Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (11): 1055-1070.doi: 10.17521/cjpe.2018.0156

• Review •     Next Articles

Root exudates and their ecological consequences in forest ecosystems: Problems and perspective

Hua-Jun YIN1,*(),Zi-Liang ZHANG1,2,Qing LIU1   

  1. 1Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization of Chinese Academy of Sciences, and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-07-05 Accepted:2018-11-04 Online:2019-03-13 Published:2018-11-20
  • Contact: Hua-Jun YIN E-mail:yinhj@cib.ac.cn
  • Supported by:
    Supported by the Frontier Science Key Research Programs of CAS(QYZDB-SSW-SMC023);the National Natural Science Foundation of China(31670449);the National Natural Science Foundation of China(31872700);the Sichuan Key R & D Program.(2017SZ0038)

Abstract:

Researches on rhizosphere ecological processes and the underlying mechanisms have become one of the most active and sensitive hotspots in soil science. Root exudates have specialized roles in mediating the nutrient cycling and signal transduction within root-soil-microbe interactions. They are the key driving factors in regulating the functions of rhizosphere micro-ecosystem, and serve as a major premise for the concept and ecological processes in rhizosphere. However, due to the instinctive advantages of crops, such as short life cycles and convenient operation, most previous studies on root exudation mainly focused on agricultural ecosystems and were primarily targeted at providing practical guidelines. In contrast, there have been relatively few investigations on root exudates of trees, which highly limited the comprehensive knowledge of the potential mechanisms of root exudates in mediating soil biogeochemical processes in forest ecosystems. Hence, in this review, based on the main findings in our previous studies and the emerging frontiers in rhizosphere ecology, we specifically reviewed the ecological consequences and key remaining challenges in researches on root exudation in forests. Finally, we identify several topics and research outlooks for guiding future work to facilitate studies on root exudation and its ecological consequences in forest ecosystems.

Key words: rhizosphere, root exudate, root-soil interactions, soil biogeochemical processes, rhizosphere functional traits, forest

Fig. 1

Conceptual framework of rhizosphere biogeochemical processes in forests under global climate change."

Fig. 2

Proposed mechanisms for the exudate-induced acceleration of the microbial mineralization of soil organic carbon in the rhizosphere (i.e., rhizosphere priming effects). A, The traditional view is that root exudate compounds stimulate microbial growth and activity via co-metabolism, and so increase the overall physiological potential of the decomposer community for carbon mineralization. B, The alternative mechanism proposed here takes into account that large quantities of soil C are inaccessible to microbes owing to associations with mineral phases. Root exudates that can act as ligands effectively liberate C through complexation and dissolution reactions with protective mineral phases, thereby promoting its accessibility to microbes and accelerating its loss from the system through microbial mineralization."

Fig. 3

Diagrammatic representation of the Regulatory Gate Hypothesis. I phrase is the abiological transformation of non-bioavailable soil organic matter (SOM). II phrase is the biological mineralization of bioavailable SOM."

Fig. 4

Two pathways of root-derived carbon (C) input (i.e., root- and mycelium-derived C) to soils in forest ecosystems. N, nitrogen."

Fig. 5

Broadening functional traits of root and microbe in rhizosphere and enriching the suite of belowground functional traits."

[1] Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM ( 2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266.
[2] Bardgett RD, Mommer L, de Vries FT ( 2014). Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
doi: 10.1016/j.tree.2014.10.006 pmid: 25459399
[3] Cairney JWG ( 2012). Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology & Biochemistry, 47, 198-208.
doi: 10.1016/j.soilbio.2011.12.029
[4] Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R ( 2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
doi: 10.1111/nph.12440 pmid: 23952258
[5] Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, Del Grosso SJ, Running SW ( 2013). Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737.
doi: 10.1073/pnas.1302768110 pmid: 23861492
[6] Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
[7] Darrah PR ( 1991). Measuring the diffusion coefficient of rhizosphere exudates in soil. I. The diffusion of non-sorbing compounds. Journal of Soil Science, 42, 413-420.
doi: 10.1111/j.1365-2389.1991.tb00419.x
[8] Dessaux Y, Hinsinger P, Lemanceau P ( 2009). Rhizosphere: So many achievements and even more challenges. Plant and Soil, 321, 1-3.
doi: 10.1007/s11104-009-0063-5
[9] Dijkstra FA, Carrillo Y, Pendall E, Morgan JA ( 2013). Rhizosphere priming: A nutrient perspective. Frontiers in Microbiology, 4, 1-4.
doi: 10.3389/fmicb.2013.00216 pmid: 23908649
[10] Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC ( 2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences, 10, 821-838.
doi: 10.5194/bg-10-821-2013
[11] Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Tresder KK, Schlesinger WH, DeLucia EH, Finzi AC ( 2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 14, 349-357.
[12] Erktan A, McCormack ML, Roumet C ( 2018). Frontiers in root ecology: Recent advances and future challenges. Plant and Soil, 424, 1-9.
doi: 10.1007/s11104-018-3618-5
[13] Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP ( 2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
doi: 10.1111/gcb.12816 pmid: 25421798
[14] Fuhrer T, Zamboni N ( 2015). High-throughput discovery metabolomics. Current Opinion in Biotechnology, 31, 73-78.
[15] Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL ( 2008). Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456.
doi: 10.1111/j.1469-8137.2007.02242.x pmid: 17944827
[16] Guyonnet JP, Cantarel AAM, Simon L, Haichar FZ ( 2018). Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecology and Evolution, 8, 8573-8581.
doi: 10.1002/ece3.4383
[17] Haichar FE, Santaella C, Heulin T, Achouak W ( 2014). Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 77, 69-80.
doi: 10.1016/j.soilbio.2014.06.017
[18] Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW ( 2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist, 168, 293-303.
doi: 10.1111/j.1469-8137.2005.01512.x pmid: 16219069
[19] Högberg P, Read DJ ( 2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 21, 548-554.
[20] Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A ( 2018). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121, 61-69.
doi: 10.1093/aob/mcx127 pmid: 29267846
[21] Hu LF, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M ( 2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9, 1-13.
doi: 10.1038/s41467-018-05122-7
[22] Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, Smith RG, Tiemann L, Grandy AS ( 2018). Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 139, 103-122.
doi: 10.1007/s10533-018-0459-5
[23] Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M ( 2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
doi: 10.1038/NCLIMATE2580
[24] Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC ( 2008). Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass a new perspective. Soil Biology & Biochemistry, 40, 61-73.
doi: 10.1016/j.soilbio.2007.06.021
[25] Klein T, Siegwolf RT, Körner C ( 2016). Belowground carbon trade among tall trees in a temperate forest. Science, 352, 342-344.
doi: 10.1126/science.aad6188 pmid: 27081070
[26] Kong CH, Li HB, Hu F ( 2006). Allelochemicals released by rice roots and residues in soil. Plant and Soil, 288, 47-56.
[27] Kuzyakov Y ( 2002). Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
[28] Laliberté E ( 2017). Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, 1597-1603.
doi: 10.1111/nph.14247 pmid: 27735077
[29] Li X, Dong JL, Chu WY, Chen YJ, Duan ZQ ( 2018). The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant and Soil, 425, 415-432.
doi: 10.1007/s11104-017-3555-8
[30] Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Eastmond PJ ( 2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178.
doi: 10.1126/science.aan0081 pmid: 28596311
[31] Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
doi: 10.1038/nature25783 pmid: 29620725
[32] Martinière A, Gibrata R, Sentenaca H, Dumonta X, Gaillarda I, Parisa N ( 2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proceedings of the National Academy of Sciences of the United States of America, 115, 6488-6493.
doi: 10.1073/pnas.1721769115
[33] McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M ( 2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
doi: 10.1111/nph.13363 pmid: 25756288
[34] Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP ( 2015). The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytologist, 205, 1164-1174.
doi: 10.1111/nph.13122 pmid: 25348688
[35] Moore JAM, Jiang J, Patterson CM, Mayes MA, Wang G, Classen AT ( 2015). Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology, 103, 1442-1453.
doi: 10.1111/1365-2745.12484
[36] Nakayama M, Tateno R ( 2018). Solar radiation strongly influences the quantity of forest tree root exudates. Trees, 32, 871-879.
doi: 10.1007/s00468-018-1685-0
[37] Neumann G, George TS, Plassard C ( 2009). Strategies and methods for studying the rhizosphere—The plant science toolbox. Plant and Soil, 321, 431-456.
doi: 10.1007/s11104-009-9953-9
[38] Oburge E, Jones DJ ( 2018). Sampling root exudates—Mission impossible? Rhizosphere, 6, 116-133.
doi: 10.1016/j.rhisph.2018.06.004
[39] Pérez-Hargunideguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson CJG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC ( 2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
doi: 10.1071/BT12225
[40] Phillips RP, Erlitz Y, Bier R, Bernhardt ES ( 2008). A new approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999.
doi: 10.1111/j.1365-2435.2008.01495.x
[41] Phillips RP, Finzi AC, Bernhardt ES ( 2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
doi: 10.1111/j.1461-0248.2010.01570.x pmid: 21176050
[42] Preece C, Farré-Armengol G, Llusià J, Peñuelas J ( 2018). Thirsty tree roots exude more carbon. Tree Physiology, 38, 690-695.
doi: 10.1093/treephys/tpx163 pmid: 29304257
[43] Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
doi: 10.2307/3100029
[44] Proctor C, He YH ( 2017). Quantifying root extracts and exudates of sedge and shrub in relation to root morphology. Soil Biology & Biochemistry, 114, 168-180.
[45] Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A ( 2016). Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
doi: 10.1111/nph.13828 pmid: 26765311
[46] Sandnes A, Eldhuset TD, Wollebaek G ( 2005). Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biology & Biochemistry, 37, 259-269.
doi: 10.1016/j.soilbio.2004.07.036
[47] Shahzad T, Rashid MI, Maire V, Barot S, Perveen N, Alvarez G, Mougin C, Fontaine S ( 2018). Root penetration in deep soil layers stimulates mineralization of millennia old organic carbon. Soil Biology & Biochemistry, 124, 150-160.
doi: 10.1016/j.soilbio.2018.06.010
[48] Shipley B, Bello FD, Cornelissen JHC, Lalibert E, Laughlin DC, Reich PB ( 2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 923-931.
doi: 10.1007/s00442-016-3549-x
[49] Singh BK, Millard P, Whiteley AS, Murrell JC ( 2004). Unravelling rhizosphere-microbial interactions: Opportunities and limitations. TRENDS in Microbiology, 12, 386-393.
doi: 10.1016/j.tim.2004.06.008 pmid: 15276615
[50] Smith SE, Read D ( 2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, London.
[51] Strehmel N, Bottcher C, Schmidt S, Scheel D ( 2014). Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry, 108, 35-46.
[52] Sun Y, Xu XL, Kuzyakov Y ( 2014). Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75.
doi: 10.3724/SP.J.1258.2014.00007
[ 孙悦, 徐兴良 , Kuzyakov Y ( 2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
doi: 10.3724/SP.J.1258.2014.00007
[53] Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM ( 2016). Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist, 212, 646-656.
doi: 10.1111/nph.14057 pmid: 27292630
[54] Tan WB, Wang GA, Huang CH, Gao RT, Xi BD, Zhu B ( 2017). Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Science of the Total Environment, 598, 282-288.
doi: 10.1016/j.scitotenv.2017.04.143 pmid: 28445825
[55] Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Prentice IC ( 2018). Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 217, 507-522.
doi: 10.1111/nph.14872 pmid: 29105765
[56] Treseder KK, Holden SR ( 2013). Fungal carbon sequestration. Science, 339, 1528-1529.
[57] Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC ( 2017). Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. Soil Biology & Biochemistry, 107, 188-197.
doi: 10.1016/j.soilbio.2017.01.006
[58] Uren NC ( 2000). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P eds. The Rhizosphere, Biochemistry and Organic Substances at the Soil-plant Interface. Marcel Dekker, New York. 19-40.
[59] van Dam NM, Bouwmeester HJ ( 2016). Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends in Plant Science, 21, 256-265.
doi: 10.1016/j.tplants.2016.01.008 pmid: 26832948
[60] Wallander H, Ekblad A, Bergh J ( 2011). Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecology and Management, 262, 999-1007.
doi: 10.1016/j.foreco.2011.05.035
[61] Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Bjork RG, Kieliszewska-Rokicka B, Kjoller R, Kraigher H, Plassard C, Rudawska M ( 2013). Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biology & Biochemistry, 57, 1034-1047.
doi: 10.1016/j.soilbio.2012.08.027
[62] Warren CR ( 2016). Simultaneous efflux and uptake of metabolites by roots of wheat. Plant and Soil, 406, 359-374.
doi: 10.1007/s11104-016-2892-3
[63] Wu LK, Lin XM, Lin WX ( 2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
doi: 10.3724/SP.J.1258.2014.00027
[ 吴林坤, 林向民, 林文雄 ( 2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
doi: 10.3724/SP.J.1258.2014.00027
[64] Wutzler T, Reichstein M ( 2013). Priming and substrate quality interactions in soil organic matter models. Biogeosciences, 10, 2089-2103.
doi: 10.5194/bg-10-2089-2013
[65] Xia B, Zhou Y, Liu X, Xiao J, Liu Q, Gu YC, Ding LS ( 2012). Use of electrospray ionization ion-trap tandem mass spectrometry and principal component analysis to directly distinguish monosaccharides. Rapid Communications in Mass Spectrometry, 26, 1259-1264.
doi: 10.1002/rcm.6219 pmid: 22555919
[66] Yin LM, Dijkstra FA, Wang P, Zhu B, Cheng WX ( 2018). Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition. New Phytologist, 218, 1036-1048.
doi: 10.1111/nph.15074 pmid: 29512165
[67] Yin HJ, Li YF, Xiao J, Cheng XY, Xu ZF, Liu Q ( 2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
doi: 10.1111/gcb.12161 pmid: 23504744
[68] Yin HJ, Phillips RP, Liang RB, Xu ZF, Liu Q ( 2016). Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils. Applied Soil Ecology, 108, 248-257.
doi: 10.1016/j.apsoil.2016.09.001
[69] Yin HJ, Wheeler E, Phillips RP ( 2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221.
doi: 10.1016/j.soilbio.2014.07.022
[70] Yuan YS, Zhao WQ, Zhang ZL, Xiao J, Li DD, Liu Q, Yin HJ ( 2018). Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots. Soil Biology & Biochemistry, 121, 16-23.
doi: 10.1016/j.soilbio.2018.03.002
[71] Zhang DD, Liang XH, Wang J ( 2014). A review of plant root exudates. Agricultural Science Bulletin, 30, 314-320.
doi: 10.3969/j.issn.1002-2724.2005.05.041
[ 张豆豆, 梁新华, 王俊 ( 2014). 植物根系分泌物研究综述. 中国农学通报, 30, 314-320.]
doi: 10.3969/j.issn.1002-2724.2005.05.041
[72] Zhang FS, Shen JB ( 1999). Preliminary development of the theoretical concept on rhizosphere micro-ecosystem. Review of China Agriculture Science and Technology, (4), 15-20.
doi: 10.3969/j.issn.1008-0864.1999.04.004
[ 张福锁, 申建波 ( 1999). 根际微生态系统理论框架的初步构建. 中国农业科技导报,( 4), 15-20.]
doi: 10.3969/j.issn.1008-0864.1999.04.004
[73] Zhang ZL, Phillips RP, Zhao WQ, Yuan YS, Liu Q, Yin HJ ( 2018 a). Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests. Functional Ecology, DOI: 10.1111/1365-2435.13236.
doi: 10.1111/1365-2435.13236
[74] Zhang ZL, Xiao J, Yuan YS, Zhao CZ, Liu Q, Yin HJ ( 2018 b). Mycelium- and root-derived C inputs differ in their impacts on soil organic C pools and decomposition in forests. Soil Biology & Biochemistry, 123, 257-265.
doi: 10.1016/j.soilbio.2018.05.015
[75] Zhu B, Cheng WX ( 2012). Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean. Soil Biology & Biochemistry, 51, 56-65.
doi: 10.1016/j.soilbio.2012.04.016
[76] Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX ( 2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192.
doi: 10.1016/j.soilbio.2014.04.033
[1] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[2] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[3] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[4] Wang Yingcan, Lin Jiayi, Xu Han, Lin Mingxian, Li Yide. Numerical characteristics of plant sexual system of the woody plants in the 60 ha plot in the tropical rain forest in Jianfengling, Hainan Island [J]. Biodiv Sci, 2019, 27(3): 297-305.
[5] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[6] Yang Siqi,Zhang Qi,Song Xiqiang,Wang Jian,Li Yide,Xu Han,Guo Shouyu,Ding Qiong. Structural features of root-associated fungus-plant interaction networks in the tropical montane rain forest of Jianfengling, China [J]. Biodiv Sci, 2019, 27(3): 314-326.
[7] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[8] WEN Chun,JIN Guang-Ze. Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2019, 43(2): 94-106.
[9] ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138.
[10] Chi Xiulian,Wang Qinggang,Guo Qiang,Yang Xian,Tang Zhiyao. Sprouting characteristics of communities during succession in an evergreen broad-leaved forest on Gutian Mountain, East China [J]. Biodiv Sci, 2019, 27(1): 24-32.
[11] Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41.
[12] Li Tong,Li Junning,Wei Yulian. Species diversity and distribution of wood-decaying fungi in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2019, 27(1): 81-87.
[13] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[14] Lina Dou, Wenfu Zhang, Xiaobao Deng, Min Cao, Yong Tang. Nine-year seed rain dynamics in Parashorea chinensis forest in Xishuangbanna, Southwest China [J]. Biodiv Sci, 2018, 26(9): 919-930.
[15] Wei Lu,Jianping Yu,Haibao Ren,Xiangcheng Mi,Jianhua Chen,Keping Ma. Spatial variations in species diversity of mid-subtropical evergreen broad-leaved forest community in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2018, 26(9): 1023-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[2] Lin Wei, Shenggui Liu, Xianwei Shi. Genetic diversity of the Xuefeng black bone chicken based on microsatel-lite markers[J]. Biodiv Sci, 2008, 16(5): 503 -508 .
[3] Shun-Chun Wang, Jun-Jie Shan, Zheng-Tao Wang and Zhi-Bi Hu. Isolation and Structural Analysis of an Acidic Polysaccharide from Astragalus membranaceus (Fisch.) Bunge[J]. J Integr Plant Biol, 2006, 48(11): .
[4] Wang Yi-feng. The Feature and Rule of Formation of Aboveground Biomass of Stipa grandis Steppe[J]. Chin J Plan Ecolo, 1989, 13(4): 297 -308 .
[5] LIU Jie, LIU Gong-She , QI Dong-Mei, LI Fang-Fang. Construction of Genetic Fingerprints of Aneurolepidium chinensis Using Microsatellite Sequences[J]. J Integr Plant Biol, 2000, 42(9): 985 -987 .
[6] CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China[J]. Chin J Plant Ecol, 2019, 43(2): 165 -173 .
[7] Wang Yi-rou, Zeng Shao-xi and Liu Hong-xian. Effect of Cold Hardening on SOD and Glutathion Reductase Activities and on the Contents of the Reduced Form of Glutathion and Ascorbic Acid in Rice and Cucumber Seedlings[J]. J Integr Plant Biol, 1995, 37(10): .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .
[10] Shangguo Feng, Runqing Yue, Sun Tao, Yanjun Yang, Lei Zhang, Mingfeng Xu, Huizhong Wang, and Chenjia Shen. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses[J]. J Integr Plant Biol, 2015, 57(9): 783 -795 .