植物生态学报 ›› 2024, Vol. 48 ›› Issue (1): 1-20.DOI: 10.17521/cjpe.2023.0075

所属专题: 全球变化与生态系统 生态系统碳水能量通量 碳循环

• 侯学煜评述 •    下一篇

菌根真菌在陆地生态系统碳循环中的作用

陈保冬1,2,*()(), 付伟1,2, 伍松林1, 朱永官1,2   

  1. 1中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
    2中国科学院大学, 北京 100049
  • 收稿日期:2023-03-15 接受日期:2023-10-09 出版日期:2024-01-20 发布日期:2024-01-25
  • 作者简介:陈保冬, ORCID: 0000-0002-1790-7800中国科学院生态环境研究中心研究员, 博士生导师; 中国科学院大学岗位教授。日本学术振兴会(JSPS)博士后、德国“洪堡学者”。主要研究方向为土壤生态学, 目前已在国内外学术期刊发表研究论文200余篇。作为主要完成人分别于2009年和2014年获得国家自然科学二等奖和国家科学技术进步二等奖
    付伟, 中国科学院生态环境研究中心特聘研究助理。主要研究方向为土壤生态学, 重点关注丛枝菌根真菌多样性及其生态功能。研究成果在New Phytologist和Soil Biology & Biochemistry等领域主流期刊发表, 并获得国家自然科学基金青年项目和博士后面上项目资助
    伍松林, 中国科学院生态环境研究中心研究员, 博士生导师。主要研究方向为土壤生物地球化学和生态修复。目前已在Environmental Science & Technology、New Phytologist等领域TOP期刊发表学术论文60余篇(其中第一作者及通讯作者文章30余篇)
    朱永官, 中国科学院院士, 发展中国家科学院院士, 中国科学院生态环境研究中心和中国科学院城市环境研究所研究员, 博士生导师。2002年获得国家杰出青年科学基金资助; 2022年获国际土壤科学联合会李比希奖; 2023年当选国际科学理事会会士。长期从事环境土壤学和环境生物学研究, 至今已在Science、Nature及其子刊、PNAS等刊物发表学术论文500余篇
  • 基金资助:
    政府间国际科技创新合作项目(2022YFE0114000);国家自然科学基金(42177277);中国博士后科学基金(2022M723322)

Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling

CHEN Bao-Dong1,2,*()(), FU Wei1,2, WU Song-Lin1, ZHU Yong-Guan1,2   

  1. 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-03-15 Accepted:2023-10-09 Online:2024-01-20 Published:2024-01-25
  • Contact: E-mail: bdchen@rcees.ac.cn
  • Supported by:
    Inter-government International Science and Technology Innovation Cooperation Project(2022YFE0114000);National Natural Science Foundation of China(42177277);China Postdoctoral Science Foundation(2022M723322)

摘要:

在陆地生态系统中, 土壤、植被与大气之间有着可观的碳交换通量, 陆地生态系统碳循环也和全球气候变化密切关联。菌根真菌可与绝大多数陆地植物建立菌根共生关系, 通过矿质养分-碳交换连接起生态系统地上与地下部分, 深度参与和影响陆地生态系统的碳循环过程。该文从碳的输入, 土壤有机质的形成、稳定和分解等4个关键环节分别论述了菌根真菌在陆地生态系统碳循环中的作用。研究表明, 菌根真菌在陆地生态系统碳的输入过程中扮演关键角色, 其通过改善植物矿质营养, 参与植物逆境响应, 影响植物的光合作用强度, 以及调控植物多样性与生产力之间的关系等多种途径, 维持或提高植被初级生产力; 大气中的CO2被植物固定后, 一部分碳经由菌丝网络输送到土壤中, 随后经微生物的分解和转化, 与矿物结合或被团聚体包裹而被稳定在土壤中; 同时, 菌根真菌通过影响根际激发效应和菌丝际生物化学过程, 如分泌特定胞外酶, 与菌丝际微生物互作, 驱动芬顿反应, 以及与腐生微生物竞争等, 调控土壤有机质的分解和转化过程。考虑到菌根真菌对环境和气候变化的敏感性, 该文还探讨了全球变化因子对菌根真菌介导的碳循环过程的影响。最后, 该文对未来研究方向进行了展望, 并提出以下建议: 依托联网研究, 全面解析菌根真菌参与陆地生态系统碳循环的机理过程及其环境依赖性; 加强定量研究, 将菌根真菌的作用纳入生态系统碳循环模型; 构建菌根应用技术体系, 推进菌根真菌的生态和农业应用, 提升陆地生态系统“碳汇”功能, 为实现国家碳中和目标和应对气候变化提供可选择的技术方案。

关键词: 陆地生态系统, 碳循环, 全球变化, 丛枝菌根真菌, 外生菌根真菌, 土壤有机质

Abstract:

There are substantial carbon exchange fluxes among soil, vegetation and atmosphere in the terrestrial ecosystems, which are highly relevant to global climate changes. Mycorrhizal fungi can form symbiotic associations with most terrestrial plants, linking the above- and below-ground ecosystems through mineral nutrient-carbon exchange; thus, mycorrhizal fungi play crucial roles in terrestrial carbon cycling. This review summarized the involvements of mycorrhizal fungi in the terrestrial carbon cycling processes, including the carbon input, and formation, stabilization, and decomposition of soil organic matter. Studies have demonstrated that mycorrhizal fungi markedly influence the terrestrial carbon input processes by alleviating plant nutrient deficiencies, improving plant stress resistance, influencing plant photosynthesis, and regulating plant diversity-productivity relationships, subsequently sustaining or improving primary productivity of terrestrial vegetation. A considerable proportion of photosynthetic carbon is channeled directly into the soil matrix via the fungal mycelial network, where it is partly converted into microbial-derived organic carbon, further changes the composition of soil organic carbon, and be stabilized through association with minerals and/or forming soil aggregates. Mycorrhizal fungi can affect the decomposition and transformation of soil organic matter mainly through two mechanisms: the rhizosphere priming effects and/or hyphosphere biogeochemical processes. These mechanisms involve the secretion of specific extracellular enzymes, shaping hyphosphere microbial communities, induction of chemical oxidation, and competition for limited resources (e.g., nutrients and water) with free-living saprotrophs. Considering the sensitivity of mycorrhizal fungi to environmental and climate changes, we also discuss the impact of global change factors on soil carbon cycling mediated by mycorrhizal fungi. Finally, we proposed future research directions, emphasizing a need for in-depth studies on the role of mycorrhizal fungi in terrestrial carbon cycling and their environmental dependence based on network experiments in typical ecosystems. Quantitative studies should be strengthened to integrate mycorrhizal fungi into ecosystem carbon cycling models, and mycorrhizal technologies should be developed and practiced in ecological restoration and agriculture to facilitate terrestrial carbon sequestration for achieving the national carbon neutrality goals and combating climate changes.

Key words: terrestrial ecosystem, carbon cycling, global changes, arbuscular mycorrhizal fungi, ectomycorrhizal fungi, soil organic matter