植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 782-791.DOI: 10.17521/cjpe.2022.0185
何斐1,*(), 李川1, Faisal SHAH2, 卢谢敏1, 王莹1, 王梦1, 阮佳1, 魏梦琳1, 马星光1, 王卓1, 姜浩1
收稿日期:
2022-05-09
接受日期:
2022-10-10
出版日期:
2023-06-20
发布日期:
2022-10-10
通讯作者:
* E-mail: 基金资助:
HE Fei1,*(), LI Chuan1, Faisal SHAH2, LU Xie-Min1, WANG Ying1, WANG Meng1, RUAN Jia1, WEI Meng-Lin1, MA Xing-Guang1, WANG Zhuo1, JIANG Hao1
Received:
2022-05-09
Accepted:
2022-10-10
Online:
2023-06-20
Published:
2022-10-10
Supported by:
摘要:
明确间作和接种丛枝菌根真菌(AMF)对刺槐(Robinia pseudoacacia)与魔芋(Amorphophallus konjac)碳转运和磷吸收的影响, 可为揭示间作刺槐对魔芋的防病促生机制和推广刺槐林下魔芋绿色高产栽培技术提供科学依据。该研究使用孔径25 μm尼龙网设置两室根箱隔网系统, 分为A室(刺槐不接种/接种AMF)和B室(单作刺槐/刺槐间作魔芋); 采用13C稳定性同位素技术对A室刺槐叶片进行标记, 研究其同化的碳与B室魔芋之间的传递, 以及AMF定植对两种作物的农艺性状、13C丰度和磷含量的影响。结果表明: (1)在接种条件下, 菌丝桥对B室刺槐和魔芋的侵染率分别达到47.1%和60.4%; 其中, 刺槐侵染率与单作直接接种处理相比降低14.1%。在间作体系中, 接种AMF提高了魔芋的生物量, 其地上干质量和地下根系干质量分别较未接种处理显著增加9.7%和36.2%。(2)与单作未接种处理相比, 间作未接种、单作接种和间作接种的刺槐同化的碳被更多地分配到根系和根际土壤(A室), 并以根系分泌物的形式穿越尼龙网到达邻近作物根际(B室)。(3)与各自未接种处理相比, 单作或间作接种显著提高B室刺槐和魔芋叶片、茎/叶柄、根系和全株磷含量。综上, AMF定植促进了刺槐向魔芋根际土和植株体内的碳转运, 且间作栽培可促进AMF的定植和宿主作物对磷的吸收。
何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收. 植物生态学报, 2023, 47(6): 782-791. DOI: 10.17521/cjpe.2022.0185
HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks. Chinese Journal of Plant Ecology, 2023, 47(6): 782-791. DOI: 10.17521/cjpe.2022.0185
处理 Treatment | A室植物 Plant in compartment A | A室处理 Treatment in compartment A | B室植物 Plant in compartment B | 种植方式 Cropping pattern |
---|---|---|---|---|
M-AMF | 刺槐 Robinia pseudoacacia | 未接种 Non-inoculated | 刺槐 R. pseudoacacia | 单作 Monocropping |
I-AMF | 刺槐 R. pseudoacacia | 未接种 Non-inoculated | 魔芋 Amorphophallus konjac | 间作 Intercropping |
M+AMF | 刺槐 R. pseudoacacia | 接种 Inoculated | 刺槐 R. pseudoacacia | 单作 Monocropping |
I+AMF | 刺槐 R. pseudoacacia | 接种 Inoculated | 魔芋 A. konjac | 间作 Intercropping |
表1 刺槐与魔芋两室根箱隔网系统实验处理
Table 1 Treatments in the two-compartment root system of Robinia pseudoacacia and Amorphophallus konjac
处理 Treatment | A室植物 Plant in compartment A | A室处理 Treatment in compartment A | B室植物 Plant in compartment B | 种植方式 Cropping pattern |
---|---|---|---|---|
M-AMF | 刺槐 Robinia pseudoacacia | 未接种 Non-inoculated | 刺槐 R. pseudoacacia | 单作 Monocropping |
I-AMF | 刺槐 R. pseudoacacia | 未接种 Non-inoculated | 魔芋 Amorphophallus konjac | 间作 Intercropping |
M+AMF | 刺槐 R. pseudoacacia | 接种 Inoculated | 刺槐 R. pseudoacacia | 单作 Monocropping |
I+AMF | 刺槐 R. pseudoacacia | 接种 Inoculated | 魔芋 A. konjac | 间作 Intercropping |
分室 Compartment | 植物 Plant | 处理 Treatment | AMF侵染率 AMF infection rate (%) | 丛枝丰度 Arbuscular abundance (%) | 侵染强度 Infection intensity (%) |
---|---|---|---|---|---|
A室 Compartment A | 刺槐 R. pseudoacacia | M+AMF | 54.8 ± 3.2b | 2.9 ± 0.2b | 6.8 ± 0.7b |
刺槐 R. pseudoacacia | I+AMF | 62.0 ± 0.3a | 4.8 ± 0.2a | 10.0 ± 0.2a | |
B室 Compartment B | 刺槐 R. pseudoacacia | M+AMF | 47.1 ± 2.0c | 1.0 ± 0.1c | 2.2 ± 0.2c |
魔芋 A. konjac | I+AMF | 60.4 ± 6.6a | 4.6 ± 0.2a | 9.5 ± 0.6a |
表2 接种丛枝菌根真菌(AMF)后刺槐和魔芋的侵染状况(平均值±标准差)
Table 2 Infection status of Robinia pseudoacacia and Amorphophallus konjac plants after inoculation with arbuscular mycorrhizal fungi (AMF) (mean ± SD)
分室 Compartment | 植物 Plant | 处理 Treatment | AMF侵染率 AMF infection rate (%) | 丛枝丰度 Arbuscular abundance (%) | 侵染强度 Infection intensity (%) |
---|---|---|---|---|---|
A室 Compartment A | 刺槐 R. pseudoacacia | M+AMF | 54.8 ± 3.2b | 2.9 ± 0.2b | 6.8 ± 0.7b |
刺槐 R. pseudoacacia | I+AMF | 62.0 ± 0.3a | 4.8 ± 0.2a | 10.0 ± 0.2a | |
B室 Compartment B | 刺槐 R. pseudoacacia | M+AMF | 47.1 ± 2.0c | 1.0 ± 0.1c | 2.2 ± 0.2c |
魔芋 A. konjac | I+AMF | 60.4 ± 6.6a | 4.6 ± 0.2a | 9.5 ± 0.6a |
分室 Compartment | 植物 Plant | 处理 Treatment | 株高 Plant height (cm) | 地径 Ground diameter (mm) | 地上干质量 Aboveground dry mass (g·plant-1) | 根系干质量 Root dry mass (g·plant-1) |
---|---|---|---|---|---|---|
A室 Compartment A | 刺槐 R. pseudoacacia | M-AMF | 6.67 ± 0.03e | 1.71 ± 0.02c | 1.15 ± 0.06f | 0.10 ± 0.01g |
刺槐 R. pseudoacacia | I-AMF | 6.94 ± 0.14e | 1.72 ± 0.02c | 1.42 ± 0.08e | 0.21 ± 0.03ef | |
刺槐 R. pseudoacacia | M+AMF | 10.83 ± 0.09cd | 1.81 ± 0.01c | 2.78 ± 0.14c | 0.32 ± 0.05d | |
刺槐 R. pseudoacacia | I+AMF | 11.83 ± 0.09c | 1.81 ± 0.02c | 2.82 ± 0.18c | 1.04 ± 0.05c | |
B室 Compartment B | 刺槐 R. pseudoacacia | M-AMF | 6.83 ± 0.11e | 1.71 ± 0.01c | 1.12 ± 0.12f | 0.15 ± 0.04fg |
魔芋 A. konjac | I-AMF | 23.80 ± 1.10b | 13.30 ± 0.40b | 13.54 ± 0.14b | 1.99 ± 0.02b | |
刺槐 R. pseudoacacia | M+AMF | 10.61 ± 0.12d | 1.80 ± 0.00c | 2.20 ± 0.05d | 0.23 ± 0.01e | |
魔芋 A. konjac | I+AMF | 26.72 ± 1.33a | 15.11 ± 0.62a | 14.85 ± 0.11a | 2.71 ± 0.08a |
表3 间作和接种丛枝菌根真菌(AMF)对刺槐和魔芋农艺性状的影响(平均值±标准差)
Table 3 Effects of intercropping and arbuscular mycorrhizal fungi (AMF) inoculation on agronomic traits in Robinia pseudoacacia and Amorphophallus konjac (mean ± SD)
分室 Compartment | 植物 Plant | 处理 Treatment | 株高 Plant height (cm) | 地径 Ground diameter (mm) | 地上干质量 Aboveground dry mass (g·plant-1) | 根系干质量 Root dry mass (g·plant-1) |
---|---|---|---|---|---|---|
A室 Compartment A | 刺槐 R. pseudoacacia | M-AMF | 6.67 ± 0.03e | 1.71 ± 0.02c | 1.15 ± 0.06f | 0.10 ± 0.01g |
刺槐 R. pseudoacacia | I-AMF | 6.94 ± 0.14e | 1.72 ± 0.02c | 1.42 ± 0.08e | 0.21 ± 0.03ef | |
刺槐 R. pseudoacacia | M+AMF | 10.83 ± 0.09cd | 1.81 ± 0.01c | 2.78 ± 0.14c | 0.32 ± 0.05d | |
刺槐 R. pseudoacacia | I+AMF | 11.83 ± 0.09c | 1.81 ± 0.02c | 2.82 ± 0.18c | 1.04 ± 0.05c | |
B室 Compartment B | 刺槐 R. pseudoacacia | M-AMF | 6.83 ± 0.11e | 1.71 ± 0.01c | 1.12 ± 0.12f | 0.15 ± 0.04fg |
魔芋 A. konjac | I-AMF | 23.80 ± 1.10b | 13.30 ± 0.40b | 13.54 ± 0.14b | 1.99 ± 0.02b | |
刺槐 R. pseudoacacia | M+AMF | 10.61 ± 0.12d | 1.80 ± 0.00c | 2.20 ± 0.05d | 0.23 ± 0.01e | |
魔芋 A. konjac | I+AMF | 26.72 ± 1.33a | 15.11 ± 0.62a | 14.85 ± 0.11a | 2.71 ± 0.08a |
图2 不同处理13C在刺槐-土壤-魔芋中的转运(平均值±标准差)。处理同表1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 13C transport in the Robinia pseudoacacia-soil-Amorphophallus konjac system under different treatments (mean ± SD). See Table 1 for treatments. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图3 刺槐和魔芋叶片(A)、茎/叶柄(B)、根系(C)、全株(D)磷(P)含量和根际土壤速效P含量(E) (平均值±标准差)。处理同表1。不同小写字母表示处理间差异显著(p < 0.05)。rhizobox, 根箱单室。
Fig. 3 Phosphorus (P) content in the leaves (A), stems or petioles (B), roots (C), and total plants (D), and available P concentration in the rhizosphere soils (E) of Robinia pseudoacacia and Amorphophallus konjac (mean ± SD). See Table 1 for treatments. Different lowercase letters indicate significant differences among treatments (p < 0.05). rhizobox, single compartment in rhizobox.
图4 刺槐和魔芋菌根真菌(AMF)侵染状况、植株农艺性状、13C丰度与磷含量的Pearson相关系数(r)。1, AMF侵染率; 2, 丛枝丰度; 3, AMF侵染强度; 4, 地上干质量; 5, 根系干质量; 6, 株高; 7, 地径; 8, 叶片13C丰度; 9, 根系13C丰度; 10, 土壤13C丰度; 11, 叶片磷含量; 12, 茎/叶柄磷含量; 13, 根系磷含量; 14, 土壤速效磷含量; 15, 全株磷含量。*, p < 0.05; **, p < 0.01。
Fig. 4 Pearson’s correlation coefficients (r) between arbuscular mycorrhizal fungi (AMF) infection, plant agronomic traits, 13C abundance, and phosphorus (P) content of Robinia pseudoacacia and Amorphophallus konjac. 1, AMF infection rate; 2, arbuscular abundance; 3, AMF infection intensity; 4, aboveground dry mass; 5, root dry mass; 6, plant height; 7, ground diameter; 8, leaf 13C abundance; 9, root 13C abundance; 10, soil 13C abundance; 11, leaf P content; 12, stem or petiole P content; 13, root P content; 14, soil available P content; 15, total plant P content. *, p < 0.05; **, p < 0.01.
[1] | Bao SD (2007). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
鲍士旦 (2007). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[2] |
Bicharanloo B, Shirvan MB, Keitel C, Dijkstra FA (2020). Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Research, 58, 125-136.
DOI URL |
[3] |
Cameron DD, Leake JR, Read DJ (2006). Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist, 171, 405-416.
DOI PMID |
[4] |
Carey EV, Marler MJ, Callaway RM (2004). Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecology, 172, 133-141.
DOI URL |
[5] | Chang YF (2016). Response of the Rhizosphere Microenvironment of Robinia pseudoacacia L. Seedlings to Elevated CO2Combined with Cd- and Pb-Contaminated Soils. Master degree dissertation, Chang’an University, Xi’an. |
[常亚飞 (2016). 大气CO2浓度升高和土壤Cd/Pb污染耦合对刺槐幼苗根际土壤微生态环境的影响. 硕士学位论文, 长安大学, 西安.] | |
[6] |
Costa NR, Crusciol CAC, Trivelin PCO, Pariz CM, Costa C, Castilhos AM, Souza DM, Bossolani JW, Andreotti M, Meirelles PRL, Moretti LG, Mariano E (2021). Recovery of 15N fertilizer in intercropped maize, grass and legume and residual effect in black oat under tropical conditions. Agriculture, Ecosystems & Environment, 310, 107226. DOI: 10.1016/j.agee.2020.107226.
DOI |
[7] |
Cui L, Guo F, Zhang JL, Yang S, Wang JG, Meng JJ, Geng Y, Li XG, Wan SB (2019). Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae. Chinese Journal of Plant Ecology, 43, 718-728.
DOI URL |
[崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波 (2019). 摩西斗管囊霉改善连作花生根际土壤的微环境. 植物生态学报, 43, 718-728.]
DOI |
|
[8] |
Francis R, Read DJ (1984). Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 307, 53-56.
DOI |
[9] |
Gao X, Wu M, Xu RN, Wang XR, Pan RQ, Kim HJ, Liao H (2014). Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE, 9, e95031. DOI: 10.1371/journal.pone.0095031.
DOI |
[10] |
He F (2021). Response of root-associated bacterial communities to different degrees of soft rot damage in Amorphophallus konjac under a Robinia pseudoacacia plantation. Frontiers in Microbiology, 12, 652758. DOI: 10.3389/fmicb.2021.652758.
DOI |
[11] | He F, Zhang ZL, Liu LP, Cui M, Xue QH (2015). Microecological mechanism for healthy growth and higher yield of Amorphophallus konjac under acacia forest. Acta Botanica Boreali-Occidentalia Sinica, 35, 364-372. |
[何斐, 张忠良, 刘列平, 崔鸣, 薛泉宏 (2015). 刺槐林魔芋健康高产的土壤微生态机制. 西北植物学报, 35, 364-372.] | |
[12] | He J, Wei LY, Zhou LJ (2012). Effect of intercropping pattern and woodland type on konjac disease and yield. Shaanxi Forest Science and Technology, (3), 37-38. |
[和军, 魏凌云, 周立军 (2012). 间作方式与林地类型对魔芋病害及产量的影响. 陕西林业科技, (3), 37-38.] | |
[13] |
He Y, Ding N, Shi JC, Wu M, Liao H, Xu JM (2013). Profiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biology & Biochemistry, 57, 625-634.
DOI URL |
[14] | He YQ, Wang XX, Zhang C, Zhang RF, Lin ZH, Wang H (2021). Research progress on the effects of intercropping and interplanting modes in the cultivation of Chinese medicinal materials. Jiangsu Journal of Agricultural Sciences, 37, 1077-1083. |
[何雅祺, 王鑫鑫, 张弛, 张瑞芳, 林智慧, 王红 (2021). 间作、套种模式在中药材栽培中的效应研究进展. 江苏农业学报, 37, 1077-1083.] | |
[15] | Hoagland DR, Arnon DI (1950). The Water-Culture Method for Growing Plants Without Soil. California Agricultural Experiment Station, Berkeley. 347. |
[16] |
Kang LL, He YJ, Zang LP, Si JP, Yang Y, Shen KP, Xia TT, Tan QY, Wu BL, Guo Y, Wang W, Liang Q (2021). Mycorrhizal networks interacting with litter improves nutrients and growth for one plant through the vary of N/P ratio under karst soil. Phyton, 90, 701-717.
DOI URL |
[17] | Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus- deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192-11196. |
[18] |
Li XQ, Zhang MX, Li Y, Yu XY, Nie JF (2021). Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. chinensis. Chemosphere, 266, 129020. DOI: 10.1016/j.chemosphere.2020.129020.
DOI |
[19] |
Li YF, Ran W, Zhang RP, Sun SB, Xu GH (2009). Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant and Soil, 315, 285-296.
DOI URL |
[20] | Liang WQ, Hu YJ, Pu JB, Yu YF, Wang P, Chen RB, Chen ZL, Xu P (2021). Correlation analysis between active ingredients contents and soil factors in Radix peucedani. Chinese Journal of Modern Applied Pharmacy, 38, 1302-1308. |
[梁卫青, 胡轶娟, 浦锦宝, 俞叶飞, 王盼, 陈如兵, 陈子林, 徐攀 (2021). 前胡有效成分含量与土壤因子的相关性分析. 中国现代应用药学, 38, 1302-1308.] | |
[21] | Lin YL (2019). Environmental Behavior and Microbial Response of DBP in Rhizosphere Interface of Brassica chinensis L. PhD dissertation, Northeast Agricultural University, Harbin. 75-77. |
林宇龙 (2019). 酞酸酯DBP在小白菜根际界面的环境行为及微生物响应的机制. 博士学位论文, 东北农业大学, 哈尔滨. 75-77.] | |
[22] | Mao DR (2004). Research Methods of Plant Nutrition. China Agricultural University Press, Beijing. |
毛达如 (2004). 植物营养研究方法. 中国农业大学出版社, 北京.] | |
[23] | Mao MX, Zhu F (2021). Progress and perspective in research on plant resistance mediated by root exudates. Chinese Journal of Eco-Agriculture, 29, 1649-1657. |
[毛梦雪, 朱峰 (2021). 根系分泌物介导植物抗逆性研究进展与展望. 中国生态农业学报, 29, 1649-1657.] | |
[24] | More SS, Shinde SE, Kasture MC (2019). Root exudates a key factor for soil and plant: an overview. The Pharma Innovation Journal, 8, 449-459. |
[25] |
Pfeffer PE, Douds DD Jr, Bücking H, Schwartz DP, Shachar-Hill Y (2004). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist, 163, 617-627.
DOI PMID |
[26] |
Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.
DOI URL |
[27] | Prasojo YS, Niimi M, Rahman MM, Ishigaki G, Akashi R (2022). Effect of soybean (Glycine max L. Merr) intercropping into rhodesgrass (Chloris gayana Kunth.) on dry matter yield, crude protein, and silage characteristics grown in southwest Japan. Journal of Animal and Plant Sciences, 32, 460-465. |
[28] |
Ren LX, Lou YS, Zhang N, Zhu XD, Hao WY, Sun SB, Shen QR, Xu GH (2013). Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biology and Fertility of Soils, 49, 3-11.
DOI URL |
[29] |
Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N (2022). Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Applied Soil Ecology, 169, 104156. DOI: 10.1016/j.apsoil.2021.104156.
DOI |
[30] |
Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
DOI PMID |
[31] |
Stock SC, Koester M, Boy J, Godoy R, Nájera F, Matus F, Merino C, Abdallah K, Leuschner C, Spielvogel S, Gorbushina AA, Kuzyakov Y, Dippold MA (2021). Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: a cross-biome study on nutrient acquisition strategies. Science of the Total Environment, 781, 146748. DOI: 10.1016/j.scitotenv.2021.146748.
DOI |
[32] |
Talas-Oğraş T, İpekçi Z, Bajroviç K, Gözükırmızı N (2005). Antibacterial activity of seed proteins of Robinia pseudoacacia. Fitoterapia, 76, 67-72.
PMID |
[33] |
Voets L, Goubau I, Olsson PA, Merckx R, Declerck S (2008). Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiology Ecology, 65, 350-360.
DOI URL |
[34] | Wang QJ, Guo DJ, Ma Y (2021). Stoichiometric characteristics of soil carbon, nitrogen and phosphorus and their relationship with soil available phosphorus under continuous application of organic fertilizer for vegetable cultivation in greenhouse. Jiangsu Journal of Agricultural Sciences, 37, 893-901. |
[王秋君, 郭德杰, 马艳 (2021). 连续施用有机肥下设施土壤碳氮磷化学计量学特征及其与土壤有效磷的关系. 江苏农业学报, 37, 893-901.] | |
[35] |
Wang ZH, Song Y (2022). Toward understanding the genetic bases underlying plant-mediated “cry for help” to the microbiota. iMeta, 1, e8. DOI: 10.1002/imt2.8.
DOI |
[36] | Wu JP, Diao Y, Gu YC, Hu ZL (2010). Infection pathways of soft rot pathogens on Amorphophallus konjac. African Journal of Microbiology Research, 4, 1495-1499. |
[37] | Yang Y, Jiang CH, He YJ, Ou J, Wang PP, Si JP, He MH, Lin Y (2017). Effects of arbuscular mycorrhizal networks on the N and P contents and stoichiometry of three plants species from karst area. Plant Physiology Journal, 53, 2078-2090. |
[杨应, 蒋长洪, 何跃军, 欧静, 王鹏鹏, 司建朋, 何敏红, 林艳 (2017). 丛枝菌根网对喀斯特适生植物氮、磷化学计量特征的影响. 植物生理学报, 53, 2078-2090.] | |
[38] |
Yang Y, Ou XH, Yang G, Xia YS, Chen ML, Guo LP, Liu DH (2017). Arbuscular mycorrhizal fungi regulate the growth and phyto-active compound of Salvia miltiorrhiza seedlings. Applied Sciences, 7, 68. DOI: 10.3390/app7010068.
DOI |
[39] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[40] | Zhang BB, Shi CY, Liu HJ, Ren GB, Sun Z (2017). Basal application of potassium benefits the yield formation of sweet potato. Journal of Plant Nutrition and Fertilizer, 23, 208-216. |
[张彬彬, 史春余, 柳洪鹃, 任国博, 孙哲 (2017). 钾肥基施利于甘薯块根产量的形成. 植物营养与肥料学报, 23, 208-216.] | |
[41] | Zhang DS, Wang YY, Tang L, Zheng Y, Zuo JH (2013). Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH. Plant Nutrition and Fertilizer Science, 19, 127-133. |
[张德闪, 王宇蕴, 汤利, 郑毅, 左建花 (2013). 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 19, 127-133.] | |
[42] | Zhang ZL, Liu LP, Zheng M (2012). Cultivation techniques of Amorphophallus rivieri under Robinia pseudoacacia forest. Northern Horticulture, (13), 148-150. |
[张忠良, 刘列平, 郑敏 (2012). 刺槐林下魔芋抗病栽培技术. 北方园艺, (13), 148-150.] | |
[43] | Zuo YM, Chen Q, Zhang FS (2004). The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut maize intercropping system by 14C tracer technique. Acta Agriculturae Nucleatae Sinica, 18(1), 43-46. |
[左元梅, 陈清, 张福锁 (2004). 利用14C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制. 核农学报, 18(1), 43-46.] | |
[44] |
Zuo YM, Zhang FS (2008). Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil, 306, 23-36.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[6] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[7] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[8] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[9] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[10] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[11] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[12] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[13] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[14] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
[15] | 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055-1070. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19