Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 749-759.DOI: 10.17521/cjpe.2021.0071
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
YIN Xiao-Lei1, LIU Xu-Yang1, JIN Qiang1, LI Xian-De2, LIN Shao-Ying1, YANG Xiang1, WANG Wei-Qi1,*(), ZHANG Yong-Xun2
Received:
2021-03-04
Accepted:
2021-05-19
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Wei-Qi
Supported by:
YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants[J]. Chin J Plant Ecol, 2021, 45(7): 749-759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0071
Fig. 1 Characteristics of carbon (C), nitrogen (N) and phosphorus (P) contents in tea plants under different management modes (mean ± SE). M1, routine management mode; M2, intercropping mode; M3, modern technology mode. Different lowercase letters indicate significant difference between treatments (p < 0.05).
管理模式 Management mode | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | |
M1 | 17.61 | 0.20 | 1.17 | 5.17 | 5.42 | 13.98 | 2.17 | 9.78 | 2.15 | 15.63 | 5.32 | 14.90 | 19.22 | 9.52 | 1.14 | 6.56 | 15.01 | 12.27 |
M2 | 1.26 | 1.22 | 1.53 | 4.06 | 5.47 | 4.02 | 3.35 | 16.10 | 7.93 | 4.65 | 6.18 | 2.56 | 3.72 | 14.10 | 9.20 | 0.96 | 11.16 | 11.03 |
M3 | 18.03 | 3.17 | 0.76 | 14.63 | 6.07 | 2.35 | 15.81 | 2.41 | 4.80 | 11.47 | 3.11 | 2.59 | 27.56 | 5.44 | 2.85 | 20.63 | 8.24 | 5.26 |
Table 1 Coefficient of variation (CV, %) of carbon (C), nitrogen (N) and phosphorus (P) contents and the stoichiometry of tea plants under different management modes
管理模式 Management mode | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | |
M1 | 17.61 | 0.20 | 1.17 | 5.17 | 5.42 | 13.98 | 2.17 | 9.78 | 2.15 | 15.63 | 5.32 | 14.90 | 19.22 | 9.52 | 1.14 | 6.56 | 15.01 | 12.27 |
M2 | 1.26 | 1.22 | 1.53 | 4.06 | 5.47 | 4.02 | 3.35 | 16.10 | 7.93 | 4.65 | 6.18 | 2.56 | 3.72 | 14.10 | 9.20 | 0.96 | 11.16 | 11.03 |
M3 | 18.03 | 3.17 | 0.76 | 14.63 | 6.07 | 2.35 | 15.81 | 2.41 | 4.80 | 11.47 | 3.11 | 2.59 | 27.56 | 5.44 | 2.85 | 20.63 | 8.24 | 5.26 |
变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F | p | |
---|---|---|---|---|---|---|
C (g·kg-1) | 管理方式 Management mode | 2, 12 | 20 017.89 | 10 008.94 | 4.21 | 0.04* |
器官 Organ | 2, 6 | 87 690.42 | 43 845.21 | 40.03 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 3 785.61 | 9 346.40 | 3.93 | 0.03* | |
N (g·kg-1) | 管理方式 Management mode | 2, 12 | 476.04 | 238.02 | 91.00 | <0.01** |
器官 Organ | 2, 6 | 992.25 | 496.13 | 138.98 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 90.47 | 22.62 | 8.65 | <0.01** | |
P (g·kg-1) | 管理方式 Management mode | 2, 12 | 6.95 | 3.48 | 67.28 | <0.01** |
器官 Organ | 2, 6 | 0.27 | 0.14 | 2.68 | 0.15 | |
管理方式×器官 Management mode × Organ | 4, 12 | 2.45 | 0.61 | 11.84 | <0.01** | |
C:N | 管理方式 Management mode | 2, 12 | 2 926.23 | 1 463.12 | 23.42 | <0.01** |
器官 Organ | 2, 6 | 2 501.42 | 1 250.71 | 70.82 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 574.02 | 143.51 | 2.30 | 0.12 | |
C:P | 管理方式 Management mode | 2, 12 | 1 101 790.54 | 550 895.27 | 50.32 | <0.01** |
器官 Organ | 2, 6 | 10 833.52 | 5 416.76 | 1.10 | 0.39 | |
管理方式×器官 Management mode × Organ | 4, 12 | 18 979.84 | 4 744.96 | 0.43 | 0.78 | |
N:P | 管理方式 Management mode | 2, 12 | 137.92 | 68.96 | 16.11 | <0.01** |
器官 Organ | 2, 6 | 471.81 | 235.91 | 41.13 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 43.98 | 11.00 | 2.57 | 0.09 |
Table 2 Variation source analysis of carbon (C), nitrogen (N), phosphorus (P) content and their stoichiometric ratios of tea plants
变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F | p | |
---|---|---|---|---|---|---|
C (g·kg-1) | 管理方式 Management mode | 2, 12 | 20 017.89 | 10 008.94 | 4.21 | 0.04* |
器官 Organ | 2, 6 | 87 690.42 | 43 845.21 | 40.03 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 3 785.61 | 9 346.40 | 3.93 | 0.03* | |
N (g·kg-1) | 管理方式 Management mode | 2, 12 | 476.04 | 238.02 | 91.00 | <0.01** |
器官 Organ | 2, 6 | 992.25 | 496.13 | 138.98 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 90.47 | 22.62 | 8.65 | <0.01** | |
P (g·kg-1) | 管理方式 Management mode | 2, 12 | 6.95 | 3.48 | 67.28 | <0.01** |
器官 Organ | 2, 6 | 0.27 | 0.14 | 2.68 | 0.15 | |
管理方式×器官 Management mode × Organ | 4, 12 | 2.45 | 0.61 | 11.84 | <0.01** | |
C:N | 管理方式 Management mode | 2, 12 | 2 926.23 | 1 463.12 | 23.42 | <0.01** |
器官 Organ | 2, 6 | 2 501.42 | 1 250.71 | 70.82 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 574.02 | 143.51 | 2.30 | 0.12 | |
C:P | 管理方式 Management mode | 2, 12 | 1 101 790.54 | 550 895.27 | 50.32 | <0.01** |
器官 Organ | 2, 6 | 10 833.52 | 5 416.76 | 1.10 | 0.39 | |
管理方式×器官 Management mode × Organ | 4, 12 | 18 979.84 | 4 744.96 | 0.43 | 0.78 | |
N:P | 管理方式 Management mode | 2, 12 | 137.92 | 68.96 | 16.11 | <0.01** |
器官 Organ | 2, 6 | 471.81 | 235.91 | 41.13 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 43.98 | 11.00 | 2.57 | 0.09 |
Fig. 2 Stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in tea plantations under different management modes (mean ± SE). M1, routine management mode; M2, intercropping mode; M3, modern technology mode. Different lowercase letters indicate significant difference between treatments (p < 0.05).
Fig. 4 Principal component analysis (PCA) of the relationship between environmental factors and carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometric ratios in different tea plant organs. M1, routine management mode; M2, intercropping mode; M3, modern technology mode. BD, soil bulk density; SWC, soil saturated water content; TC, soil total C content; TN, soil total N content; TP, soil total P content; WC, soil water content.
Fig. 5 Comprehensive correlation between carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometry and environmental factors under three management modes. M1, routine management mode; M2, intercropping mode; M3, modern technology mode. BD, soil bulk density; SWC, soil saturated water content; TC, soil total C content; TN, soil total N content; TP, soil total P content; WC, soil water content.
Fig. 6 Conceptual model of nutrient characteristics of tea plant under three management modes. M1, routine management mode; M2, intercropping mode; M3, modern technology mode.
[1] |
Asseng S, Turner NC, Keating BA (2001). Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant and Soil, 233, 127-143.
DOI URL |
[2] |
Deng WW, Fei Y, Wang S, Wan XC, Zhang ZZ, Hu XY (2013). Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regulation, 71, 295-299.
DOI URL |
[3] |
Gitari HI, Karanja NN, Gachene CKK, Kamau S, Sharma K, Schulte-Geldermann E (2018). Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Research, 222, 78-84.
DOI URL |
[4] |
Graciano C, Guiamét JJ, Goya JF (2005). Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings. Forest Ecology and Management, 212, 40-49.
DOI URL |
[5] |
Gren GI, Weih M (2012). Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 194, 944-952.
DOI URL |
[6] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[7] |
He MZ, Zhang K, Tan HJ, Hu R, Su JQ, Wang J, Huang L, Zhang YF, Li XR (2015). Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology and Evolution, 5, 1494-1503.
DOI URL |
[8] |
Heuck C, Spohn M (2016). Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry, 131, 229-242.
DOI URL |
[9] | Jin Q, An WL, Liu XY, Chen XX, Lin SY, Wang WQ (2020). Effects of simulated acid rain on carbon, nitrogen, phosphorus contents and the ecological stoichiometry of rice leaves in Fuzhou rice fields along the river. Acta Ecologica Sinica, 40, 3085-3095. |
[ 金强, 安婉丽, 刘旭阳, 陈晓旋, 林少颖, 王维奇 (2020). 模拟酸雨对福州沿江稻田水稻叶片碳氮磷含量及其生态化学计量学特征的影响. 生态学报, 40, 3085-3095.] | |
[10] |
Koojiman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[11] |
Ku KM, Choi JN, Kim J, Kim JK, Yoo LG, Lee SJ, Hong YS, Lee CH (2010). Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 58, 418-426.
DOI URL |
[12] |
Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist, 176, 635-643.
DOI URL |
[13] |
Li F, Gao H, Zhu LL, Xie YH, Yang GS, Hu C, Chen XS, Deng ZM (2017). Foliar nitrogen and phosphorus stoichiometry of three wetland plants distributed along an elevation gradient in Dongting Lake, China. Scientific Reports, 7, 2820. DOI: 10.1038/s41598-017-03126-9.
DOI URL |
[14] | Lin ZH, Chen LS, Chen RB, Peng A (2009). Effects of phosphorus deficiency on nutrient absorption of young tea bushes. Journal of Tea Science, 29, 295-300. |
[ 林郑和, 陈立松, 陈荣冰, 彭艾 (2009). 缺磷对茶树幼苗养分吸收的影响. 茶叶科学, 29, 295-300.] | |
[15] |
Liu FD, Yang WJ, Zhang M, Liu YH, Zheng JW, Wang WJ, Zhang ST, Wang ZS, An SQ (2010). Does strategy of resource acquisition in tropical woody species vary with life form, leaf texture, and canopy gradient? European Journal of Forest Research, 129, 1093-1108.
DOI URL |
[16] | Liu MY, Yi XY, Shi YZ, Ma LF, Ruan JY (2015). Research progress of soil properties in tea gardens and the absorption and translocation mechanisms of nutrients and other elements in tea plant. Journal of Tea Science, 35, 110-120. |
[ 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云 (2015). 茶园土壤性状及茶树营养元素吸收、转运机制研究进展. 茶叶科学, 35, 110-120.] | |
[17] | Lu RK (1999). Soil and Agrochemistry Analysis. China Agricultural Science and Technology Press, Beijing. |
[ 鲁如坤 (1999). 土壤化学农业分析方法. 中国农业科技出版社, 北京.] | |
[18] | Lu WX, Zhang HJ, Cheng JH, Wu YH, Wang HY, Li JQ, Wang W (2012). Effect of a hedgerow agroforestry system on the soil properties of sloping cultivated lands in the Three- Gorges area in China. Journal of Food, Agriculture and Environment, 10, 1368-1375. |
[19] |
Luo XZ, Hou EQ, Chen JQ, Li J, Zhang LL, Zang XW, Wen DZ (2020). Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena, 193, 104606. DOI: 10.1016/j.catena.2020.104606.
DOI URL |
[20] | Ma R, Fang Y, An S (2016). Ecological stoichiometry of carbon, nitrogen, phosphorus and C:N:P in shoots and litter of plants in grassland in Yunwu Mountain. Acta Pedologica Sinica, 53, 1170-1180. |
[21] |
Ma W, Li J, Jimoh SO, Zhang Y, Guo F, Ding Y, Li X, Hou X (2019a). Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 7, e7047. DOI: 10.7717/peerj.7047.eCollection2019.
DOI URL |
[22] |
Ma XX, Hong JT, Wang XD (2019b). C:N:P stoichiometry of perennial herbs’ organs in the alpine steppe of the northern Tibetan Plateau. Journal of Mountain Science, 16, 2039-2047.
DOI URL |
[23] |
Möller M, Weatherhead EK (2007). Evaluating drip irrigation in commercial tea production in Tanzania. Irrigation and Drainage Systems, 21, 17-34.
DOI URL |
[24] |
Mortimer PE, Gui H, Xu J, Zhang C, Barrios E, Hyde KD (2015). Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96, 25-32.
DOI URL |
[25] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[26] |
Sardans J, Rivas-Ubach A, Peñuelas J (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111, 1-39.
DOI URL |
[27] |
Shi LJ, Li QK, Fu XL, Kou L, Dai XQ, Wang HM (2021). Foliar, root and rhizospheric soil C:N:P stoichiometries of overstory and understory species in subtropical plantations. Catena, 198, 105020. DOI: 10.1016/j.catena.2020.105020.
DOI URL |
[28] | Shui W, Chen YP, Su ZA, Fan SS (2017). Agricultural ecosystem services function value evaluation under the influence of specialized tea planting: a case study in Anxi, Fujian Province. Acta Ecologica Sinica, 37, 3311-3326. |
[ 税伟, 陈毅萍, 苏正安, 范水生 (2017). 专业化茶叶种植影响下的农业生态系统服务功能价值评价--以福建省安溪县为例. 生态学报, 37, 3311-3326.] | |
[29] | Sun LT, Wang Y, Ding ZT (2011). Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth. Chinese Journal of Applied Ecology, 22, 2291-2296. |
[ 孙立涛, 王玉, 丁兆堂 (2011). 地表覆盖对茶园土壤水分、养分变化及茶树生长的影响. 应用生态学报, 22, 2291-2296.] | |
[30] |
Sun X, Yu K, Shugart HH, Wang G (2015). Species richness loss after nutrient addition as affected by N:C ratios and phytohormone GA3 contents in an alpine meadow community. Journal of Plant Ecology, 9, 201-211.
DOI URL |
[31] | Tang H, Wu JY, Li JL, Wu LR, Tang JC (2013). Study on the influence of drip irrigated fertilization on tea yields, quality and soil nutrient effect. Journal of Tea Science, 33, 85-90. |
[ 唐颢, 吴家尧, 黎健龙, 吴利荣, 唐劲驰 (2013). 茶园滴灌施肥的增产提质及土壤养分效应研究. 茶叶科学, 33, 85-90.] | |
[32] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[33] |
von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010). N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems, 13, 317-327.
DOI URL |
[34] |
Wang HB, Wang YH, Zhang Q, Lin SX, Zhang QX, Ye JH, Ding L, Lin S, He HB (2020). Construction of the microbial protein metabolism map of tea rhizosphere soil in acidified plantations. Scientia Sinica Vitae, 50, 849-865.
DOI URL |
[ 王海斌, 王裕华, 张奇, 林舜贤, 张清旭, 叶江华, 丁力, 林生, 何海斌 (2020). 酸化茶园茶树根际土壤微生物蛋白质代谢图谱构建. 中国科学: 生命科学, 50, 849-865.] | |
[35] |
Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17, 673-684.
DOI URL |
[36] | Wu ZD, Jiang FY, Zhang L, You ZM (2020). Study on soil nitrogen status of Tieguanyin tea gardens in Anxi County of Fujian Province. Soils, 52, 16-24. |
[ 吴志丹, 江福英, 张磊, 尤志明 (2020). 福建省安溪县铁观音茶园土壤氮素状况. 土壤, 52, 16-24.] | |
[37] |
Yan Y, Lu XY (2020). Are N, P, and N:P stoichiometry limiting grazing exclusion effects on vegetation biomass and biodiversity in alpine grassland? Global Ecology and Conservation, 24, e01315. DOI: 10.1016/j.gecco.2020.e01315.
DOI URL |
[38] |
Yang DX, Song L, Jin GZ (2019). The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 442, 183-198.
DOI URL |
[39] |
Zeng Y, Yi XY, Li YS, Ma LF, Ruan JY, Tang Q (2016). The effect of nitrogen fertilization on biomass and nutrient storage in the fibrous roots of tea plants (Camellia sinensis) during summer and autumn. Acta Ecologica Sinica, 36, 411-419.
DOI URL |
[ 曾艳, 伊晓云, 李延升, 马立锋, 阮建云, 唐茜 (2016). 氮肥对夏秋季茶树吸收根生物量和养分储量的影响. 生态学报, 36, 411-419.] | |
[40] |
Zhang J, He N, Liu C, Xu L, Chen Z, Li Y, Wang R, Yu G, Sun W, Xiao C, Chen HYH, Reich PB (2020a). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543.
DOI URL |
[41] |
Zhang QH, Sairebieli K, Zhao MM, Sun XH, Wang W, Yu XN, Du N, Guo WH (2020b). Nutrients have a different impact on the salt tolerance of two coexisting suaeda species in the Yellow River Delta. Wetlands, 40, 2811-2823.
DOI URL |
[42] |
Zhang YF, Fang XM, Chen FS, Zong YY, Gu HJ, Hu XF (2017). Influence of simulated acid rain on nitrogen and phosphorus contents and their stoichiometric ratios of tea organs in a red soil region, China. Chinese Journal of Applied Ecology, 28, 1309-1316.
DOI PMID |
[ 张宇飞, 方向民, 陈伏生, 宗莹莹, 顾菡娇, 胡小飞 (2017). 模拟酸雨对红壤区茶树器官氮磷含量及其化学计量比的影响. 应用生态学报, 28, 1309-1316.]
PMID |
|
[43] |
Zhang ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, 13, 1043-1051.
DOI URL |
[44] |
Zhou GW, Zhang W, Ma LJ, Guo HJ, Min W, Li Q, Liao N, Hou ZN (2016). Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Water, Air, & Soil Pollution, 227, 103. DOI: 10.1007/s11270-016-2806-2.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn