Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 508-522.DOI: 10.17521/cjpe.2022.0485 cstr: 32100.14.cjpe.2022.0485
• Research Articles • Previous Articles Next Articles
FU Liang-Chen1,2, DING Zong-Ju1, TANG Mao1,2, ZENG Hui2, ZHU Biao1,*()()
Received:
2022-12-01
Accepted:
2023-06-01
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (biaozhu@pku.edu.cn)
Supported by:
FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing[J]. Chin J Plant Ecol, 2024, 48(4): 508-522.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0485
白桦林 Betula platyphylla forest | 蒙古栎林 Quercus mongolica forest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||||
SWC (%) | r | 42.11 ± 2.97a | 45.71 ± 1.39a | 18.77 ± 1.04b | 45.74 ± 5.75a | 17.11 ± 0.39c | 30.75 ± 1.18a | 13.32 ± 0.80d | 26.13 ± 1.46b | ||
b | 43.62 ± 2.20a | 44.85 ± 1.21a | 16.84 ± 0.76b | 46.25 ± 7.61a | 20.96 ± 3.26b | 29.76 ± 1.62a | 12.60 ± 0.84c | 24.33 ± 1.85ab | |||
pH | r | 5.48 ± 0.08c | 5.97 ± 0.19b | 6.45 ± 0.16a | 5.89 ± 0.07bc | 5.64 ± 0.07b | 5.55 ± 0.13b | 6.20 ± 0.17a | 5.57 ± 0.19b | ||
b | 6.41 ± 0.06a | 6.39 ± 0.24a | 6.65 ± 0.14a | 6.46 ± 0.13a | 6.34 ± 0.08a | 5.82 ± 0.06b | 6.44 ± 0.13a | 5.55 ± 0.21b | |||
EOC content (mg·kg-1) | r | 1 420.02 ± 212.81a | 1 552.22 ± 143.35a | 741.49 ± 125.89b | 491.32 ± 110.09b | 955.42 ± 77.67a | 1 092.27 ± 81.65a | 494.17 ± 43.51b | 263.94 ± 20.23c | ||
b | 1 175.09 ± 138.55a | 1 289.81 ± 96.76a | 485.55 ± 69.81b | 437.68 ± 74.89b | 922.87 ± 113.96a | 1 092.05 ± 102.71a | 404.52 ± 45.92b | 242.67 ± 13.41b | |||
TC content (mg·g-1) | r | 65.97 ± 6.84a | 63.22 ± 3.51a | 58.08 ± 5.95a | 88.08 ± 20.58a | 37.54 ± 1.03a | 35.58 ± 1.36a | 39.83 ± 3.33a | 35.97 ± 2.61a | ||
b | 58.99 ± 5.69ab | 55.09 ± 2.39b | 46.01 ± 4.06b | 86.64 ± 18.54a | 35.73 ± 1.74a | 33.94 ± 2.37a | 38.47 ± 3.58a | 34.64 ± 2.60a | |||
TN content (mg·g-1) | r | 5.16 ± 0.43a | 5.19 ± 0.32a | 4.54 ± 0.43a | 6.65 ± 1.49a | 3.18 ± 0.06a | 2.95 ± 0.14a | 3.27 ± 0.24a | 3.01 ± 0.23a | ||
b | 4.73 ± 0.42ab | 4.55 ± 0.23ab | 3.79 ± 0.27b | 6.65 ± 1.38a | 3.12 ± 0.19a | 2.85 ± 0.23a | 3.15 ± 0.27a | 2.91 ± 0.22a | |||
Soil C:N | r | 12.74 ± 0.35ab | 12.19 ± 0.15b | 12.76 ± 0.13ab | 13.10 ± 0.35a | 11.81 ± 0.32a | 12.07 ± 0.30a | 12.16 ± 0.23a | 11.96 ± 0.13a | ||
b | 12.45 ± 0.13b | 12.11 ± 0.10b | 12.10 ± 0.21b | 12.96 ± 0.13a | 11.48 ± 0.30a | 11.97 ± 0.31a | 12.19 ± 0.16a | 11.91 ± 0.08a | |||
ETN content (mg·kg-1) | r | 138.18 ± 16.83a | 135.56 ± 10.73a | 50.48 ± 11.13b | 67.00 ± 15.17b | 86.18 ± 5.38b | 100.25 ± 2.12a | 31.80 ± 2.50c | 31.89 ± 1.82c | ||
b | 100.97 ± 11.66a | 110.43 ± 5.31a | 39.88 ± 5.38b | 59.03 ± 8.36b | 82.00 ± 8.12a | 93.73 ± 4.49a | 28.51 ± 1.57b | 33.99 ± 0.88b | |||
NH4+-N content (μg·g-1) | r | 15.14 ± 1.34ab | 11.63 ± 1.15ab | 9.55 ± 1.24b | 19.79 ± 4.99a | 11.43 ± 0.54ab | 15.41 ± 2.54a | 8.53 ± 0.58b | 7.52 ± 0.42b | ||
b | 5.08 ± 0.36b | 7.75 ± 0.68a | 6.86 ± 1.01ab | 7.18 ± 0.72ab | 6.10 ± 0.97b | 10.12 ± 1.34a | 5.02 ± 0.12b | 6.29 ± 0.71b | |||
NO3--N content (μg·g-1) | r | 2.94 ± 0.32bc | 5.82 ± 1.46b | 0.12 ± 0.02c | 12.43 ± 2.72a | 1.31 ± 0.28b | 4.57 ± 0.74a | 0.07 ± 0.00b | 3.98 ± 0.31a | ||
b | 5.99 ± 0.76b | 7.31 ± 0.87b | 0.00 ± 0.00c | 16.42 ± 3.43a | 2.60 ± 0.67b | 5.99 ± 0.85a | 0.00 ± 0.00c | 5.14 ± 1.15a | |||
MBC content (mg·kg-1) | r | 1 224.41 ± 71.60a | 1 456.06 ± 115.29a | 1 202.39 ± 118.77a | 1 362.10 ± 290.82a | 509.07 ± 60.41c | 732.73 ± 39.53b | 920.16 ± 73.95a | 447.73 ± 40.34c | ||
b | 1 222.59 ± 140.84a | 1 160.56 ± 72.54ab | 692.14 ± 66.88b | 1 048.46 ± 295.22ab | 648.17 ± 104.11a | 608.29 ± 54.09ab | 405.67 ± 46.44b | 487.32 ± 71.78ab | |||
MBN content (mg·kg-1) | r | 210.49 ± 5.73a | 225.58 ± 19.78a | 86.91 ± 11.09b | 137.24 ± 29.16b | 66.34 ± 5.34b | 105.61 ± 7.91a | 62.91 ± 9.23b | 40.69 ± 4.47c | ||
b | 187.31 ± 26.82a | 187.49 ± 19.21a | 67.81 ± 7.86b | 140.38 ± 41.66ab | 93.36 ± 14.70a | 100.08 ± 6.35a | 36.12 ± 0.86b | 51.42 ± 9.80b | |||
MBC:MBN | r | 5.82 ± 0.31c | 6.48 ± 0.24c | 14.03 ± 0.90a | 9.90 ± 0.07b | 7.77 ± 0.91c | 7.00 ± 0.35c | 15.12 ± 1.16a | 11.10 ± 0.62b | ||
b | 6.66 ± 0.41b | 6.27 ± 0.29b | 10.38 ± 0.87a | 7.95 ± 0.72b | 7.03 ± 0.74b | 6.07 ± 0.38b | 11.18 ± 1.12a | 9.80 ± 0.68a | |||
Cmin (mg·g-1·d-1) | r | 0.21 ± 0.02a | 0.17 ± 0.01a | 0.04 ± 0.01c | 0.10 ± 0.01b | 0.14 ± 0.01a | 0.12 ± 0.02a | 0.02 ± 0.00b | 0.04 ± 0.00b | ||
b | 0.21 ± 0.02a | 0.16 ± 0.02b | 0.02 ± 0.00c | 0.05 ± 0.01c | 0.18 ± 0.01a | 0.11 ± 0.01b | 0.02 ± 0.00c | 0.03 ± 0.00c | |||
Nmin (μg·g-1·d-1) | r | 5.01 ± 0.72a | 1.89 ± 0.29b | 0.98 ± 0.21b | 1.62 ± 0.35b | 1.02 ± 0.30a | 0.85 ± 0.23ab | 0.33 ± 0.08b | 0.90 ± 0.12ab | ||
b | 3.23 ± 0.42a | 1.85 ± 0.26b | 0.81 ± 0.11c | 1.68 ± 0.23b | 1.38 ± 0.26a | 1.02 ± 0.37ab | 0.33 ± 0.06b | 1.07 ± 0.08ab | |||
r | 6.80 ± 1.58b | 21.89 ± 5.09a | 14.84 ± 1.97ab | 8.17 ± 1.61b | 2.68 ± 0.73b | 8.42 ± 0.59a | 6.48 ± 0.81a | 2.07 ± 0.43b | |||
BG activity (nmol·g-1·h-1) | b | 13.34 ± 2.19b | 26.06 ± 4.15a | 16.24 ± 2.72b | 12.19 ± 1.84b | 4.95 ± 0.80c | 12.94 ± 1.27a | 8.07 ± 0.93b | 3.26 ± 0.53c | ||
NAG activity (nmol·g-1·h-1) | r | 5.28 ± 0.60c | 24.51 ± 3.21a | 17.09 ± 1.63b | 6.65 ± 1.63c | 4.49 ± 0.68b | 11.79 ± 0.57a | 10.17 ± 2.57a | 2.74 ± 0.25b | ||
b | 6.62 ± 0.73c | 22.55 ± 1.14a | 14.37 ± 2.54b | 6.02 ± 1.07c | 4.73 ± 0.70b | 10.59 ± 1.03a | 8.68 ± 1.76a | 2.95 ± 0.40b | |||
AP activity (nmol·g-1·h-1) | r | 26.79 ± 0.60b | 56.05 ± 5.74a | 36.61 ± 3.30b | 26.93 ± 3.61b | 19.43 ± 1.11c | 48.05 ± 1.25a | 32.79 ± 3.03b | 20.54 ± 1.60c | ||
b | 29.90 ± 1.20b | 57.40 ± 11.50a | 32.49 ± 2.06b | 25.01 ± 1.76b | 22.56 ± 1.91b | 43.32 ± 4.59a | 25.08 ± 1.78b | 25.63 ± 1.42b | |||
POX+PER activity (μmol·g-1·h-1) | r | 22.87 ± 1.69a | 10.10 ± 2.03b | 8.55 ± 1.06b | 11.23 ± 1.26b | 21.98 ± 3.58a | 14.08 ± 0.74b | 12.22 ± 1.58b | 13.07 ± 1.05b | ||
b | 24.52 ± 0.67a | 10.50 ± 1.54b | 8.23 ± 1.66b | 11.79 ± 1.08b | 21.06 ± 4.10a | 12.97 ± 0.76bc | 6.14 ± 0.92c | 15.83 ± 2.96ab | |||
Vector length | r | 0.58 ± 0.05a | 0.54 ± 0.06a | 0.55 ± 0.03a | 0.61 ± 0.01a | 0.38 ± 0.06a | 0.44 ± 0.03a | 0.44 ± 0.05a | 0.43 ± 0.04a | ||
b | 0.73 ± 0.03a | 0.63 ± 0.06a | 0.62 ± 0.05a | 0.75 ± 0.01a | 0.54 ± 0.03a | 0.60 ± 0.01a | 0.55 ± 0.01a | 0.53 ± 0.06a | |||
Vector angle | r | 70.62 ± 2.37a | 59.84 ± 3.90bc | 58.25 ± 2.46c | 67.96 ± 1.82ab | 72.20 ± 2.91ab | 70.31 ± 0.30b | 67.60 ± 1.87b | 77.84 ± 1.83a | ||
b | 65.54 ± 1.54a | 59.08 ± 4.07a | 58.22 ± 1.98a | 64.48 ± 1.98a | 70.67 ± 2.47b | 67.21 ± 1.37bc | 63.50 ± 2.85c | 77.77 ± 1.45a |
Table 1 Soil physiochemical properties, microbial biomass, carbon and nitrogen mineralization rates, soil extracellular enzyme activities and vector characteristics of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4)
白桦林 Betula platyphylla forest | 蒙古栎林 Quercus mongolica forest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||||
SWC (%) | r | 42.11 ± 2.97a | 45.71 ± 1.39a | 18.77 ± 1.04b | 45.74 ± 5.75a | 17.11 ± 0.39c | 30.75 ± 1.18a | 13.32 ± 0.80d | 26.13 ± 1.46b | ||
b | 43.62 ± 2.20a | 44.85 ± 1.21a | 16.84 ± 0.76b | 46.25 ± 7.61a | 20.96 ± 3.26b | 29.76 ± 1.62a | 12.60 ± 0.84c | 24.33 ± 1.85ab | |||
pH | r | 5.48 ± 0.08c | 5.97 ± 0.19b | 6.45 ± 0.16a | 5.89 ± 0.07bc | 5.64 ± 0.07b | 5.55 ± 0.13b | 6.20 ± 0.17a | 5.57 ± 0.19b | ||
b | 6.41 ± 0.06a | 6.39 ± 0.24a | 6.65 ± 0.14a | 6.46 ± 0.13a | 6.34 ± 0.08a | 5.82 ± 0.06b | 6.44 ± 0.13a | 5.55 ± 0.21b | |||
EOC content (mg·kg-1) | r | 1 420.02 ± 212.81a | 1 552.22 ± 143.35a | 741.49 ± 125.89b | 491.32 ± 110.09b | 955.42 ± 77.67a | 1 092.27 ± 81.65a | 494.17 ± 43.51b | 263.94 ± 20.23c | ||
b | 1 175.09 ± 138.55a | 1 289.81 ± 96.76a | 485.55 ± 69.81b | 437.68 ± 74.89b | 922.87 ± 113.96a | 1 092.05 ± 102.71a | 404.52 ± 45.92b | 242.67 ± 13.41b | |||
TC content (mg·g-1) | r | 65.97 ± 6.84a | 63.22 ± 3.51a | 58.08 ± 5.95a | 88.08 ± 20.58a | 37.54 ± 1.03a | 35.58 ± 1.36a | 39.83 ± 3.33a | 35.97 ± 2.61a | ||
b | 58.99 ± 5.69ab | 55.09 ± 2.39b | 46.01 ± 4.06b | 86.64 ± 18.54a | 35.73 ± 1.74a | 33.94 ± 2.37a | 38.47 ± 3.58a | 34.64 ± 2.60a | |||
TN content (mg·g-1) | r | 5.16 ± 0.43a | 5.19 ± 0.32a | 4.54 ± 0.43a | 6.65 ± 1.49a | 3.18 ± 0.06a | 2.95 ± 0.14a | 3.27 ± 0.24a | 3.01 ± 0.23a | ||
b | 4.73 ± 0.42ab | 4.55 ± 0.23ab | 3.79 ± 0.27b | 6.65 ± 1.38a | 3.12 ± 0.19a | 2.85 ± 0.23a | 3.15 ± 0.27a | 2.91 ± 0.22a | |||
Soil C:N | r | 12.74 ± 0.35ab | 12.19 ± 0.15b | 12.76 ± 0.13ab | 13.10 ± 0.35a | 11.81 ± 0.32a | 12.07 ± 0.30a | 12.16 ± 0.23a | 11.96 ± 0.13a | ||
b | 12.45 ± 0.13b | 12.11 ± 0.10b | 12.10 ± 0.21b | 12.96 ± 0.13a | 11.48 ± 0.30a | 11.97 ± 0.31a | 12.19 ± 0.16a | 11.91 ± 0.08a | |||
ETN content (mg·kg-1) | r | 138.18 ± 16.83a | 135.56 ± 10.73a | 50.48 ± 11.13b | 67.00 ± 15.17b | 86.18 ± 5.38b | 100.25 ± 2.12a | 31.80 ± 2.50c | 31.89 ± 1.82c | ||
b | 100.97 ± 11.66a | 110.43 ± 5.31a | 39.88 ± 5.38b | 59.03 ± 8.36b | 82.00 ± 8.12a | 93.73 ± 4.49a | 28.51 ± 1.57b | 33.99 ± 0.88b | |||
NH4+-N content (μg·g-1) | r | 15.14 ± 1.34ab | 11.63 ± 1.15ab | 9.55 ± 1.24b | 19.79 ± 4.99a | 11.43 ± 0.54ab | 15.41 ± 2.54a | 8.53 ± 0.58b | 7.52 ± 0.42b | ||
b | 5.08 ± 0.36b | 7.75 ± 0.68a | 6.86 ± 1.01ab | 7.18 ± 0.72ab | 6.10 ± 0.97b | 10.12 ± 1.34a | 5.02 ± 0.12b | 6.29 ± 0.71b | |||
NO3--N content (μg·g-1) | r | 2.94 ± 0.32bc | 5.82 ± 1.46b | 0.12 ± 0.02c | 12.43 ± 2.72a | 1.31 ± 0.28b | 4.57 ± 0.74a | 0.07 ± 0.00b | 3.98 ± 0.31a | ||
b | 5.99 ± 0.76b | 7.31 ± 0.87b | 0.00 ± 0.00c | 16.42 ± 3.43a | 2.60 ± 0.67b | 5.99 ± 0.85a | 0.00 ± 0.00c | 5.14 ± 1.15a | |||
MBC content (mg·kg-1) | r | 1 224.41 ± 71.60a | 1 456.06 ± 115.29a | 1 202.39 ± 118.77a | 1 362.10 ± 290.82a | 509.07 ± 60.41c | 732.73 ± 39.53b | 920.16 ± 73.95a | 447.73 ± 40.34c | ||
b | 1 222.59 ± 140.84a | 1 160.56 ± 72.54ab | 692.14 ± 66.88b | 1 048.46 ± 295.22ab | 648.17 ± 104.11a | 608.29 ± 54.09ab | 405.67 ± 46.44b | 487.32 ± 71.78ab | |||
MBN content (mg·kg-1) | r | 210.49 ± 5.73a | 225.58 ± 19.78a | 86.91 ± 11.09b | 137.24 ± 29.16b | 66.34 ± 5.34b | 105.61 ± 7.91a | 62.91 ± 9.23b | 40.69 ± 4.47c | ||
b | 187.31 ± 26.82a | 187.49 ± 19.21a | 67.81 ± 7.86b | 140.38 ± 41.66ab | 93.36 ± 14.70a | 100.08 ± 6.35a | 36.12 ± 0.86b | 51.42 ± 9.80b | |||
MBC:MBN | r | 5.82 ± 0.31c | 6.48 ± 0.24c | 14.03 ± 0.90a | 9.90 ± 0.07b | 7.77 ± 0.91c | 7.00 ± 0.35c | 15.12 ± 1.16a | 11.10 ± 0.62b | ||
b | 6.66 ± 0.41b | 6.27 ± 0.29b | 10.38 ± 0.87a | 7.95 ± 0.72b | 7.03 ± 0.74b | 6.07 ± 0.38b | 11.18 ± 1.12a | 9.80 ± 0.68a | |||
Cmin (mg·g-1·d-1) | r | 0.21 ± 0.02a | 0.17 ± 0.01a | 0.04 ± 0.01c | 0.10 ± 0.01b | 0.14 ± 0.01a | 0.12 ± 0.02a | 0.02 ± 0.00b | 0.04 ± 0.00b | ||
b | 0.21 ± 0.02a | 0.16 ± 0.02b | 0.02 ± 0.00c | 0.05 ± 0.01c | 0.18 ± 0.01a | 0.11 ± 0.01b | 0.02 ± 0.00c | 0.03 ± 0.00c | |||
Nmin (μg·g-1·d-1) | r | 5.01 ± 0.72a | 1.89 ± 0.29b | 0.98 ± 0.21b | 1.62 ± 0.35b | 1.02 ± 0.30a | 0.85 ± 0.23ab | 0.33 ± 0.08b | 0.90 ± 0.12ab | ||
b | 3.23 ± 0.42a | 1.85 ± 0.26b | 0.81 ± 0.11c | 1.68 ± 0.23b | 1.38 ± 0.26a | 1.02 ± 0.37ab | 0.33 ± 0.06b | 1.07 ± 0.08ab | |||
r | 6.80 ± 1.58b | 21.89 ± 5.09a | 14.84 ± 1.97ab | 8.17 ± 1.61b | 2.68 ± 0.73b | 8.42 ± 0.59a | 6.48 ± 0.81a | 2.07 ± 0.43b | |||
BG activity (nmol·g-1·h-1) | b | 13.34 ± 2.19b | 26.06 ± 4.15a | 16.24 ± 2.72b | 12.19 ± 1.84b | 4.95 ± 0.80c | 12.94 ± 1.27a | 8.07 ± 0.93b | 3.26 ± 0.53c | ||
NAG activity (nmol·g-1·h-1) | r | 5.28 ± 0.60c | 24.51 ± 3.21a | 17.09 ± 1.63b | 6.65 ± 1.63c | 4.49 ± 0.68b | 11.79 ± 0.57a | 10.17 ± 2.57a | 2.74 ± 0.25b | ||
b | 6.62 ± 0.73c | 22.55 ± 1.14a | 14.37 ± 2.54b | 6.02 ± 1.07c | 4.73 ± 0.70b | 10.59 ± 1.03a | 8.68 ± 1.76a | 2.95 ± 0.40b | |||
AP activity (nmol·g-1·h-1) | r | 26.79 ± 0.60b | 56.05 ± 5.74a | 36.61 ± 3.30b | 26.93 ± 3.61b | 19.43 ± 1.11c | 48.05 ± 1.25a | 32.79 ± 3.03b | 20.54 ± 1.60c | ||
b | 29.90 ± 1.20b | 57.40 ± 11.50a | 32.49 ± 2.06b | 25.01 ± 1.76b | 22.56 ± 1.91b | 43.32 ± 4.59a | 25.08 ± 1.78b | 25.63 ± 1.42b | |||
POX+PER activity (μmol·g-1·h-1) | r | 22.87 ± 1.69a | 10.10 ± 2.03b | 8.55 ± 1.06b | 11.23 ± 1.26b | 21.98 ± 3.58a | 14.08 ± 0.74b | 12.22 ± 1.58b | 13.07 ± 1.05b | ||
b | 24.52 ± 0.67a | 10.50 ± 1.54b | 8.23 ± 1.66b | 11.79 ± 1.08b | 21.06 ± 4.10a | 12.97 ± 0.76bc | 6.14 ± 0.92c | 15.83 ± 2.96ab | |||
Vector length | r | 0.58 ± 0.05a | 0.54 ± 0.06a | 0.55 ± 0.03a | 0.61 ± 0.01a | 0.38 ± 0.06a | 0.44 ± 0.03a | 0.44 ± 0.05a | 0.43 ± 0.04a | ||
b | 0.73 ± 0.03a | 0.63 ± 0.06a | 0.62 ± 0.05a | 0.75 ± 0.01a | 0.54 ± 0.03a | 0.60 ± 0.01a | 0.55 ± 0.01a | 0.53 ± 0.06a | |||
Vector angle | r | 70.62 ± 2.37a | 59.84 ± 3.90bc | 58.25 ± 2.46c | 67.96 ± 1.82ab | 72.20 ± 2.91ab | 70.31 ± 0.30b | 67.60 ± 1.87b | 77.84 ± 1.83a | ||
b | 65.54 ± 1.54a | 59.08 ± 4.07a | 58.22 ± 1.98a | 64.48 ± 1.98a | 70.67 ± 2.47b | 67.21 ± 1.37bc | 63.50 ± 2.85c | 77.77 ± 1.45a |
白桦 Betula platyphylla | 蒙古栎 Quercus mongolica | |||||||
---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
SLA (m2·kg-1) | 33.1 ± 1.6a | 29.1 ± 2.1a | 22.5 ± 0.8b | NA | 20.4 ± 1.3a | 16.4 ± 0.8b | 16.1 ± 0.3b | NA |
LDMC (g·g-1) | 0.189 ± 0.005b | 0.173 ± 0.008b | 0.261 ± 0.010a | NA | 0.217 ± 0.010b | 0.214 ± 0.004b | 0.348 ± 0.004a | NA |
Leaf C content (mg·g-1) | NA | 481 ± 7a | 491 ± 2a | NA | 458 ± 1c | 480 ± 3a | 467 ± 2b | NA |
Leaf N content (mg·g-1) | NA | 27.4 ± 1.0a | 21.2 ± 0.7b | NA | 56.1 ± 0.7a | 27.5 ± 0.6b | 21.2 ± 0.6c | NA |
Leaf C:N | NA | 17.7 ± 0.8b | 23.2 ± 0.8a | NA | 8.2 ± 0.1c | 17.5 ± 0.3b | 22.1 ± 0.5a | NA |
Fine root biomass (g) | 21.2 ± 1.8b | 25.6 ± 2.9b | 37.6 ± 2.7a | 6.4 ± 0.3c | 15.9 ± 1.3b | 25.9 ± 1.3a | 28.7 ± 2.8a | 6.7 ± 0.9c |
Root C content (mg·g-1) | 489 ± 8b | 463 ± 7c | 484 ± 6b | 518 ± 3a | 500 ± 4a | 494 ± 8a | 497 ± 9a | 507 ± 1a |
Root N content (mg·g-1) | 12.28 ± 0.47a | 9.98 ± 0.66ab | 9.34 ± 0.32b | 11.19 ± 1.10ab | 9.65 ± 0.61a | 9.13 ± 0.34a | 9.70 ± 0.97a | 8.38 ± 0.69a |
Root C:N | 40.1 ± 2.2b | 47.2 ± 3.1ab | 52.1 ± 2.2a | 48.2 ± 4.8ab | 52.7 ± 3.5a | 54.5 ± 2.7a | 53.7 ± 6.2a | 61.9 ± 4.5a |
Fine root density (kg·m-3) | 1 077 ± 127b | 1 285 ± 161b | 2 091 ± 150a | NA | 580 ± 78b | 1437 ± 71a | 1 593 ± 153a | NA |
Table 2 Plant functional traits of leaves and roots of Betula platyphylla and Quercus mongolica in Dongling Mountain, Beijing (mean ± SE, n = 4)
白桦 Betula platyphylla | 蒙古栎 Quercus mongolica | |||||||
---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
SLA (m2·kg-1) | 33.1 ± 1.6a | 29.1 ± 2.1a | 22.5 ± 0.8b | NA | 20.4 ± 1.3a | 16.4 ± 0.8b | 16.1 ± 0.3b | NA |
LDMC (g·g-1) | 0.189 ± 0.005b | 0.173 ± 0.008b | 0.261 ± 0.010a | NA | 0.217 ± 0.010b | 0.214 ± 0.004b | 0.348 ± 0.004a | NA |
Leaf C content (mg·g-1) | NA | 481 ± 7a | 491 ± 2a | NA | 458 ± 1c | 480 ± 3a | 467 ± 2b | NA |
Leaf N content (mg·g-1) | NA | 27.4 ± 1.0a | 21.2 ± 0.7b | NA | 56.1 ± 0.7a | 27.5 ± 0.6b | 21.2 ± 0.6c | NA |
Leaf C:N | NA | 17.7 ± 0.8b | 23.2 ± 0.8a | NA | 8.2 ± 0.1c | 17.5 ± 0.3b | 22.1 ± 0.5a | NA |
Fine root biomass (g) | 21.2 ± 1.8b | 25.6 ± 2.9b | 37.6 ± 2.7a | 6.4 ± 0.3c | 15.9 ± 1.3b | 25.9 ± 1.3a | 28.7 ± 2.8a | 6.7 ± 0.9c |
Root C content (mg·g-1) | 489 ± 8b | 463 ± 7c | 484 ± 6b | 518 ± 3a | 500 ± 4a | 494 ± 8a | 497 ± 9a | 507 ± 1a |
Root N content (mg·g-1) | 12.28 ± 0.47a | 9.98 ± 0.66ab | 9.34 ± 0.32b | 11.19 ± 1.10ab | 9.65 ± 0.61a | 9.13 ± 0.34a | 9.70 ± 0.97a | 8.38 ± 0.69a |
Root C:N | 40.1 ± 2.2b | 47.2 ± 3.1ab | 52.1 ± 2.2a | 48.2 ± 4.8ab | 52.7 ± 3.5a | 54.5 ± 2.7a | 53.7 ± 6.2a | 61.9 ± 4.5a |
Fine root density (kg·m-3) | 1 077 ± 127b | 1 285 ± 161b | 2 091 ± 150a | NA | 580 ± 78b | 1437 ± 71a | 1 593 ± 153a | NA |
Fig. 1 Seasonal variations of rhizosphere effects on soil physical and chemical properties of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, Soil water content. B, pH. C, Extractable organic carbon content. D, Total carbon content. E, Total nitrogen content. F, Soil carbon to nitrogen ratio. G, Extractable nitrogen content. H, Ammonium nitrogen content. I, Nitrate nitrogen content. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
Fig. 2 Seasonal variations of rhizosphere effects on microbial biomass, carbon and nitrogen mineralization rates of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, Microbial biomass carbon content. B, Microbial biomass nitrogen content. C, Microbial biomass carbon to nitrogen ratio. D, Carbon mineralization rate. E, Nitrogen mineralization rate. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
Fig. 3 Seasonal variations of rhizosphere effects on soil extracellular enzyme activities and vector characteristics of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing (mean ± SE, n = 4). A, β-1,4-glucosidase. B, β-1,4-acetylglucosidase. C, Acid phosphatase. D, Oxidase activity. E, Vector length. F, Vector angle. Different lowercase letters indicate the rhizosphere effect of the same species is significantly different in different seasons (p < 0.05). The asterisk indicates that the rhizosphere effect value is significantly different from 1 (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The results of linear mixed-effect model are located in the lower left corner of each figure. The asterisk indicates that tree species, season or their interaction has a significant impact on the rhizosphere effect (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
Fig. 4 Correlation analysis between rhizosphere effect and plant functional traits of Betula platyphylla forest and Quercus mongolica forest in Dongling Mountain, Beijing. A, Betula platyphylla. B, Quercus mongolica. AP, acid phosphatase activity; BG, β-1,4-glucosidase activity; Cmin, carbon mineralization rate; EOC, extractable organic carbon content; ETN, extractable nitrogen content; LDMC, leaf dry matter content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; NAG, β-1,4-acetylglucosidase activity; NH4+-N, ammonium nitrogen content; Nmin, nitrogen mineralization rate; NO3--N, nitrate nitrogen content; POX+PER, oxidase activity; SLA, specific leaf area; Soil C:N, soil carbon to nitrogen ratio; SWC, soil water content; TC, total carbon content; TN, nitrogen content. Red represents positive correlation, and blue represents negative correlation. The darker the color, the stronger the correlation. The asterisk indicates a significant correlation (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
Fig. 5 Variations in the rhizosphere effects are partitioned by leaf and root functional traits of Betula platyphylla (A) forest and Quercus mongolica (B) forest in Dongling Mountain, Beijing using variation partitioning analysis.
[1] | Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641. |
[2] | Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699. |
[3] | Calvaruso C, N’Dira V, Turpault MP (2011). Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant and Soil, 342, 469-480. |
[4] | Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Lærke PE, Zhang YF, Luo YQ, Hungate BA, Sinsabaugh RL, Jørgensen U (2020). Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biology, 26, 1944-1952. |
[5] | Chen X, Ding ZJ, Tang M, Zhu B (2018). Greater variations of rhizosphere effects within mycorrhizal group than between mycorrhizal group in a temperate forest. Soil Biology & Biochemistry, 126, 237-246. |
[6] |
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI PMID |
[7] | Cui XT, Yuan FH, Wang AZ, Guan DX, Wu JB, Jin CJ (2017). Leaf age-related changes in photosynthesis of Quercus mongolica leaves in relation to leaf functional traits. Chinese Journal of Ecology, 36, 3160-3167. |
[崔西甜, 袁凤辉, 王安志, 关德新, 吴家兵, 金昌杰 (2017). 蒙古栎叶片光合作用随叶龄的变化及其与叶片功能性状的关系. 生态学杂志, 36, 3160-3167.] | |
[8] |
Dijkstra FA, Cheng WX (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046-1053.
PMID |
[9] | Ding ZJ, Tang M, Chen X, Yin LM, Gui HC, Zhu B (2019). Measuring rhizosphere effects of two tree species in a temperate forest: a comprehensive method comparison. Rhizosphere, 10, 100153. DOI: 10.1016/j.rhisph.2019.100153. |
[10] | Eviner V, Chapin III FS (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution, and Systematics, 34, 455-485. |
[11] | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2006). Carbon cycle of three temperate forest ecosystems in Dongling Mountain, Beijing. Science in China: Earth Science, 36, 533-543. |
[方精云, 刘国华, 朱彪, 王效科, 刘绍辉 (2006). 北京东灵山三种温带森林生态系统的碳循环. 中国科学: 地球科学, 36, 533-543.] | |
[12] | Gan DY, Feng JG, Han MG, Zeng H, Zhu B (2021). Rhizosphere effects of woody plants on soil biogeochemical processes: a meta-analysis. Soil Biology & Biochemistry, 160, 108310. DOI: 10.1016/j.soilbio.2021.108310. |
[13] |
Gan DY, Zeng H, Zhu B (2022). The rhizosphere effect on soil gross nitrogen mineralization: a meta-analysis. Soil Ecology Letters, 4, 144-154.
DOI |
[14] | Han MG, Sun LJ, Gan DY, Fu LC, Zhu B (2020). Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biology & Biochemistry, 151, 108019. DOI: 10.1016/j.soilbio.2020.108019. |
[15] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[16] | Jin BB, Guo QX (2013). Root decomposition and nutrient dynamics of Quercus mongolica and Betula Platyphylla. Acta Ecologica Sinica, 33, 2416-2424. |
[靳贝贝, 国庆喜 (2013). 蒙古栎、白桦根系分解及养分动态. 生态学报, 33, 2416-2424.] | |
[17] | Jing X, Chen X, Fang JY, Ji CJ, Shen HH, Zheng CY, Zhu B (2020). Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biology & Biochemistry, 141, 107657. DOI: 10.1016/j.soilbio.2019.107657. |
[18] | Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche F, Strauss J, Sessitsch A, Zechmeister- Boltenstern S, Richter A (2011). Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground allocation. Ecology, 92, 1036-1051. |
[19] |
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843-858.
DOI PMID |
[20] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[21] | Kuzyakov Y (2002). Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396. |
[22] | Kuzyakov Y, Cheng W (2004). Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant and Soil, 263, 85-99. |
[23] |
Kuzyakov Y, Xu XL (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656-669.
DOI PMID |
[24] | Lai JS (2019). An explanation about the negative value in the common explanation part of environmental factors in redundancy analysis (RDA).[2023-05-29]. https://blog.sciencenet.cn/blog-267448-1187530.html. |
[赖江山 (2019). 关于冗余分析(RDA)中环境因子共同解释部分出现负值的说明.[2023-05-29]. https://blog.sciencenet.cn/blog-267448-1187530.html. | |
[25] | Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sincia, 25, 304-311. |
[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] | |
[26] | Liu S, Sheng KY, Liu XS, Wu ZH, Guo XM, Xiao FM, Zhang WY (2017). Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizosphere effect. Chinese Journal of Ecology, 36, 1957-1964. |
[刘顺, 盛可银, 刘喜帅, 吴珍花, 郭晓敏, 肖复明, 张文元 (2017). 陈山红心山根际土壤有机碳、氮含量及根际效应. 生态学杂志, 36, 1957-1964.] | |
[27] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[28] | Mo XL, Dai XQ, Wang HM, Fu XL, Kou L (2018). Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China. Chinese Journal of Plant Ecology, 42, 723-733. |
[莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮 (2018). 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例. 植物生态学报, 42, 723-733.]
DOI |
|
[29] | Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. DOI: 10.3389/fmicb.2013.00223. |
[30] | Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016). Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology & Biochemistry, 93, 1-7. |
[31] |
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 173, 600-610.
DOI PMID |
[32] | Pausch J, Zhu B, Kuzyakov Y, Cheng WX (2013). Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biology & Biochemistry, 57, 91-99. |
[33] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. DOI: 10.1071/BT12225. |
[34] |
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799.
DOI PMID |
[35] |
Phillips RP, Fahey TJ (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1313.
PMID |
[36] | Phillips RP, Fahey TJ (2008). The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Science Society of America Journal, 72, 453-461. |
[37] | Stone EL, Gibson EJ (1975). Effects of species on nutrient cycles and soil change. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 271, 149-162. |
[38] | Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395. |
[39] | Su HX, Li GQ (2012). Simulating the response of the Quercus mongolica forest ecosystem carbon budget to asymmetric warming. Chinese Science Bulletin, 57, 1544-1552. |
[苏宏新, 李广起 (2012). 模拟蒙古栎林生态系统碳收支对非对称性升温的响应. 科学通报, 57, 1544-1552.] | |
[40] | Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271. |
[41] | Sun LJ, Ataka M, Kominami Y, Yoshimura K (2017). Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiology, 37, 1011-1020. |
[42] | Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75. |
[孙悦, 徐兴良, Kuzyakov Y, (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI |
|
[43] |
Wang XP, Xiao X, Tang TW, Li YX, Xiao J (2018). Seasonal changes of the input of root exudates and its driving characteristics of rhizosphere microbe in a Cercidiphyllum japonicum Sieb. plantation. Bulletin of Botanical Research, 38(1), 47-55.
DOI |
[王小平, 肖肖, 唐天文, 黎云祥, 肖娟 (2018). 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究. 植物研究, 38(1), 47-55.]
DOI |
|
[44] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[45] |
Yao H, Hu XY, Zhu JL, Zhu JX, Ji CJ, Fang JY (2015). Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing. Chinese Journal of Plant Ecology, 39, 849-856.
DOI |
[姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 (2015). 北京东灵山3种温带森林土壤呼吸及其20年的变化. 植物生态学报, 39, 849-856.]
DOI |
|
[46] | Zhu B, Cheng WX (2012). Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean. Soil Biology & Biochemistry, 51, 56-65. |
[47] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192. |
[48] | Zhu B, Panke-Buisse K, Kao-Kniffin J (2015). Nitrogen fertilization has minimal influence on rhizosphere effects of smooth crabgrass (Digitaria ischaemum) and bermudagrass (Cynodon dactylon). Journal of Plant Ecology, 8, 390-400. |
[49] | Zhu XM, Liu DY, Yin HJ (2021). Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry, 155, 39-57. |
[1] | Long CHEN Ke GUO Xiao-Hua GOU Xiu-Hai ZHAO Hongruo Ma. Community components and characteristics of Juniperus przewalskii forests [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Jia-xin RAN yuhui zhang Yun WANG Zhi-Jie YANG Mao Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in subtropical forests. [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[3] | Su-Hui LIAO Jia ShuangQin 谭 羽 Da-Xing Gu. The hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[4] | WANG Yan, ZHANG Quan-Zhi, WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China [J]. Chin J Plant Ecol, 2024, 48(7): 943-954. |
[5] | ZHENG Li-Li, YU Lin-Lan, DAI Ping, XUE Yue-Gui, LONG Ping. Nutrient characteristics and adaptability of plant leaves in Tiankeng Complex of Dashiwei, Guangxi, China [J]. Chin J Plant Ecol, 2024, 48(7): 872-887. |
[6] | ZHOU Jian, WANG Han. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(6): 675-689. |
[7] | YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun. Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(6): 690-700. |
[8] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[9] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[10] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[11] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[12] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[13] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[14] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[15] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn