage | 乔木组成 Tree composition | 灌木组成 Shrub composition |
---|---|---|
演替阶段I (白桦次生林) Successional stage I (Secondary birch forest) | 5白桦; 2红松; 1兴安落叶松; 1水曲柳+春榆+色木槭+山杨+黄檗-枫桦-红皮云杉-裂叶榆-臭冷杉-胡桃楸-紫椴 5 Betula platyphylla; 2 Pinus koraiensis; 1 Larix gmelinii; 1 Fraxinus mandschurica + Ulmus davidiana var. japonica + Acer pictum subsp. mono + Populus davidiana + Phellodendron amurense - Betula costata - Picea koraiensis - Ulmus laciniata - Abies nephrolepis - Juglans mandshurica - Tilia amurensis | 7暴马丁香; 1东北山梅花; 1刺五加+珍珠梅+早花忍冬+毛榛子-光萼溲疏 7 Syringa reticulata subsp. amurensis; 1 Philadelphus schrenkii; 1 Acanthopanax senticosus + Sorbaria sorbifolia + Lonicera praeflorens + Corylus mandshurica - Deutzia glabrata |
演替阶段II (落叶阔叶混交林) Successional stage II (Mixed deciduous broad-leaved forest) | 4水曲柳; 2山杨; 1紫椴; 1色木槭; 1白桦+胡桃楸+鱼鳞云杉-春榆-红松-红皮云杉-青楷槭-稠李-裂叶榆-蒙古栎 4 Fraxinus mandschurica; 2 Populus davidiana; 1 Tilia amurensis; 1 Betula platyphylla + Juglans mandshurica + Picea jezoensis var. microsperma - Ulmus laciniata - Pinus koraiensis - Picea koraiensis - Acer tegmentosum - Padus racemose - Ulmus laciniata - Quercus mongolica | 7暴马丁香; 2毛榛; 1瘤枝卫矛+东北山梅花+刺五加+光萼溲疏-早花忍冬 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica; 1 Euonymus verrucosus + Philadelphus schrenkii + Acanthopanax senticosus + Deutzia glabrata - Lonicera praeflorens |
演替阶段III (针阔混交林) Succession stage III (Mixed coniferous and broad-leaved forest) | 4臭冷杉; 4红松; 1春榆; 1红皮云杉+鱼鳞云杉+白桦+色木槭-花楷槭-枫桦-紫椴-胡桃楸-稠李 4 Abies nephrolepis; 4 Pinus koraiensis; 1 Ulmus davidiana var. japonica; 1 Picea koraiensis + Picea jezoensis var. microsperma + Betula platyphylla + Acer pictum subsp. mono - Acer ukurunduense - Betula costata - Tilia amurensis - Juglans mandshurica - Padus racemosa | 7暴马丁香; 2毛榛+瘤枝卫矛+早花忍冬-刺五加-光萼溲疏-珍珠梅 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica + Euonymus verrucosus + Lonicera praeflorens - Acanthopanax senticosus - Deutzia glabrata - Sorbaria sorbifolia |
演替阶段IV (阔叶红松林) Succession stage IV (Mixed broadleaved-Korean pine forest) | 4红松; 2枫桦; 1色木槭; 1鱼鳞云杉; 1红皮云杉+青楷槭+紫椴+白桦+黄檗+裂叶榆-水曲柳-山杨-稠李-臭冷杉-花楷槭-春榆-胡桃楸 4 Pinus koraiensis; 2 Betula costata; 1 Acer pictum subsp. mono; 1 Picea jezoensis var. microsperma; 1 Picea koraiensis + Acer tegmentosum + Tilia amurensis + Betula platyphylla + Phellodendron amurense + Ulmus laciniata - Fraxinus mandschurica - Populus davidiana - Padus racemosa - Abies nephrolepis - Acer ukurunduense - Ulmus davidiana var. japonica - Juglans mandshurica | 2东北山梅花; 2瘤枝卫矛; 1暴马丁香; 1光萼溲疏; 1毛榛; 1早花忍冬; 1刺五加; 1龙牙楤木-绣线菊-东北茶藨子 2 Philadelphus schrenkii; 2 Euonymus verrucosus; 1 Syringa reticulata subsp. amurensis; 1 Deutzia glabrata; 1 Corylus mandshurica; 1 Lonicera praeflorens; 1 Acanthopanax senticosus; 1 Aralia elata - Spiraea salicifolia - Ribes mandshuricum |
图1 阔叶红松林不同演替阶段群落尺度上叶片的化学计量特征(平均值±标准误)。不同小写字母表示叶片同一化学计量特征间差异显著(p < 0.05)。全碳(C)、全氮(N)、全磷(P)含量的单位为g·kg-1。
Fig. 1 Leaf stoichiometric characteristics at community level in mixed broadleaved-Korean pine forests at different successional stages (mean ± SE). Different lowercase letters of the same organ indicate significant differences (p < 0.05). The unit of total carbon (C), total nitrogen (N) and total phosphorus (P) content is g·kg-1.
图2 阔叶红松林不同演替阶段土壤氮(N)、磷(P)含量与个体尺度上的叶片化学计量特征的关系。*, p < 0.05。LN, 叶片N含量; LP, 叶片P含量; L(N:P), 叶片N:P; SN, 土壤N含量; SP, 土壤P含量。
Fig. 2 Relationships of soil nitrogen (N) and phosphorus (P) contents with leaf stoichiometric characteristics at individual scale in mixed broadleaved-Korean pine forests at different successional stages. *, p < 0.05. LN, leaf N content; LP, leaf P content; L(N:P), leaf N:P ratio; SN, soil N content; SP, soil P content.
叶片化学计量 Leaf stoichiometry | R² | 物种多样性解释度 Interpretation of species diversity (%) | 土壤化学性质解释度 Interpretation of soil chemical properties (%) | ||||
---|---|---|---|---|---|---|---|
H′ | S | J | SC | SN | SP | ||
LC | 0.69 | 8.80 | 4.44 | 15.05 | 45.31* | 8.01 | 18.38 |
LN | 0.82 | 26.66* | 36.11** | 4.94 | 5.73 | 5.14 | 21.42 |
LP | 0.62 | 35.96* | 40.18* | 6.82 | 9.16 | 3.24 | 4.64 |
L(C:N) | 0.74 | 28.88* | 33.41** | 4.51 | 13.25 | 6.52 | 13.43 |
L(C:P) | 0.59 | 34.79* | 33.99* | 8.25 | 16.55 | 4.31 | 2.11 |
L(N:P) | 0.46 | 22.12 | 16.76 | 23.11 | 9.23 | 3.60 | 25.17 |
表2 物种多样性和土壤化学性质对群落尺度上阔叶红松林叶片碳(C)、氮(N)、磷(P)化学计量的层次分割结果
Table 2 Results of hierarchical partitioning for the effects of species diversity and soil chemical properties on leaf carbon (C), nitrogen (N) and phosphorus (P) stoichiometry at community scale in mixed broadleaved-Korean pine forests
叶片化学计量 Leaf stoichiometry | R² | 物种多样性解释度 Interpretation of species diversity (%) | 土壤化学性质解释度 Interpretation of soil chemical properties (%) | ||||
---|---|---|---|---|---|---|---|
H′ | S | J | SC | SN | SP | ||
LC | 0.69 | 8.80 | 4.44 | 15.05 | 45.31* | 8.01 | 18.38 |
LN | 0.82 | 26.66* | 36.11** | 4.94 | 5.73 | 5.14 | 21.42 |
LP | 0.62 | 35.96* | 40.18* | 6.82 | 9.16 | 3.24 | 4.64 |
L(C:N) | 0.74 | 28.88* | 33.41** | 4.51 | 13.25 | 6.52 | 13.43 |
L(C:P) | 0.59 | 34.79* | 33.99* | 8.25 | 16.55 | 4.31 | 2.11 |
L(N:P) | 0.46 | 22.12 | 16.76 | 23.11 | 9.23 | 3.60 | 25.17 |
图3 阔叶红松林不同演替阶段叶片氮(N)、磷(P)含量、碳(C):N和N:P与Shannon多样性指数、物种丰富度的线性关系。*, p < 0.05; **, p < 0.01。H', Shannon多样性指数; S, 物种丰富度。LN, 叶片N含量; LP, 叶片P含量; L(C:N), 叶片C:N; L(C:P), 叶片C:P。
Fig. 3 Linear relationships of leaf nitrogen (N) and phosphorus (P) contents, carbon (C):N ratio and C:P ratio with Shannon diversity index and Species richness in mixed broadleaved-Korean pine forest at different successional stages. *, p < 0.05; **, p < 0.01. H', Shannon diversity index; S, Species richness. LN, leaf N content; LP, leaf P content; L(C:N), leaf C:N ratio; L(C:P), leaf C:P ratio.
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W, (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
DOI URL |
[3] |
Boelman NT, Gough L, Wingfield J, Goetz S, Asmus A, Chmura HE, Krause JS, Perez JH, Sweet SK, Guay KC (2015). Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra. Global Change Biology, 21, 1508-1520.
DOI URL |
[4] |
Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10, 187-200.
DOI URL |
[5] |
Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729.
DOI URL |
[ 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[6] |
Cao YB, Wang BT, Wei TT, Ma H (2016). Ecological stoichiometric characteristics and element reserves of three stands in a closed forest on the Chinese loess plateau. Environmental Monitoring and Assessment, 188, 80. DOI: 10.1007/s10661-015-5057-6.
DOI URL |
[7] |
Chapin III FS, Shaver GR, Kedrowski RA (1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology, 74, 167-195.
DOI URL |
[8] | Chen C, Wang GJ, Zhao Y, Zhou GX, Li L, Gao JQ (2016). Seasonal dynamics and allometric growth relationships of C, N, and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong. Acta Ecologica Sinica, 36, 7614-7623. |
[ 陈婵, 王光军, 赵月, 周国新, 李栎, 高吉权 (2016). 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系. 生态学报, 36, 7614-7623.] | |
[9] |
Chen FS, Niklas KJ, Liu Y, Fang XM, Wan SZ, Wang HM (2015). Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 35, 1106-1117.
DOI URL |
[10] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[11] |
Elser JJ, Urabe J (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735-751.
DOI URL |
[12] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[13] | Fang JY, Shen ZH, Tang ZY, Wang ZH (2004). The protocol for the survey plan for plant species diversity of China's mountains. Biodiversity Science, 12, 5-9. |
[ 方精云, 沈泽昊, 唐志尧, 王志恒 (2004). “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
DOI |
|
[14] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[15] |
Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
DOI URL |
[16] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[17] |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[18] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[19] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[21] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] | Li XN, Guo QX, Wang XC, Zheng HF (2010). Allometry of understory tree species in a natural secondary forest in northeast China. Scientia Silvae Sinicae, 46(8), 22-32. |
[ 李晓娜, 国庆喜, 王兴昌, 郑海富 (2010). 东北天然次生林下木树种生物量的相对生长. 林业科学, 46(8), 22-32.] | |
[23] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[ 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
DOI |
|
[24] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[25] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[26] |
Michalet R, Brooker RW, Lortie CJ, Maalouf JP, Pugnaire FI (2015). Disentangling direct and indirect effects of a legume shrub on its understorey community. Oikos, 124, 1251-1262.
DOI URL |
[27] |
Nally RM, Walsh CJ (2004). Hierarchical partitioning public- domain software. Biodiversity and Conservation, 13, 659-660.
DOI URL |
[28] |
Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC, (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84, 2191-2199.
DOI URL |
[29] |
Peña-Claros M (2003). Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica, 35, 450-461.
DOI URL |
[30] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[31] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
PMID |
[32] |
Roscher C, Thein S, Schmid B, Scherer-Lorenzen M (2008). Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. Journal of Ecology, 96, 477-488.
DOI URL |
[33] |
Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124, 949-959.
DOI URL |
[34] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[35] |
Su Y, Ma XF, Gong YM, Li KH, Han WX, Liu XJ (2021). Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China's grasslands: a meta-analysis. Catena, 199, 105110. DOI: 10.1016/j.catena.2020.105110.
DOI URL |
[36] |
Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014). Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Functional Ecology, 28, 819-828.
DOI URL |
[37] |
Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739.
DOI URL |
[38] |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[39] |
van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235.
DOI URL |
[40] |
Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
PMID |
[41] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL |
[42] |
Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481.
DOI |
[ 徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20, 470-481.]
DOI |
|
[43] |
Yan ER, Wang XH, Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197.
DOI URL |
[44] |
Yan ZB, Li P, Chen YH, Han WX, Fang JY (2016). Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports, 6, 20099. DOI: 10.1038/srep20099.
DOI URL |
[45] |
Zhang JH, He NP, Liu CC, Xu L, Chen Z, Li Y, Wang RM, Yu GR, Sun W, Xiao CW, Chen HYH, Reich PB (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543.
DOI URL |
[46] |
Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP (2018a). C:N:P stoichiometry in China's forests: from organs to ecosystems. Functional Ecology, 32, 50-60.
DOI URL |
[47] |
Zhang Q, Xiong GM, Li JX, Lu ZJ, Li YL, Xu WT, Wang Y, Zhao CM, Tang ZY, Xie ZQ (2018b). Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 427, 305-319.
DOI URL |
[48] |
Zheng MH, Chen H, Li DJ, Luo YQ, Mo JM (2020). Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters, 23, 336-347.
DOI URL |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[7] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[8] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[9] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[10] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[11] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[12] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[13] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[14] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[15] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19