Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 523-533.DOI: 10.17521/cjpe.2022.0346 cstr: 32100.14.cjpe.2022.0346
• Research Articles • Previous Articles Next Articles
WANG Ge1,*, HU Shu-Ya2, LI Yang2, CHEN Xiao-Peng1, LI Hong-Yu1, DONG Kuan-Hu1, HE Nian-Peng3, WANG Chang-Hui1,2,**
Received:
2022-08-25
Accepted:
2023-02-20
Online:
2024-04-20
Published:
2024-05-11
Contact:
**
Supported by:
WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types[J]. Chin J Plant Ecol, 2024, 48(4): 523-533.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0346
采样点 Sample site | 草原类型 Steppe type | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 土壤pH Soil pH | 优势物种 Dominant species |
---|---|---|---|---|---|---|---|---|
黄土高原 Loess Plateau | 山地草甸草原 Mountain meadow steppe | 35.99-36.29 | 111.64-113.36 | 843.67 ± 7.82c | 10.82 ± 0.16a | 573.73 ± 2.58a | 8.05 ± 0.02a | 白羊草、兴安胡枝子、薹草 Bothriochloa ischaemum, Lespedeza davurica, Carex spp. |
山地典型草原 Mountain typical steppe | 36.07-37.58 | 107.19-110.18 | 1 288.00 ± 37.47b | 8.23 ± 0.37b | 466.37 ± 9.60b | 8.09 ± 0.02a | 白羊草、兴安胡枝子、铁杆蒿 Bothriochloa ischaemum, Lespedeza davurica, Artemisia gmelinii | |
山地荒漠草原 Mountain desert steppe | 37.42-37.46 | 104.44-105.78 | 1 461.67 ± 37.90a | 7.05 ± 0.82c | 256.58 ± 9.53c | 8.23 ± 0.13a | 红砂、糙隐子草、阿尔泰狗娃花 Reaumuria songarica, Cleistogenes squarrosa, Aster altaicus | |
内蒙古高原 Nei Mongol Plateau | 草甸草原 Meadow steppe | 44.52-45.11 | 120.33-123.51 | 357.67 ± 45.83c | 4.87 ± 0.18a | 405.78 ± 6.29a | 8.18 ± 0.15a | 羊草、狗尾草、芦苇 Leymus chinensis, Setaria viridis, Phragmites australis |
典型草原 Typical steppe | 43.55-44.77 | 116.52-118.36 | 1 111.00 ± 18.46a | 0.96 ± 0.12c | 362.39 ± 6.19b | 7.59 ± 0.05b | 羊草、针茅、薹草 Leymus chinensis, Stipa capillata, Carex spp. | |
荒漠草原 Desert steppe | 43.63-44.01 | 112.15-114.89 | 1 026.00 ± 12.44b | 2.09 ± 0.31b | 220.88 ± 9.68c | 7.05 ± 0.02c | 猪毛菜、蒙古韭、蒺藜 Kali collinum, Allium mongolicum, Tribulus terrestris | |
青藏高原 Qingzang Plateau | 高寒草甸草原 Alpine meadow steppe | 31.46-32.48 | 92.01-95.45 | 4 400.00 ± 44.15b | -1.82 ± 0.41a | 552.67 ± 10.35a | 6.92 ± 0.07b | 薹草、高山嵩草、钉柱委陵菜 Carex spp., Carex parvula, Potentilla saundersiana |
高寒典型草原 Alpine typical steppe | 31.38-31.92 | 85.84-90.74 | 4 678.25 ± 27.10a | -4.04 ± 0.29c | 433.99 ± 10.66b | 8.16 ± 0.03a | 紫花针茅、薹草、针茅 Stipa purpurea, Carex spp., Stipa capillata | |
高寒荒漠草原 Alpine desert steppe | 32.30-32.48 | 80.15-83.34 | 4 488.00 ± 23.65b | -2.89 ± 0.24b | 266.75 ± 11.28c | 8.23 ± 0.05a | 针茅、薹草、戈壁针茅 Stipa capillata, Carex spp., Stipa tianschanica var. gobica |
Table 1 Geographical location, vegetation and soil basic information of sampling sites across different grassland types
采样点 Sample site | 草原类型 Steppe type | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 土壤pH Soil pH | 优势物种 Dominant species |
---|---|---|---|---|---|---|---|---|
黄土高原 Loess Plateau | 山地草甸草原 Mountain meadow steppe | 35.99-36.29 | 111.64-113.36 | 843.67 ± 7.82c | 10.82 ± 0.16a | 573.73 ± 2.58a | 8.05 ± 0.02a | 白羊草、兴安胡枝子、薹草 Bothriochloa ischaemum, Lespedeza davurica, Carex spp. |
山地典型草原 Mountain typical steppe | 36.07-37.58 | 107.19-110.18 | 1 288.00 ± 37.47b | 8.23 ± 0.37b | 466.37 ± 9.60b | 8.09 ± 0.02a | 白羊草、兴安胡枝子、铁杆蒿 Bothriochloa ischaemum, Lespedeza davurica, Artemisia gmelinii | |
山地荒漠草原 Mountain desert steppe | 37.42-37.46 | 104.44-105.78 | 1 461.67 ± 37.90a | 7.05 ± 0.82c | 256.58 ± 9.53c | 8.23 ± 0.13a | 红砂、糙隐子草、阿尔泰狗娃花 Reaumuria songarica, Cleistogenes squarrosa, Aster altaicus | |
内蒙古高原 Nei Mongol Plateau | 草甸草原 Meadow steppe | 44.52-45.11 | 120.33-123.51 | 357.67 ± 45.83c | 4.87 ± 0.18a | 405.78 ± 6.29a | 8.18 ± 0.15a | 羊草、狗尾草、芦苇 Leymus chinensis, Setaria viridis, Phragmites australis |
典型草原 Typical steppe | 43.55-44.77 | 116.52-118.36 | 1 111.00 ± 18.46a | 0.96 ± 0.12c | 362.39 ± 6.19b | 7.59 ± 0.05b | 羊草、针茅、薹草 Leymus chinensis, Stipa capillata, Carex spp. | |
荒漠草原 Desert steppe | 43.63-44.01 | 112.15-114.89 | 1 026.00 ± 12.44b | 2.09 ± 0.31b | 220.88 ± 9.68c | 7.05 ± 0.02c | 猪毛菜、蒙古韭、蒺藜 Kali collinum, Allium mongolicum, Tribulus terrestris | |
青藏高原 Qingzang Plateau | 高寒草甸草原 Alpine meadow steppe | 31.46-32.48 | 92.01-95.45 | 4 400.00 ± 44.15b | -1.82 ± 0.41a | 552.67 ± 10.35a | 6.92 ± 0.07b | 薹草、高山嵩草、钉柱委陵菜 Carex spp., Carex parvula, Potentilla saundersiana |
高寒典型草原 Alpine typical steppe | 31.38-31.92 | 85.84-90.74 | 4 678.25 ± 27.10a | -4.04 ± 0.29c | 433.99 ± 10.66b | 8.16 ± 0.03a | 紫花针茅、薹草、针茅 Stipa purpurea, Carex spp., Stipa capillata | |
高寒荒漠草原 Alpine desert steppe | 32.30-32.48 | 80.15-83.34 | 4 488.00 ± 23.65b | -2.89 ± 0.24b | 266.75 ± 11.28c | 8.23 ± 0.05a | 针茅、薹草、戈壁针茅 Stipa capillata, Carex spp., Stipa tianschanica var. gobica |
扩增基因 Amplification gene | 引物 Primer | 引物序列(5′-3′) Primer sequence (5′-3′) | 片段长度 Fragment length | 扩增条件 Amplification procedure |
---|---|---|---|---|
氨氧化古菌-氨单加氧酶基因 AOA-amoA | Arch-amoAF | STAATGGTCTGGCTTAGACG | 635 bp | 94 ℃预变性3 min; 94 ℃变性30 s, 55 ℃退火30 s, 72 ℃延伸1 min, 共30个循环; 72 ℃延伸10 min Pre-denaturation at 94 °C for 3 min; follow by 30 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 1 min; extension at 72 °C for 10 min |
Arch-amoAR | GCGGCCATCCATCTGTATGT | |||
氨氧化细菌-氨单加氧酶基因 AOB-amoA | AmoA-1F | GGGGTTTCTACTGGTGGT | 491 bp | |
AmoA-2R | CCCCTCKGSAAAGCCTTCTTC |
Table 2 Primer sequences and reaction conditions used for fluorescence quantitative PCR
扩增基因 Amplification gene | 引物 Primer | 引物序列(5′-3′) Primer sequence (5′-3′) | 片段长度 Fragment length | 扩增条件 Amplification procedure |
---|---|---|---|---|
氨氧化古菌-氨单加氧酶基因 AOA-amoA | Arch-amoAF | STAATGGTCTGGCTTAGACG | 635 bp | 94 ℃预变性3 min; 94 ℃变性30 s, 55 ℃退火30 s, 72 ℃延伸1 min, 共30个循环; 72 ℃延伸10 min Pre-denaturation at 94 °C for 3 min; follow by 30 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 1 min; extension at 72 °C for 10 min |
Arch-amoAR | GCGGCCATCCATCTGTATGT | |||
氨氧化细菌-氨单加氧酶基因 AOB-amoA | AmoA-1F | GGGGTTTCTACTGGTGGT | 491 bp | |
AmoA-2R | CCCCTCKGSAAAGCCTTCTTC |
Fig. 2 Temperature sensitivity of soil net nitrogen mineralization (Q10, mean ± SE) of different steppe types (A) and different plateau (B). Different lowercase letters indicate significant difference between different steppe types on the same plateau (p < 0.05); different uppercase letters indicate significant difference between different plateaus (p < 0.05).
因子 Factor | Q10 | 微生物生物量 碳含量 MBC content | 微生物生物量 氮含量 MBN content | 微生物生物量 碳氮含量比 MBC:MBN | 氨氧化古菌丰度 AOA abundance | 氨氧化细菌丰度 AOB abundance | 氨氧化细菌与 古菌丰度比 AOA:AOB |
---|---|---|---|---|---|---|---|
样带 Transect (T) | 32.82** | 59.60** | 44.31 | 30.13** | 58.20** | 48.71** | 36.46** |
草地类型 Steppe type (S) | 21.96** | 63.05** | 14 910.07** | 0.82 | 81.76** | 18.64** | 12.37** |
T × S | 14.79** | 3.64** | 2 246.00** | 3.62** | 17.33** | 6.26** | 4.87** |
Table 3 Results (F-value) of two-way ANOVA on the effect of different plateau and different steppe types and their interactions on temperature sensitivity of soil net nitrogen mineralization rates (Q10) and soil microorganism
因子 Factor | Q10 | 微生物生物量 碳含量 MBC content | 微生物生物量 氮含量 MBN content | 微生物生物量 碳氮含量比 MBC:MBN | 氨氧化古菌丰度 AOA abundance | 氨氧化细菌丰度 AOB abundance | 氨氧化细菌与 古菌丰度比 AOA:AOB |
---|---|---|---|---|---|---|---|
样带 Transect (T) | 32.82** | 59.60** | 44.31 | 30.13** | 58.20** | 48.71** | 36.46** |
草地类型 Steppe type (S) | 21.96** | 63.05** | 14 910.07** | 0.82 | 81.76** | 18.64** | 12.37** |
T × S | 14.79** | 3.64** | 2 246.00** | 3.62** | 17.33** | 6.26** | 4.87** |
Fig. 3 Contents of ammonium (A, B), nitrate (C, D) and inorganic nitrogen (E, F) in different plateau and steppe types (mean ± SE). Different lowercase letters indicate significant difference between different steppe types on the same plateau (p < 0.05); different uppercase letters indicate significant difference between different plateaus (p < 0.05).
Fig. 4 Rate of net ammonization (A, B), net nitrification (C, D) and net nitrogen (N) mineralization (E, F) of different plateaus and steppe types (mean ± SE). Different lowercase letters indicate significant difference between different steppe types on the same plateau (p < 0.05); different uppercase letters indicate significant difference between different plateaus (p < 0.05).
Fig. 5 Linear correlation analysis between temperature sensitivity (Q10) of soil net nitrogen mineralization rates and microbial biomass carbon content (A), microbial biomass nitrogen content (B), ammonium-oxidation archaea (AOA) abundance (C) and ammonium-oxidation bacterial (AOB) abundance (D).
Fig. 6 Linear correlation analysis between temperature sensitivity (Q10) of soil net nitrogen mineralization rates and mean annual precipitation (A), mean annual air temperature (B), aridity index (C), soil clay content (D), soil moisture content (E), pH (F), soil organic matter content (G), total carbon content (H), ammonium nitrogen content (I), nitrate nitrogen content content (J) and inorganic nitrogen content (K).
Fig. 7 Structural equation model of effects of mean annual air temperature (MAT), mean annual precipitation (MAP), soil organic matter content (SOM), soil clay content (Clay), soil pH and microbial biomass carbon content (MBC) on temperature sensitivity (Q10) of soil net nitrogen mineralization rate. The solid red and black lines indicate positive and negative effects, respectively, the dashed line indicates that the correlation is not significant. Arrow line thickness indicates the strength of the causal relationship. Numbers adjacent to arrows represented standardized path coefficients of the relationships. χ2 = 8.581, p = 0.199, df = 6, root mean square error of approximation (RMSEA) < 0.05.
[1] | Bosatta E, Ågren GI (1999). Soil organic matter quality interpreted thermodynamically. Soil Biology & Biochemistry, 31, 1889-1891. |
[2] | Clark DR, McKew BA, Dong LF, Leung G, Dumbrell AJ, Stott A, Grant H, Nedwell DB, Trimmer M, Whitby C (2020). Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils. Soil Biology & Biochemistry, 143, 107725. DOI: 10.1016/j.soilbio.2020.107725. |
[3] | Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang S, Brookes PC, Dahlgren RA, Xu J (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26, 5267-5276. |
[4] | Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009). Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2, 621-624. |
[5] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB, (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[6] | Guo YL, Mao WQ, Wang HY, Zhang WY (2021). Climate change characteristics of the boundary layer height with dryness and wetness and their relationship in extreme arid areas. Climatic and Environmental Research, 26, 532-540. |
[郭燕玲, 毛文茜, 王泓宇, 张文煜 (2021). 极端干旱区边界层高度与干湿的气候变化特征及相互关系分析. 气候与环境研究, 26, 532-540.] | |
[7] | Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L (1993). Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma, 57, 105-128. |
[8] | He JZ, Zhang LM (2009). Advances in ammonia-oxidizing microorganisms and global nitrogen cycle. Acta Ecologica Sinica, 29, 406-415. |
[贺纪正, 张丽梅 (2009). 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29, 406-415.] | |
[9] | Hu HW, Chen D, He JZ (2015). Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729-749. |
[10] | Hu S, Wang C, Risch AC, Liu Y, Li Y, Li L, Xu X, He N, Han X, Huang J (2022). Hydrothermal conditions determine soil potential net N mineralization rates in arid and semi-arid grasslands. Functional Ecology, 36, 2626-2635. |
[11] | Kirschbaum MUF (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology & Biochemistry, 27, 753-760. |
[12] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology. 2nd ed. Springer, New York. |
[13] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
DOI PMID |
[14] | Lin YX, Hu HW, Ye GP, Fan JB, Ding WX, He ZY, Zheng Y, He JZ (2021). Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: a meta-analysis. Geoderma, 404, 115395. DOI: 10.1016/j.geoderma.2021.115395. |
[15] |
Lipson DA (2007). Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiology Ecology, 59, 418-427.
PMID |
[16] | Liu Y, He NP, Wen XF, Yu GR, Gao Y, Jia YL (2016). Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture, Ecosystems & Environment, 215, 40-46. |
[17] |
Liu Y, Wang C, He N, Wen X, Gao Y, Li S, Niu S, Butterbach- Bahl K, Luo Y, Yu G (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 23, 455-464.
DOI PMID |
[18] | Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014). Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 5, 3694. DOI: 10.1038/ncomms4694. |
[19] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[20] | Ramond JB, Jordaan K, Díez B, Heinzelmann SM, Cowan DA (2022). Microbial biogeochemical cycling of nitrogen in arid ecosystems. Microbiology and Molecular Biology Reviews, 86, e00109-21. DOI: 10.1128/mmbr.00109-21. |
[21] | Rütting T, Schleusner P, Hink L, Prosser JI (2021). The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biology & Biochemistry, 160, 108353. DOI: 10.1016/j.soilbio.2021.108353. |
[22] | Sanaullah M, Rumpel C, Charrier X, Chabbi A (2012). How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant and Soil, 352, 277-288. |
[23] | Schleuss PM, Widdig M, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2021). Microbial substrate stoichiometry governs nutrient effects on nitrogen cycling in grassland soils. Soil Biology & Biochemistry, 155, 108168, DOI: 10.1016/j.soilbio.2021.108168. |
[24] | Verhamme DT, Prosser JI, Nicol GW (2011). Ammonia concentration determines differential growth of ammonia- oxidising archaea and bacteria in soil microcosms. The ISME Journal, 5, 1067-1071. |
[25] | Wang CH, Wan SQ, Xing XR, Zhang L, Han XG (2006). Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38, 1101-1110. |
[26] | Wang WJ, Chalk PM, Chen D, Smith CJ (2001). Nitrogen mineralisation, immobilisation and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils. Soil Biology & Biochemistry, 33, 1305-1315. |
[27] | Wu JG, Chang W, Ai L, Chang XX (2007). The soil nitrogen mineralization under four typical ecosystem in Qilian Mountains. Ecology and Environment, 16, 1000-1006. |
[吴建国, 苌伟, 艾丽, 常学向 (2007). 祁连山中部四种典型生态系统土壤氮矿化的研究. 生态环境, 16, 1000-1006.] | |
[28] | Wu Q, Yue K, Ma Y, Heděnec P, Cai Y, Chen J, Zhang H, Shao J, Chang S, Li Y (2022). Contrasting effects of altered precipitation regimes on soil nitrogen cycling at the global scale. Global Change Biology, 28, 6679-6695. |
[29] | Xu YQ, Li LH, Wang QB, Chen QS, Cheng WX (2007). The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant and Soil, 300, 289-300. |
[30] | Yahdjian L, Gherardi L, Sala OE (2011). Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. Journal of Arid Environments, 75, 675-680. |
[31] | Yang JQ, Diao HJ, Hu SY, Wang CH (2021). Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 45, 780-789. |
[杨建强, 刁华杰, 胡姝娅, 王常慧 (2021). 不同水平氮添加对盐渍化草地土壤微生物特征的影响. 植物生态学报, 45, 780-789.]
DOI |
|
[32] | Zhao N, Zhang HX, Wang RM, Yang MY, Zhang Y, Zhao XN, Yu GR, He NP (2014). Effect of grazing intensity on temperature sensitivity of soil nitrogen mineralization in Zoigё alpine meadow. Acta Ecologica Sinica, 34, 4234-4241. |
[赵宁, 张洪轩, 王若梦, 杨满业, 张艳, 赵小宁, 于贵瑞, 何念鹏 (2014). 放牧对若尔盖高寒草甸土壤氮矿化及其温度敏感性的影响. 生态学报, 34, 4234-4241.] | |
[33] | Zhu JX, Wang QF, He NP, Wang RM, Dai JZ (2013). Soil nitrogen mineralization and associated temperature sensitivity of different Inner Mongolian grasslands. Acta Ecologica Sinica, 33, 6320-6327. |
[朱剑兴, 王秋凤, 何念鹏, 王若梦, 代景忠 (2013). 内蒙古不同类型草地土壤氮矿化及其温度敏感性. 生态学报, 33, 6320-6327.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn