Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (6): 867-881.DOI: 10.17521/cjpe.2022.0216
• Research Articles • Previous Articles Next Articles
LUO Na-Na1,2, SHENG Mao-Yin1,3,*(), WANG Lin-Jiao1,2, SHI Qing-Long1,3, HE Yu1,3
Received:
2022-05-24
Accepted:
2022-10-18
Online:
2023-06-20
Published:
2022-10-18
Contact:
* (Supported by:
LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China[J]. Chin J Plant Ecol, 2023, 47(6): 867-881.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0216
Fig. 1 Vegetation restoration plots location and basic information of Huajiang study area. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting.
Fig. 2 Soil total organic carbon contents (A) and storages (B) of the different vegetation restoration measures in the karst rocky desertification ecosystem, southwest China (mean ± SD). BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) between different vegetation restoration measures in the same soil layer, and different lowercase letters indicate significant differences (p < 0.05) between different soil layers of the same vegetation restoration measure.
Fig. 3 Soil active organic carbon fraction contents (A-C) and their proportions (D-F) to total soil organic carbon content (TSOC) of the different vegetation restorations in the karst rocky desertification ecosystem, southwest China (mean ± SD). DOC, dissolved organic carbon content; EOC, easy oxidation carbon content; MBC, microbial biomass carbon content; TSOC, total soil organic carbon content. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) between different vegetation restoration measures in the same soil layer, and different lowercase letters indicate significant differences (p < 0.05) between different soil layers of the same vegetation restoration measure.
Fig. 4 Soil enzyme activities of the different vegetation restorations in the karst rocky desertification ecosystem, southwest China (mean ± SD). BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting. Different uppercase letters indicate significant differences (p < 0.05) of enzyme activity between different restorations.
酶活性 Enzyme activity | pH | BD | TN | TP | TSOC | DOC | EOC | MBC | DOC/TSOC | EOC/TSOC | MBC/TSOC |
---|---|---|---|---|---|---|---|---|---|---|---|
URE | 0.489* | 0.365 | -0.070 | -0.240 | 0.051 | -0.264 | 0.074 | 0.300 | 0.111 | -0.070 | 0.327 |
SUC | -0.054 | 0.113 | 0.078 | -0.202 | 0.029 | 0.219 | -0.036 | 0.054 | -0.035 | -0.209 | 0.120 |
AMY | 0.155 | -0.194 | 0.317 | 0.106 | 0.541** | -0.293 | 0.599** | 0.501* | -0.465* | 0.268 | 0.007 |
ALP | 0.260 | -0.255 | 0.504* | 0.151 | 0.696** | -0.235 | 0.680** | 0.749** | -0.648** | 0.026 | 0.119 |
Table 2 Correlations of the soil enzyme activities with soil physical-chemical properties including contents of soil total organic carbon and its active fractions in the karst rocky desertification ecosystem, southwest China
酶活性 Enzyme activity | pH | BD | TN | TP | TSOC | DOC | EOC | MBC | DOC/TSOC | EOC/TSOC | MBC/TSOC |
---|---|---|---|---|---|---|---|---|---|---|---|
URE | 0.489* | 0.365 | -0.070 | -0.240 | 0.051 | -0.264 | 0.074 | 0.300 | 0.111 | -0.070 | 0.327 |
SUC | -0.054 | 0.113 | 0.078 | -0.202 | 0.029 | 0.219 | -0.036 | 0.054 | -0.035 | -0.209 | 0.120 |
AMY | 0.155 | -0.194 | 0.317 | 0.106 | 0.541** | -0.293 | 0.599** | 0.501* | -0.465* | 0.268 | 0.007 |
ALP | 0.260 | -0.255 | 0.504* | 0.151 | 0.696** | -0.235 | 0.680** | 0.749** | -0.648** | 0.026 | 0.119 |
因子 Factor | 主成分 Principal component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
URE | 0.000 | 0.725 | -0.332 | -0.061 |
SUC | -0.024 | -0.016 | 0.856 | -0.248 |
AMY | 0.589 | 0.514 | -0.191 | 0.168 |
ALP | 0.706 | 0.557 | 0.262 | -0.053 |
TSOC | 0.985 | 0.019 | 0.047 | -0.045 |
DOC | -0.228 | -0.382 | 0.506 | 0.502 |
MBC | 0.613 | 0.579 | 0.296 | 0.228 |
EOC | 0.970 | 0.056 | -0.026 | 0.131 |
TN | 0.870 | -0.188 | 0.098 | -0.278 |
TP | 0.651 | -0.541 | -0.064 | 0.072 |
pH | -0.215 | 0.754 | -0.021 | -0.148 |
BD | -0.737 | 0.433 | -0.022 | -0.236 |
DOC/TSOC | -0.907 | -0.044 | 0.036 | 0.198 |
MBC/TSOC | -0.386 | 0.675 | 0.370 | 0.308 |
EOC/TSOC | 0.134 | 0.046 | -0.213 | 0.823 |
特征向量值 Eigenvalue | 5.947 | 3.129 | 1.492 | 1.391 |
贡献率率 Contribution percent (%) | 39.647 | 20.859 | 9.948 | 9.276 |
累计贡献率 Cumulative percent (%) | 39.647 | 60.506 | 70.455 | 79.731 |
Table 3 Principal component analysis for the response of karst rocky desertification soil environmental factors to long-term vegetation restorations in southwest China
因子 Factor | 主成分 Principal component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
URE | 0.000 | 0.725 | -0.332 | -0.061 |
SUC | -0.024 | -0.016 | 0.856 | -0.248 |
AMY | 0.589 | 0.514 | -0.191 | 0.168 |
ALP | 0.706 | 0.557 | 0.262 | -0.053 |
TSOC | 0.985 | 0.019 | 0.047 | -0.045 |
DOC | -0.228 | -0.382 | 0.506 | 0.502 |
MBC | 0.613 | 0.579 | 0.296 | 0.228 |
EOC | 0.970 | 0.056 | -0.026 | 0.131 |
TN | 0.870 | -0.188 | 0.098 | -0.278 |
TP | 0.651 | -0.541 | -0.064 | 0.072 |
pH | -0.215 | 0.754 | -0.021 | -0.148 |
BD | -0.737 | 0.433 | -0.022 | -0.236 |
DOC/TSOC | -0.907 | -0.044 | 0.036 | 0.198 |
MBC/TSOC | -0.386 | 0.675 | 0.370 | 0.308 |
EOC/TSOC | 0.134 | 0.046 | -0.213 | 0.823 |
特征向量值 Eigenvalue | 5.947 | 3.129 | 1.492 | 1.391 |
贡献率率 Contribution percent (%) | 39.647 | 20.859 | 9.948 | 9.276 |
累计贡献率 Cumulative percent (%) | 39.647 | 60.506 | 70.455 | 79.731 |
Fig. 5 Principal component (PC) analysis ordination for the response of karst rocky desertification soil environmental factors to long-term vegetation restorations in southwest China. BD, soil bulk density; DOC, dissolved organic carbon content; EOC, easy oxidation carbon content; MBC, microbial biomass carbon content; TN, total nitrogen content; TP, total phosphorus content; TSOC, total soil organic carbon content. ALP, alkaline phosphatase activity; AMY, amylase activity; SUC, sucrase activity; URE, urease activity. BM, Cupressus funebris planting; CK, control plot; HJ, Zanthoxylum bungeanum planting; HLG, Hylocereus undatus planting; HZC, Pennisetum sinese planting; JYH, Lonicera japonica planting; SR, Amomum villosum planting; YM, Tectona grandis planting.
[1] |
Bai LH, Zhang H, Zhang JG, Li X, Wang B, Miao HZ, Sial TA, Dong Q, Fu GJ, Li LM (2021). Long-term vegetation restoration increases carbon sequestration of different soil particles in a semi-arid desert. Ecosphere, 12, e03848. DOI: 10.1002/ecs2.3848.
DOI |
[2] | Bai YP, Li F, Yang G, Shi SW, Dong FQ, Liu MX, Nie XQ, Hai JB (2018). Meta-analysis of experimental warming on soil invertase and urease activities. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 68, 104-109. |
[3] | Bai YX, Sheng MY, Hu QJ, Zhao C, Wu J, Zhang MS (2020). Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China. Chinese Journal of Applied Ecology, 31, 1607-1616. |
[白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎 (2020). 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响. 应用生态学报, 31, 1607-1616.]
DOI |
|
[4] | Bao SD (2008). Agrochemical Analysis of Soil. 3rd ed. China Agriculture Press, Beijing. 157-170. |
[鲍士旦 (2008). 土壤农业化学分析方法. 3版. 中国农业科技出版社, 北京. 157-170.] | |
[5] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[6] | Cen LP, Yan YJ, Dai QH, Jiao Q, Hu G, Gao RX, Fu WB (2020). Occurrence characteristics of organic carbon and phosphorus in fissured soil under different land use types in karst area. Acta Ecologica Sinica, 40, 7567-7575. |
[岑龙沛, 严友进, 戴全厚, 焦权, 胡刚, 高儒学, 伏文兵 (2020). 喀斯特不同土地利用类型裂隙土壤有机碳及磷素赋存特征. 生态学报, 40, 7567-7575.] | |
[7] |
Chen XY, Zhang HJ, Yao XD, Zeng WJ, Wang W (2021). Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agro-pastoral ecotone. Land Degradation & Development, 32, 3833-3846.
DOI URL |
[8] |
Cressey EL, Dungait JAJ, Jones DL, Nicholas AP, Quine TA (2018). Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biology & Biochemistry, 122, 60-70.
DOI URL |
[9] |
de Aquino Moura RT, da Silva Carrido M, da Silva Sousa C, Menezes RSC, de Sá Barretto Sampaio EV (2018). Comparison of methods to quantify soil microbial biomass carbon. Acta Scientiarum Agronomy, 40, 39451. DOI: 10.4025/actasciagron.v40i1.39451.
DOI |
[10] |
Fan ZZ, Lu SY, Liu S, Li ZR, Hong JX, Zhou JX, Peng XW (2019). The effects of vegetation restoration strategies and seasons on soil enzyme activities in the karst landscapes of Yunnan, southwest China. Journal of Forestry Research, 31, 1949-1957.
DOI |
[11] |
Gu X, Fang X, Xiang WH, Zeng YL, Zhang SJ, Lei PF, Peng CH, Kuzyakov Y (2019). Vegetation restoration stimulates soil carbon sequestration and stabilization in a subtropical area of southern China. CATENA, 181, 104098. DOI: 10.1016/j.catena.2019.104098.
DOI |
[12] | Ha WX, Zhou JX, Pang DB, Guan YH, Cui M (2019). Soil organic carbon fraction and enzyme activities under different restoration methods in karst area. Journal of Beijing Forestry University, 41(2), 1-11. |
[哈文秀, 周金星, 庞丹波, 关颖慧, 崔明 (2019). 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究. 北京林业大学学报, 41(2), 1-11.] | |
[13] |
He F, Wang H, Chen QL, Yang BS, Gao YC, Wang LH (2015). Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Soil and Sediment Contamination, 24, 250-261.
DOI URL |
[14] |
Hu LN, Li Q, Yan JH, Liu C, Zhong JX (2022). Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 820, 153137. DOI: 10.1016/j.scitotenv.2022.153137.
DOI |
[15] |
Hu N, Lan JC (2020). Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in southwest China. Journal of Soils and Sediments, 20, 1264-1275.
DOI |
[16] |
Hu PL, Liu SJ, Ye YY, Zhang W, He XY, Su YR, Wang KL (2018). Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region. Applied Soil Ecology, 132, 169-178.
DOI URL |
[17] |
Jiang ZC, Lian YQ, Qin XQ (2014). Rocky desertification in southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132, 1-12.
DOI URL |
[18] |
Lan JC (2021). Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in southwest China. Journal of Soils and Sediments, 21, 978-989.
DOI |
[19] |
Lino IAN, dos Santos VM, Escobar IEC, da Silva DKA, Maia LC (2016). Soil enzymatic activity in Eucalyptus grandis plantations of different ages. Land Degradation & Development, 27, 77-82.
DOI URL |
[20] |
Liu X, Guo KL, Huang L, Ji ZY, Jiang HM, Li H, Zhang JF (2017). Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept. PLoS ONE, 12, 177796. DOI: 10.1371/journal.pone.e0177796.
DOI |
[21] | Liu XD, Chen L, Yang XG, Zhang YF, Zhao W, Li XB (2016). Characteristics of soil labile organic carbon fractions and their relationship with soil enzyme activities in four typical communities in desert steppe. Acta Botanica Boreali- Occidentalia Sinica, 36, 1882-1890. |
[刘学东, 陈林, 杨新国, 张义凡, 赵伟, 李学斌 (2016). 荒漠草原典型植物群落土壤活性有机碳组分特征及其与酶活性的关系. 西北植物学报, 36, 1882-1890.] | |
[22] | Luo MX, Hu ZD, Liu XL, Li YF, Hu J, Ou DH, Wu DY (2021). Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China. Acta Ecologica Sinica, 41, 5632-5642. |
[罗明霞, 胡宗达, 刘兴良, 李亚非, 胡璟, 欧定华, 吴德勇 (2021). 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性. 生态学报, 41, 5632-5642.] | |
[23] |
Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012). Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48, 743-762.
DOI URL |
[24] |
Negash M, Kaseva J, Kahiluoto H (2022). Perennial monocropping of khat decreased soil carbon and nitrogen relative to multistrata agroforestry and natural forest in southeastern Ethiopia. Regional Environmental Change, 22, 38. DOI: 10.1007/s10113-022-01905-3.
DOI |
[25] | Nelson DW, Sommers LE (1996). Total carbon, organic carbon, and organic matter//Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME. Methods of Soil Analysis: Part 3, Chapter 34. Soil Science Society of America, Madison, USA. |
[26] | Pang DB, Cui M, Liu YG, Wang GZ, Cao JH, Wang XR, Dan XQ, Zhou JX (2019). Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China. Ecological Engineering, 138, 391-402. |
[27] |
Sheng MY, Liu Y, Xiong KN (2013). Response of soil physical-chemical properties to rocky desertification succession in south China karst. Acta Ecologica Sinica, 33, 6303-6313.
DOI URL |
[盛茂银, 刘洋, 熊康宁 (2013). 中国南方喀斯特石漠化演替过程中土壤理化性质的响应. 生态学报, 33, 6303-6313.] | |
[28] |
Shi P, Ren MX, Li ZB, Sun JM, Min ZQ, Ding SJ (2023). Effects of 15-year vegetation restoration on organic carbon in soil aggregates on the Loess Plateau, China. Archives of Agronomy and Soil Science, 69, 344-357.
DOI URL |
[29] | Sparling GP (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30, 195-207. |
[30] | Sun WY, Ma WW, Li G, Wu JQ, Xu YZ (2019). Dynamic characteristics of soil sucrase and amylase activities during vegetation degradation in Gahai wetland. Acta Agrestia Sinica, 27, 88-96. |
[孙文颖, 马维伟, 李广, 吴江琪, 许延昭 (2019). 尕海湿地植被退化过程中土壤蔗糖酶和淀粉酶活性的动态特征. 草地学报, 27, 88-96.]
DOI |
|
[31] |
Wang HY, Wu JQ, Li G, Yan LJ (2020). Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and Evolution, 10, 12211-12223.
DOI PMID |
[32] | Wang YN, Xu ZW, Wang SZ (2021). Concentrations of active organic carbon components in soils in Baijianghe natural and drained peat bogs and their influencing factors. Wetland Science, 19, 691-701. |
[王一诺, 徐志伟, 王升忠 (2021). 白江河天然和排水泥炭沼泽土壤活性有机碳组分含量及其影响因素研究. 湿地科学, 19, 691-701.] | |
[33] | Wu CJ, Guo JF, Xu EL, Jia SX, Wu DM (2019). Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode. Acta Pedologica Sinica, 56, 1504-1513. |
[吴传敬, 郭剑芬, 许恩兰, 贾淑娴, 吴东梅 (2019). 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响. 土壤学报, 56, 1504-1513.] | |
[34] | Wu FJ, Liu N, Hu PL, Wang KL, Zhang W, Zou DS (2020). Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression. Chinese Journal of Eco-Agriculture, 28, 429-437. |
[伍方骥, 刘娜, 胡培雷, 王克林, 张伟, 邹冬生 (2020). 典型喀斯特洼地植被恢复过程中土壤碳氮储量动态及其对极端内涝灾害的响应. 中国生态农业学报(中英文), 28, 429-437.] | |
[35] | Wu JS (2006). Determination of Soil Microbial Biomass and Its Application. Meteorological Publishing House, Beijing. |
[吴金水 (2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[36] |
Xiao SS, Zhang J, Duan J, Liu HG, Wang C, Tang CJ (2020). Soil organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in subtropical China. Forests, 11, 1304. DOI: 10.3390/f11121304.
DOI |
[37] | Xie XF, Pu LJ, Wang QQ, Zhu M, Xu Y, Zhang M (2017). Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, eastern China. Science of the Total Environment, 607- 608, 1419-1427. |
[38] |
Xu HW, Qu Q, Lu BB, Zhang Y, Liu GB, Xue S (2020). Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China. Soil and Tillage Research, 204, 104727. DOI: 10.1016/j.still.2020.104727.
DOI |
[39] |
Yang CM, Chen XZ, Zhang YK, Fan BB (2021). Effect of land use and cover change on soil organic carbon fractions and enzymatic activities in lakeshore wetland of north shore of Lake Chaohu. Journal of Lake Sciences, 33, 1766-1776.
DOI URL |
[杨长明, 陈霞智, 张一夔, 范博博 (2021). 土地利用与覆被变化对巢湖湖滨带土壤有机碳组分及酶活性的影响. 湖泊科学, 33, 1766-1776.] | |
[40] | Yuan DX (1993). Karst of China. Geological Publishing House, Beijing. |
[袁道先 (1993). 中国岩溶学. 地质出版社, 北京.] | |
[41] |
Zhang C, Yan RR, Liang QW, Na RS, Li T, Yang XF, Bao YH, Xin XP (2021). Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes. Acta Prataculturae Sinica, 30(4), 90-98.
DOI |
[张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平 (2021). 不同利用方式下草地土壤理化性质及碳、氮固持研究. 草业学报, 30(4), 90-98.]
DOI |
|
[42] | Zhang YL, Lu YX, Yin BF, Li YG, Zhou XB, Zhang YM (2022). Effects of simulated rainfall on soil nutrient contents and enzyme activities in the Gurbantunggut Desert, China. Acta Ecologica Sinica, 42, 1739-1749. |
[张玉林, 陆永兴, 尹本丰, 李永刚, 周晓兵, 张元明 (2022). 模拟降雨变化对古尔班通古特沙漠土壤养分及酶活性的影响. 生态学报, 42, 1739-1749.] | |
[43] | Zhu XL, Zhu CW, Chen C, Li Y, Niu RZ, Jiang GY, Yang J, Shen FM, Liu F, Liu SL (2022). Effects of rotation tillage on available nutrients and structural characteristics of dissolved organic carbon of fluvo-aquic soil in northern Henan Province. Chinese Journal of Eco-Agriculture, 30, 683-693. |
[朱宣霖, 朱长伟, 陈琛, 李洋, 牛润芝, 姜桂英, 杨锦, 申凤敏, 刘芳, 刘世亮 (2022). 轮耕对豫北潮土速效养分及可溶性有机碳结构特性的影响. 中国生态农业学报(中英文), 30, 683-693.] |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[4] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[5] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[6] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[7] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[8] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[9] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[10] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[11] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[12] | LIU Shan-Shan, ZHOU Wen-Jun, KUANG Lu-Hui, LIU Zhan-Feng, SONG Qing-Hai, LIU Yun- Tong, ZHANG Yi-Ping, LU Zhi-Yun, SHA Li-Qing. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2020, 44(12): 1262-1272. |
[13] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[14] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
[15] | WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn