Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (7): 943-954.DOI: 10.17521/cjpe.2023.0234 cstr: 32100.14.cjpe.2023.0234
• Research Articles • Previous Articles
WANG Yan()(), ZHANG Quan-Zhi*(), WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei
Received:
2023-08-14
Accepted:
2024-02-07
Online:
2024-07-20
Published:
2024-02-28
Contact:
* ZHANG Quan-Zhi(Supported by:
WANG Yan, ZHANG Quan-Zhi, WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China[J]. Chin J Plant Ecol, 2024, 48(7): 943-954.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0234
恢复方式 Restoration approach | 林分类型 Forest stand | 坡位 Location | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (trees·hm-2) | 胸高断面积 Basal area at breast height (m2·hm-2) | 平均胸径 Mean DBH (cm) | 树种组成 Overstory composition |
---|---|---|---|---|---|---|---|---|
人工恢复 Artificial restoration | 红松林 Pinus koraiensis plantation | 中坡位 Mid-slope | 12 | 56 | 1 989 ± 123 | 47.34 ± 0.32 | 16.22 ± 0.32 | 7PK 3BP |
落叶松林 Larix gmelinii plantation | 下坡位 Toe-slope | 3 | 64 | 739 ± 224 | 32.93 ± 4.09 | 20.30 ± 1.28 | 9LG 1UP | |
水曲柳-落叶松混交林 Fraxinus mandshurica - Larix gmelinii mixed plantation | 中坡位 Mid-slope | 12 | 57 | 1 711 ± 58 | 38.08 ± 2.74 | 14.00 ± 0.54 | 6LG 3FM 1UP | |
天然恢复 Natural restoration | 硬阔叶林 Hardwood stand | 下坡位 Toe-slope | 7 | 67 | 1 300 ± 562 | 35.12 ± 1.58 | 13.62 ± 0.82 | 6FM 2JM 1QM 1UP + AM + PA |
杨桦林 Aspen-birch stand | 中坡位 Mid-slope | 16 | 72 | 1 478 ± 42 | 32.16 ± 3.81 | 13.47 ± 0.63 | 5PD 1FM 1TA 1AM 1QM 1BP + JM + PA | |
杂木林 Mixed deciduous stand | 中坡位 Mid-slope | 14 | 72 | 1 722 ± 302 | 35.61 ± 1.45 | 12.76 ± 0.60 | 2JM 2PD 1PA 1TA 1AM 1QM 1UP 1BP | |
蒙古栎林 Quercus mongolica stand | 上坡位 Upper slope | 23 | 73 | 1 678 ± 82 | 37.43 ± 1.13 | 13.83 ± 0.72 | 10QM + TA + UP |
Table 1 Site conditions and stand characteristics of forest types under different restoration approaches in eastern Northeast China (mean ± SE, n = 3)
恢复方式 Restoration approach | 林分类型 Forest stand | 坡位 Location | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (trees·hm-2) | 胸高断面积 Basal area at breast height (m2·hm-2) | 平均胸径 Mean DBH (cm) | 树种组成 Overstory composition |
---|---|---|---|---|---|---|---|---|
人工恢复 Artificial restoration | 红松林 Pinus koraiensis plantation | 中坡位 Mid-slope | 12 | 56 | 1 989 ± 123 | 47.34 ± 0.32 | 16.22 ± 0.32 | 7PK 3BP |
落叶松林 Larix gmelinii plantation | 下坡位 Toe-slope | 3 | 64 | 739 ± 224 | 32.93 ± 4.09 | 20.30 ± 1.28 | 9LG 1UP | |
水曲柳-落叶松混交林 Fraxinus mandshurica - Larix gmelinii mixed plantation | 中坡位 Mid-slope | 12 | 57 | 1 711 ± 58 | 38.08 ± 2.74 | 14.00 ± 0.54 | 6LG 3FM 1UP | |
天然恢复 Natural restoration | 硬阔叶林 Hardwood stand | 下坡位 Toe-slope | 7 | 67 | 1 300 ± 562 | 35.12 ± 1.58 | 13.62 ± 0.82 | 6FM 2JM 1QM 1UP + AM + PA |
杨桦林 Aspen-birch stand | 中坡位 Mid-slope | 16 | 72 | 1 478 ± 42 | 32.16 ± 3.81 | 13.47 ± 0.63 | 5PD 1FM 1TA 1AM 1QM 1BP + JM + PA | |
杂木林 Mixed deciduous stand | 中坡位 Mid-slope | 14 | 72 | 1 722 ± 302 | 35.61 ± 1.45 | 12.76 ± 0.60 | 2JM 2PD 1PA 1TA 1AM 1QM 1UP 1BP | |
蒙古栎林 Quercus mongolica stand | 上坡位 Upper slope | 23 | 73 | 1 678 ± 82 | 37.43 ± 1.13 | 13.83 ± 0.72 | 10QM + TA + UP |
土壤发生层 Soil horizon | 恢复方式 Restoration approach | 土壤厚度 Soil thickness (cm) | 土壤密度 Soil bulk density (g·cm-3) |
---|---|---|---|
O | RG | 7.49 ± 0.33 | 0.73 ± 0.02*** |
TR | 7.83 ± 0.32 | 0.59 ± 0.02*** | |
A | RG | 20.70 ± 0.58 | 0.95 ± 0.02 |
TR | 21.17 ± 0.43 | 0.96 ± 0.02 | |
B | RG | 25.86 ± 0.96 | 1.14 ± 0.03*** |
TR | 25.58 ± 0.51 | 1.31 ± 0.02*** |
Table 2 Basic properties of the forest soil under two restoration approaches in eastern Northeast China
土壤发生层 Soil horizon | 恢复方式 Restoration approach | 土壤厚度 Soil thickness (cm) | 土壤密度 Soil bulk density (g·cm-3) |
---|---|---|---|
O | RG | 7.49 ± 0.33 | 0.73 ± 0.02*** |
TR | 7.83 ± 0.32 | 0.59 ± 0.02*** | |
A | RG | 20.70 ± 0.58 | 0.95 ± 0.02 |
TR | 21.17 ± 0.43 | 0.96 ± 0.02 | |
B | RG | 25.86 ± 0.96 | 1.14 ± 0.03*** |
TR | 25.58 ± 0.51 | 1.31 ± 0.02*** |
Fig. 1 Comparisons of carbon (C), nitrogen (N) and phosphorus (P) contents in forest soil between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. The scatter plot shows the distribution of C, N and P contents in different soil depths. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
Fig. 2 Differences in forest soil carbon (C), nitrogen (N) and phosphorus (P) density between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
Fig. 3 Differences in soil carbon (C):nitrogen (N), C:phosphorus (P) and N:P between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
Fig. 4 Correlation analysis of carbon (C)-nitrogen (N), C-phosphorus (P), and N-P contents by soil horizon between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A-C, soil O (organic) horizon. D-F, soil A (humus) horizon. G-I, soil B (illuvial) horizon.
指标 Indicator | 处理方式 Treatment | 自由度 df | 均方误差 MSE | F | p |
---|---|---|---|---|---|
碳含量 C content | FT | 1 | 977 | 12.95 | *** |
SL | 2 | 27 282 | 316.38 | *** | |
FT × SL | 2 | 3 151 | 41.74 | *** | |
氮含量 N content | FT | 1 | 2.73 | 6.18 | * |
SL | 2 | 197.78 | 448.03 | *** | |
FT × SL | 2 | 21.94 | 49.70 | *** | |
磷含量 P content | FT | 1 | 0.67 | 36.25 | *** |
SL | 2 | 1.75 | 94.28 | *** | |
FT × SL | 2 | 0.06 | 3.14 | * | |
碳密度 C density | FT | 1 | 619 | 5.06 | * |
SL | 2 | 3 261 | 26.69 | *** | |
FT × SL | 2 | 1 385 | 11.34 | *** | |
氮密度 N density | FT | 1 | 12.74 | 16.67 | *** |
SL | 2 | 45.31 | 59.26 | *** | |
FT × SL | 2 | 8.05 | 10.53 | *** | |
磷密度 P density | FT | 1 | 2.74 | 40.57 | *** |
SL | 2 | 4.41 | 65.35 | *** | |
FT × SL | 2 | 0.24 | 3.58 | * | |
C:N | FT | 1 | 12.48 | 2.81 | ns |
SL | 2 | 5.58 | 1.26 | ns | |
FT × SL | 2 | 7.60 | 1.71 | ns | |
C:P | FT | 1 | 20 436 | 30.17 | *** |
SL | 2 | 13 560 | 20.02 | *** | |
FT × SL | 2 | 7 522 | 11.10 | *** | |
N:P | FT | 1 | 165.66 | 24.34 | *** |
SL | 2 | 59.72 | 8.77 | *** | |
FT × SL | 2 | 27.33 | 4.02 | * |
Table 3 ANOVA of the effects of restoration approaches and soil horizon on forest soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in eastern Northeast China
指标 Indicator | 处理方式 Treatment | 自由度 df | 均方误差 MSE | F | p |
---|---|---|---|---|---|
碳含量 C content | FT | 1 | 977 | 12.95 | *** |
SL | 2 | 27 282 | 316.38 | *** | |
FT × SL | 2 | 3 151 | 41.74 | *** | |
氮含量 N content | FT | 1 | 2.73 | 6.18 | * |
SL | 2 | 197.78 | 448.03 | *** | |
FT × SL | 2 | 21.94 | 49.70 | *** | |
磷含量 P content | FT | 1 | 0.67 | 36.25 | *** |
SL | 2 | 1.75 | 94.28 | *** | |
FT × SL | 2 | 0.06 | 3.14 | * | |
碳密度 C density | FT | 1 | 619 | 5.06 | * |
SL | 2 | 3 261 | 26.69 | *** | |
FT × SL | 2 | 1 385 | 11.34 | *** | |
氮密度 N density | FT | 1 | 12.74 | 16.67 | *** |
SL | 2 | 45.31 | 59.26 | *** | |
FT × SL | 2 | 8.05 | 10.53 | *** | |
磷密度 P density | FT | 1 | 2.74 | 40.57 | *** |
SL | 2 | 4.41 | 65.35 | *** | |
FT × SL | 2 | 0.24 | 3.58 | * | |
C:N | FT | 1 | 12.48 | 2.81 | ns |
SL | 2 | 5.58 | 1.26 | ns | |
FT × SL | 2 | 7.60 | 1.71 | ns | |
C:P | FT | 1 | 20 436 | 30.17 | *** |
SL | 2 | 13 560 | 20.02 | *** | |
FT × SL | 2 | 7 522 | 11.10 | *** | |
N:P | FT | 1 | 165.66 | 24.34 | *** |
SL | 2 | 59.72 | 8.77 | *** | |
FT × SL | 2 | 27.33 | 4.02 | * |
Fig. 5 Redundancy analysis (RDA) of the influencing factors of the soil carbon (C), nitrogen (N) and phosphorus (P) content. DC, litterfall C content; DN, litterfall N content; DP, litterfall P content; KC, litter C content; KN, litter N content; KP, litter P content; pH, soil pH; RZ, soil bulk density; SW, soil moisture; TC, soil C content; TN, soil N content; TP, soil P content.
[1] | Angst Š, Mueller CW, Cajthaml T, Angst G, Lhotáková Z, Bartuška M, Špaldoňová A, Frouz J (2017). Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 289, 29-35. |
[2] | Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545. |
[3] | Batjes NH (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163. |
[4] |
Chen C, Zhang SJ, Li LD, Liu ZD, Chen JL, Gu X, Wang LF, Fang X (2019). Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 43, 658-671.
DOI |
[陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰 (2019). 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 43, 658-671.]
DOI |
|
[5] | Chen MY, Yang X, Shao MA, Wei XR, Li TC (2022). Changes in soil C-N-P stoichiometry after 20 years of typical artificial vegetation restoration in semiarid continental climate zones. Science of the Total Environment, 852, 158380. DOI: 10.1016/j.scitotenv.2022.158380. |
[6] | Chen XW, Li BL (2003). Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 186, 197-206. |
[7] | Elser JJ (2000). Ecological stoichiometry: from sea to lake to land. Trends in Ecology & Evolution, 15, 393-394. |
[8] | Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138. |
[9] | Feng DF, Bao WK, Pang XY (2017). Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments, 17, 2054-2065. |
[10] | Fu MJ (2009). Nitrogen Transform and Release in Typical Temperate Forest Ecosystems in Northeastern China. PhD dissertation, Northeast Forestry University, Harbin. 24-31. |
[傅民杰 (2009). 东北典型温带森林生态系统氮素转化释放过程的研究. 博士学位论文, 东北林业大学, 哈尔滨. 24-31.] | |
[11] |
Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17, 680-690.
DOI PMID |
[12] | Lambers H, Mougel C, Jaillard B, Hinsinger P (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 83-115. |
[13] | Li CZ, Li CJ, Zhao LH, Ma YD, Tong XG, Deng J, Ren CJ, Han XH, Yang GH (2019). Dynamics of storage and relative availability of soil inorganic nitrogen along revegetation chronosequence in the Loess Hilly Region of China. Soil and Tillage Research, 187, 11-20. |
[14] | Li CZ, Zhao LH, Sun PS, Zhao FZ, King D, Yang GH, Han XH, Feng YZ, Ren GX (2016). Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the Loess Hilly Region of China. PLoS ONE, 11, 0159075. DOI: 10.1371/journal.pone.0159075. |
[15] | Li J, Ding JZ, Yang SS, Zhao LQ, Li JY, Huo HY, Wang MY, Tan JY, Cao YF, Ren S, Liu YQ, Wang T (2023). Depth-dependent driver of global soil carbon turnover times. Soil Biology & Biochemistry, 185, 109149. DOI: 10.1016/j.soilbio.2023.109149. |
[16] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30, 3135-3143. |
[刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] | |
[17] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
DOI |
|
[18] | Luo XZ, Hou EQ, Chen JQ, Li J, Zhang LL, Zang XW, Wen DZ (2020). Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena, 193, 104606. DOI: 10.1016/j.catena.2020.104606. |
[19] | Ma ZZ, Zhang QZ, Wang CK (2023). Long-term dynamics in litter production and their environmental drivers in six temperate forest types. Acta Ecologica Sinica, 43, 7307-7316. |
[马转转, 张全智, 王传宽 (2023). 六种温带森林类型凋落物量长期动态及其环境驱动. 生态学报, 43, 7307-7316.] | |
[20] | Maes SL, Blondeel H, Perring MP, Depauw L, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kirby K, Kopecký M, Máliš F, Wulf M, Verheyen K, et al. (2019). Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 433, 405-418. |
[21] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401. |
[22] | Murty D, Kirschbaum MUF, Mcmurtrie RE, McGilvray H (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8, 105-123. |
[23] |
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14, 493-502.
DOI PMID |
[24] | Peng Y, Schmidt IK, Zheng H, Heděnec P, Bachega LR, Yue K, Wu F, Vesterdal L (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, 118510. DOI: 10.1016/j.foreco.2020.118510. |
[25] | Qi DD, Feng FJ, Lu C, Fu YM (2022). C:N:P stoichiometry of different soil components after the transition of temperate primary coniferous and broad-leaved mixed forests to secondary forests. Soil and Tillage Research, 216, 105260. DOI: 10.1016/j.still.2021.105260. |
[26] |
Qi KB, Pang XY, Yang B, Bao WK (2020). Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations. PeerJ, 8, e9702. DOI: 10.7717/peerj.9702.
PMID |
[27] | Qiao Y, Wang J, Liu HM, Huang K, Yang QS, Lu RL, Yan LM, Wang XH, Xia JY (2020). Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest. Geoderma, 370, 114357. DOI: 10.1016/j.geoderma.2020.114357. |
[28] | Rittl TF, Oliveira D, Cerri CEP (2017). Soil carbon stock changes under different land uses in the Amazon. Geoderma Regional, 10, 138-143. |
[29] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[30] | Stone MM, Plante AF (2014). Changes in phosphatase kinetics with soil depth across a variable tropical landscape. Soil Biology & Biochemistry, 71, 61-67. |
[31] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[32] | Tian LM, Zhao L, Wu XD, Fang HB, Zhao YH, Hu GJ, Yue GY, Sheng Y, Wu JC, Chen J, Wang ZW, Li WP, Zou DF, Ping CL, Shang W, Zhao YG, Zhang GL, et al. (2018). Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 622-623, 192-202. |
[33] | Tong R, Wu TG, Jiang B, Wang ZG, Xie BL, Zhou BZ (2023). Soil carbon, nitrogen, and phosphorus stoichiometry and its influencing factors in Chinese fir plantations across subtropical China. Frontiers in Forests and Global Change, 5, 1086328. DOI: 10.3389/ffgc.2022.1086328. |
[34] | Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35-48. |
[35] | Wang BR, An SS, Liang C, Liu Y, Kuzyakov Y (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology & Biochemistry, 162, 108422. DOI: 10.1016/j.soilbio.2021.108422. |
[36] |
Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 35, 587-595.
DOI |
[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.]
DOI |
|
[37] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[38] | Wu XZ, Yan X, Wang B, Liu RT, An H (2018). Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland. Chinese Journal of Plant Ecology, 42, 1022-1032. |
[吴秀芝, 阎欣, 王波, 刘任涛, 安慧 (2018). 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42, 1022-1032.]
DOI |
|
[39] | Xu Z, Ward S, Chen C, Blumfield T, Prasolova N, Liu J (2008). Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. Journal of Soils and Sediments, 8, 99-105. |
[40] | Yang YS, Guo JF, Chen GS, Yin YF, Gao R, Lin CF (2009). Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323, 153-162. |
[41] |
Yue K, Fornara DA, Yang WQ, Peng Y, Li ZJ, Wu FZ, Peng CH (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI PMID |
[42] | Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155. |
[43] | Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005). Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 19, GB1020. DOI: 10.1029/2004GB002296. |
[44] | Zhang QZ, Wang CK (2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 53, 831-840. |
[45] | Zhang QZ, Wang CK, Wang XC, Quan XK (2009). Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 258, 722-727. |
[46] | Zhang QZ, Wang CK, Zhou ZH (2019a). Does the net primary production converge across six temperate forest types under the same climate? Forest Ecology and Management, 448, 535-542. |
[47] | Zhang W, Gao DX, Chen ZX, Li H, Deng J, Qiao WJ, Han XH, Yang GH, Feng YZ, Huang JY (2018). Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma, 325, 152-161. |
[48] | Zhang YH, Xu XL, Li ZW, Liu MX, Xu CH, Zhang RF, Luo W (2019b). Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 650, 2657-2665. |
[49] | Zhou ZH, Wang CK (2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40, 1257-1266. |
[周正虎, 王传宽 (2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.]
DOI |
[1] | WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary [J]. Chin J Plant Ecol, 2024, 48(7): 844-857. |
[2] | ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[3] | HAN Lu, FENG Yu, LI Yuan-Kai, WANG Yu-Qing, WANG Hai-Zhen. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 92-102. |
[4] | LI Zhao-Guang, YANG Wen-Gao, HE Gui-Qing, XU Tian-Cai, HE Qiong-Ji, HOU Zhi-Jiang, LI Yan, XUE Run-Guang. Phenological dynamics of nitrogen, phosphorus and potassium stoichiometry in Chenopodium quinoa in northwest Yunnan, China [J]. Chin J Plant Ecol, 2023, 47(5): 724-732. |
[5] | LIU Jing, GOU Qian-Qian, WANG Guo-Hua, ZHAO Feng-Xia. Leaf and soil ecological stoichiometry of Caragana korshinskii in windy and sandy hilly region of northwest Shanxi, China [J]. Chin J Plant Ecol, 2023, 47(4): 546-558. |
[6] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[7] | ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert [J]. Chin J Plant Ecol, 2022, 46(3): 350-361. |
[8] | YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants [J]. Chin J Plant Ecol, 2021, 45(7): 749-759. |
[9] | ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition [J]. Chin J Plant Ecol, 2021, 45(3): 309-320. |
[10] | HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China [J]. Chin J Plant Ecol, 2020, 44(9): 962-972. |
[11] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[12] | LIU Shan-Shan, ZHOU Wen-Jun, KUANG Lu-Hui, LIU Zhan-Feng, SONG Qing-Hai, LIU Yun- Tong, ZHANG Yi-Ping, LU Zhi-Yun, SHA Li-Qing. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2020, 44(12): 1262-1272. |
[13] | JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657. |
[14] | WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436. |
[15] | YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn