Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (8): 658-671.DOI: 10.17521/cjpe.2019.0018
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
CHEN Chan1,ZHANG Shi-Ji1,LI Lei-Da1,LIU Zhao-Dan1,CHEN Jin-Lei1,GU Xiang1,WANG Liu-Fang1,FANG Xi1,2,*()
Received:
2019-01-22
Revised:
2019-08-06
Online:
2019-08-20
Published:
2020-01-03
Contact:
FANG Xi
Supported by:
CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China[J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0018
Fig. 1 Contents of C (A), N (B) and P (C) and the C:N (D), C:P (E), N:P (F) in leaf, litter and soil at different restoration stages in the mid-subtropical region of China (mean ± SD, n = 12). LCC, Lithocarpus glaber + Cleyera japonica + Cyclobalanopsis glauca evergreen broad-leaved forest; LCQ, Loropetalum chinense + Cunninghamia lanceolata + Quercus fabri shrubbery; LVR, Loropetalum chinense + Vaccinium bracteatum + Rhododendron mariesii scrub-grass-land; PLL, Pinus massoniana + Lithocarpus glaber + Loropetalum chinense coniferous-broad leaved mixed forest. Different lowercase letters indicate significant differences at different restoration stages for the same component (p < 0.05).
logy vs. logx | 恢复阶段 Restoration stages | n | 斜率b [95%置信区间] Slope b [95% CI] | 截距a [95%置信区间] Elevation a [95% CI] | 决定系数 Determination coefficient (R2) | p |
---|---|---|---|---|---|---|
logP vs. logN | LVR | 12 | 3.81 [2.83, 5.14] | -4.28 [-5.45, -3.11] | 0.89 | <0.01 |
LCQ | 12 | 0.54 [0.25, 1.17] | -0.83 [-1.35, -0.31] | 0.11 | 0.39 | |
PLL | 12 | 0.75 [0.52, 1.08] | -1.03 [-1.37, -0.70] | 0.83 | <0.01 | |
LCC | 12 | -0.96 [-2.07, -0.45] | 1.00 [0.00, 2.00] | 0.12 | 0.37 |
Table 1 Allometric relationship of leaf N and P contents at each restoration stage
logy vs. logx | 恢复阶段 Restoration stages | n | 斜率b [95%置信区间] Slope b [95% CI] | 截距a [95%置信区间] Elevation a [95% CI] | 决定系数 Determination coefficient (R2) | p |
---|---|---|---|---|---|---|
logP vs. logN | LVR | 12 | 3.81 [2.83, 5.14] | -4.28 [-5.45, -3.11] | 0.89 | <0.01 |
LCQ | 12 | 0.54 [0.25, 1.17] | -0.83 [-1.35, -0.31] | 0.11 | 0.39 | |
PLL | 12 | 0.75 [0.52, 1.08] | -1.03 [-1.37, -0.70] | 0.83 | <0.01 | |
LCC | 12 | -0.96 [-2.07, -0.45] | 1.00 [0.00, 2.00] | 0.12 | 0.37 |
Fig. 4 Utilization efficiency (A) and reabsorption efficiency (B) of N, P of leaf (n = 12). LCC, LCQ, LVR, PLL see Fig. 1. NUEN, nutrient use efficiency of N; NUEP, nutrient use efficiency of P. Different lowercase letters indicate significant differences at different restoration stages (p < 0.05).
[1] | Cao Y, Chen YM (2017). Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering, 105, 125-132. |
[2] | Cao Y, Zhang P, Chen YM (2018). Soil C:N:P stoichiometry in plantations of N-fixing black locust and indigenous pine, and secondary oak forests in Northwest China. Journal of Soils and Sediments, 18, 1478-1489. |
[3] | Chapin III FS (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 1, 233-260. |
[4] | Chen LL, Deng Q, Yuan ZY, Mu XM, Kallenbach RL (2018). Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecological Engineering, 120, 14-22. |
[5] | Clinton PW, Allen RB, Davis MR (2002). Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest. Canadian Journal of Forest Research, 32, 344-352. |
[6] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[7] | Gao Y, He NP, Yu GR, Chen WL, Wang QF (2014). Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecological Engineering, 67, 171-181. |
[8] | Grime JP (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd edn. John Wiley & Sons, Chichester, UK. 13-48. |
[9] | Gu X, Zhang SJ, Liu ZD, Li LD, Chen JL, Wang LF, Fang X (2018). Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 42, 595-608. |
[ 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰 (2018). 中亚热带植被恢复对土壤有机碳含量、碳密度的影响. 植物生态学报, 42, 595-608.] | |
[10] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266. |
[11] | Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61. |
[12] | Güsewell S, Verhoeven JTA (2006). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287, 131-143. |
[13] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version), 32, 951-960. |
[ 韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.] | |
[14] | He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008). Leaves nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310. |
[15] | He YJ, Qin L, Li ZY, Liang XY, Shao MX, Tan L (2013). Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. Forest Ecology and Management, 295, 193-198. |
[16] | Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[17] | Hedin LO (2004). Global organization of terrestrial plant-nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850. |
[18] | Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192. |
[19] | Hu YF, Shu XY, He J, Zhang YL, Xiao HH, Tang XY, Gu YF, Lan T, Xia JG, Ling J, Chen GD, Wang CQ, Deng LJ, Yuan S (2018). Storage of C, N, and P affected by afforestation with Salix cupularis in an alpine semiarid desert ecosystem. Land Degradation & Development, 29, 188-198. |
[20] | Institute of Soil Science, Chinese Academy of Sciences (1978). The Analysis of Soil Physical-Chemical Properties. Shanghai Scientific & Technical Publishers, Shanghai. |
[ 中国科学院南京土壤研究所 (1978). 土壤理化分析. 上海科技出版社, 上海.] | |
[21] | Jiang LL, He S, Wu LF, Yan YF, Weng SF, Liu J, Wang WQ, Zeng CS (2014). Characteristics of stoichiometric homeostasis of three plant species in wetlands in Minjiang Estuary. Wetland Science, 12, 293-298. |
[ 蒋利玲, 何诗, 吴丽凤, 颜远烽, 翁少峰, 刘静, 王维奇, 曾从盛 (2014). 闽江河口湿地3种植物化学计量内稳性特征. 湿地科学, 12, 293-298.] | |
[22] | Killingbeck KT (1996). Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
[23] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrients limitation. Journal of Applied Ecology, 33, 1441-1450. |
[24] | Kooijman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149. |
[25] | Li CZ, Zhao LH, Sun PS, Zhao FZ, Kang D, Yang GH, Han XH, Feng YZ, Ren GX (2016). Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the Loess Hilly Region of China. PLOS ONE, 11, e0159075. DOI: 10.1371/journal.pone.0159075. |
[26] | Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW (2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590. |
[ 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 (2010). 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征. 生态学报, 30, 6581-6590.] | |
[27] | Liu Y, Wu YX, Han SJ, Lin L (2009). Litterfall decomposition in four forest types in Changbai Mountains of China. Chinese Journal of Ecology, 28, 400-404. |
[ 刘颖, 武耀祥, 韩士杰, 林鹿 (2009). 长白山四种森林类型凋落物分解动态. 生态学杂志, 28, 400-404.] | |
[28] | Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005). Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 278, 303-313. |
[29] | Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93, 770-782. |
[30] | Nie LQ, Wu Q, Yao B, Fu S, Hu QW (2016). Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland. Acta Ecologica Sinica, 36, 1898-1906. |
[ 聂兰琴, 吴琴, 尧波, 付姗, 胡启武 (2016). 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征. 生态学报, 36, 1898-1906.] | |
[31] | Niklas KJ (1994). Size-dependent variations in plant growth rates and the “3/4-power rule”. American Journal of Botany, 81, 134-144. |
[32] | Ning QR, Li SZ, Jiang LC, Zhao Y, Liu R, Zhang XY (2016). Foliar nutrient content and resorption efficiency of Pinus massoniana in the subtropical red soil erosion region. Acta Ecologica Sinica, 36, 3510-3517. |
[ 宁秋蕊, 李守中, 姜良超, 赵颖, 刘溶, 张欣影 (2016). 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征. 生态学报, 36, 3510-3517.] | |
[33] | O’Brien SL, Jastrow JD (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biology & Biochemistry, 61, 1-13. |
[34] | Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257. |
[35] | Peng X, Fang X, Yu LH, Xiang WH, Huang ZH (2016). Change characteristic of soil C, N, P stoichiometric ratios in mid-subtropical forests restoration. Journal of Central South University of Forestry & Technology, 36(11), 65-72. |
[ 彭晓, 方晰, 喻林华, 项文化, 黄志宏 (2016). 中亚热带4种森林土壤碳、氮、磷化学计量特征. 中南林业科技大学学报, 36(11), 65-72.] | |
[36] | Qin H, Li JX, Gao SP, Li C, Li R, Sheng XH (2010). Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China. Acta Ecologica Sinica, 30, 1247-1257. |
[ 秦海, 李俊祥, 高三平, 李铖, 李蓉, 沈兴华 (2010). 中国660种陆生植物叶片8种元素含量特征. 生态学报, 30, 1247-1257.] | |
[37] | Qin J, Xi WM, Rahmlow A, Kong HY, Zhang Z, Shangguan ZP (2016). Effects of forest plantation types on leaf traits of Ulmus pumila and Robinia pseudoacacia on the Loess Plateau, China. Ecological Engineering, 97, 416-425. |
[38] | R Development Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[39] | Reich PB, Tjoelker MG, MacHado JL, Oleksyn J (2006). Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457-461. |
[40] | Ren CJ, Zhao FZ, Kang D, Yang GH, Han XH, Tong XG, Feng YZ, Ren GX (2016). Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 376, 59-66. |
[41] | Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445. |
[42] | Sardans J, Alonso R, Carnicer J, Fernández-Martínez M, Vivanco MG, Peñuelas J (2016). Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology Evolution & Systematics, 18, 52-69. |
[43] | Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014). Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95, 2062-2068. |
[44] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[45] | Su B, Han XG, Huang JH, Qu CM (2000). The nutrient use efficiency (NUE) of plants and it’s implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 20, 335-343. |
[ 苏波, 韩兴国, 黄建辉, 渠春梅 (2000). 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20, 335-343.] | |
[46] | Sun X, Shen Y, Schuster MJ, Searle EB, Chen JH, Yang GW, Zhang YJ (2018). Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agriculture, Ecosystems & Environment, 252, 114-125. |
[47] | Tian LM, Zhao L, Wu XD, Fang HB, Zhao YH, Hu GJ, Yue GY, Sheng Y, Wu JC, Chen J, Wang ZW, Li WP, Zou DF, Ping CL, Shang W, Zhao YG, Zhang GL (2018). Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 622-623, 192-202. |
[48] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLOS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[49] | Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17, 673-684. |
[50] | Wang ZF, Zheng FL (2018). C, N, and P stoichiometric characteristics of Pinus tabulaeformis plantation in the Ziwuling Region of the Loess Plateau. Acta Ecologica Sinica, 38, 6870-6880. |
[ 汪宗飞, 郑粉莉 (2018). 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征. 生态学报, 38, 6870-6880.] | |
[51] | Warton DI, Duursma RA, Falster DS, Taskinen S (2012). SMART 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259. |
[52] | Xiang WH, Liu SH, Lei XD, Frank SC, Tian DL, Wang GJ, Deng XW (2013). Secondary forest floristic composition, structure, and spatial pattern in subtropical China. Journal of Forest Research, 18, 111-120. |
[53] | Xiao HB, Li ZW, Dong YT, Chang XF, Deng L, Huang JQ, Nie XD, Liu C, Liu L, Wang DY, Liu QM, Zhang YR (2017). Changes in microbial communities and respiration following the revegetation of eroded soil. Agriculture Ecosystems & Environment, 246, 30-37. |
[54] | Xu CH, Xiang WH, Gou MM, Chen L, Lei PF, Fang X, Deng XW, Ouyang S (2018). Effects of forest restoration on soil carbon, nitrogen, phosphorus, and their stoichiometry in Hunan, Southern China. Sustainability, 10, 1874. DOI: 10.3390/su10061874. |
[55] | Xu HW, Qu Q, Li P, Guo ZQ, Wulan E, Xue S (2019). Stocks and stoichiometry of soil organic carbon, total nitrogen, and total phosphorus after vegetation restoration in the Loess Hilly Region, China. Forests, 10, 27. DOI: 10.3390/f10010027. |
[56] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chinese Journal of Plant Ecology, 34, 48-57. |
[ 阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.] | |
[57] | Yang Y, Liu BR, An SS (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 166, 328-338. |
[58] | Yang YH, Luo YQ (2011). Carbon:nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 20, 354-361. |
[59] | Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399. |
[60] | Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10. |
[61] | Zeng QC, Li X, Dong YH, An SS, Darboux F (2016). Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. Catena, 147, 481-488. |
[62] | Zeng QC, Liu Y, Fang Y, Ma RT, Lal R, An SS, Huang YM (2017a). Impact of vegetation restoration on plants and soil C:N:P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering, 109, 92-100. |
[63] | Zeng YL, Fang X, Xiang WH, Deng XW, Peng CH (2017b). Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests. Ecology and Evolution, 7, 11033-11043. |
[64] | Zhang DJ, Zhang J, Yang WQ, Wu FZ, Huang YM (2014). Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands. Plant and soil, 376, 307-325. |
[65] | Zhang GQ, Zhang P, Peng SZ, Chen YM, Cao Y (2017). The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Scientific Reports, 7, 11754. DOI: 10.1038/s41598-017-12199-5. |
[66] | Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y (2018). Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China. Acta Ecologica Sinica, 38, 5087-5098. |
[ 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬 (2018). 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 38, 5087-5098.] | |
[67] | Zhang W, Liu WC, Xu MP, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337, 280-289. |
[68] | Zhang W, Ren CJ, Deng J, Zhao FZ, Yang GH, Han XH, Tong XG, Feng YZ (2018). Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecological Engineering, 122, 91-99. |
[69] | Zhao FZ, Kang D, Han XH, Yang GH, Feng YZ, Ren GX (2015a). Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 74, 415-422. |
[70] | Zhao FZ, Sun J, Ren CJ, Kang D, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2015b). Land use change influences soil C, N and P stoichiometry under “Grain-to-Green Program” in China. Scientific Reports, 5, 10195. DOI: 10.1038/srep10195. |
[71] | Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR (2014). The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PLOS ONE, 9, e95196. DOI: 10.1371/journal.pone.0095196. |
[72] | Zheng L, Lu LH (2012). Standing crop and nutrient characteristics of forest floor litter in China. Journal of Northwest Forestry University, 27(1), 63-69. |
[ 郑路, 卢立华 (2012). 我国森林地表凋落物现存量及养分特征. 西北林学院学报, 27(1), 63-69.] | |
[73] | Zhong ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, 13, 1043-1051. |
[1] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[2] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[3] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[4] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[5] | HAN Guang-Xuan, WANG Fa-Ming, MA Jun, XIAO Lei-Lei, CHU Xiao-Jing, ZHAO Ming-Liang. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes [J]. Chin J Plant Ecol, 2022, 46(4): 373-382. |
[6] | Cong HAN Peng LIU MU YanMei Yuan Yuan shaorong hao yun tian Zha tianshan Xin JIA. Response of ecosystem carbon balance to asymmetric daytime vs. nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[7] | Shi-Ping CHEN Zhong-Min HU. Ecosystem carbon and water fluxes in ecological vulnerable areas in China [J]. Chin J Plant Ecol, 2022, 46(12): 1433-1436. |
[8] | Guang-Shuai CUI Tian-Xiang LUO Eryuan LIANG Lin Zhang. Advances in the study of shrub facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[9] | DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland [J]. Chin J Plant Ecol, 2021, 45(5): 507-515. |
[10] | SUN Jian, WANG Yi, LIU Guo-Hua. Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 496-506. |
[11] | LÜ Ya-Xiang, QI Zhi-Yan, LIU Wei, SUN Jia-Mei, PAN Qing-Min. Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe [J]. Chin J Plant Ecol, 2021, 45(4): 334-344. |
[12] | WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chin J Plant Ecol, 2021, 45(4): 383-393. |
[13] | HAN Guang-Xuan, LI Juan-Yong, QU Wen-Di. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh [J]. Chin J Plant Ecol, 2021, 45(4): 321-333. |
[14] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
[15] | FANG Jing-Yun. Ecological perspectives of carbon neutrality [J]. Chin J Plant Ecol, 2021, 45(11): 1173-1176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn