Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (8): 672-684.DOI: 10.17521/cjpe.2019.0068
• Research Articles • Previous Articles Next Articles
WANG Ming-Ming1,2,LIU Xin-Ping1,3,*(),HE Yu-Hui4,ZHANG Tong-Hui1,3,WEI Jing5,Chelmge 1,2,SUN Shan-Shan1,2
Received:
2019-03-26
Revised:
2019-07-23
Online:
2019-08-20
Published:
2020-01-03
Contact:
LIU Xin-Ping
Supported by:
WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land[J]. Chin J Plant Ecol, 2019, 43(8): 672-684.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0068
Fig. 2 Interannual changes of plant community features in different enclosure types of sandy lands in the Horqin Sandy Land (mean ± SD). FD, fixed dune; MD, mobile dune; SG, sandy grassland. C, Simpson index; H, Shannon-Wiener index; k, regression line slope; p, statistical significance (p < 0.05 indicates the change trend is significant). Only the k, R2 and p values with higher confidence levels are listed in the figure.
物种 Species | 生活型 Biotype | 2005 | 2017 | ||||
---|---|---|---|---|---|---|---|
MD | FD | SG | MD | FD | SG | ||
沙蓬 Agriophyllum squarrosum | AF | 26.91 | 0 | 0 | 9.60 | 0 | 0 |
苦苣菜 Sonchus oleraceus | AF | 10.22 | 0 | 0 | 2.10 | 0 | 0 |
旋覆花 Inula japonica | PF | 9.26 | 0 | 0 | 8.75 | 0 | 0 |
狗尾草 Setaria viridis | AG | 8.65 | 2.81 | 1.52 | 7.45 | 3.72 | 6.72 |
蒺藜 Tribulus terrestris | AF | 5.24 | 1.00 | 0 | 15.77 | 0 | 0.92 |
地梢瓜 Cynanchum thesioides | PF | 5.48 | 0.98 | 0.84 | 1.47 | 2.18 | 1.88 |
大果虫实 Corispermum macrocarpum | AF | 5.32 | 1.49 | 0 | 3.30 | 2.12 | 0 |
差不嘎蒿 Artemisia halodendron | SH | 3.57 | 11.88 | 0 | 5.99 | 3.20 | 0 |
雾冰藜 Bassia dasyphylla | AF | 2.69 | 1.43 | 0 | 2.20 | 1.52 | 0 |
马唐 Digitaria sanguinalis | AG | 2.45 | 3.43 | 0.92 | 5.95 | 2.80 | 0 |
白草 Pennisetum flaccidum | PG | 0 | 1.92 | 4.27 | 0 | 0 | 10.55 |
猪毛菜 Salsola collina | AF | 0 | 0.85 | 0.85 | 2.52 | 7.50 | 2.17 |
花苜蓿 Medicago ruthenica | PL | 0 | 11.11 | 4.41 | 0 | 10.50 | 0 |
糙隐子草 Cleistogenes squarrosa | PG | 0 | 0 | 3.58 | 0 | 0 | 3.77 |
大籽蒿 Artemisia sieversiana | AF | 0 | 0 | 2.92 | 0 | 0 | 0 |
地锦 Euphorbia humifusa | AF | 0 | 13.27 | 0 | 0.94 | 1.99 | 0.85 |
二裂委陵菜 Potentilla bifurca | AF | 0 | 0 | 0.71 | 0 | 0 | 0 |
九顶草 Enneapogon desvauxii | AG | 0 | 0 | 0 | 0 | 0 | 1.90 |
兴安乌胡枝子 Lespedeza davurica | SH/PL | 0 | 1.39 | 2.74 | 0 | 2.24 | 2.83 |
虎尾草 Chloris virgata | AG | 0 | 0 | 1.19 | 0 | 0 | 0 |
画眉草 Eragrostis pilosa | AG | 0 | 3.41 | 0 | 1.72 | 9.99 | 0 |
黄蒿 Artemisia scoparia | AF | 0 | 0 | 22.09 | 0 | 6.53 | 6.11 |
灰绿藜 Chenopodium glaucum | AF | 0 | 2.46 | 0.69 | 0 | 0 | 0 |
鸡眼草 Kummerowia striata | AL | 0 | 0 | 1.54 | 0 | 0 | 0 |
尖头叶藜 Chenopodium acuminatum | AF | 0 | 0 | 0 | 3.54 | 4.01 | 4.94 |
芦苇 Phragmites australis | PG | 0 | 0 | 9.56 | 0 | 0 | 6.36 |
少花米口袋 Gueldenstaedtia verna | PL | 0 | 0 | 1.58 | 0 | 0 | 0 |
三芒草 Aristida adscensionis | AG | 0 | 3.07 | 4.37 | 0 | 0 | 0 |
砂蓝刺头 Echinops gmelinii | AF | 0 | 1.42 | 0 | 0 | 8.62 | 0 |
牻牛儿苗 Erodium stephanianum | AF | 0 | 0 | 1.67 | 0 | 0 | 12.76 |
中华苦荬菜 Ixeris chinensis | AF | 0 | 2.17 | 0 | 0 | 0 | 0 |
小叶锦鸡儿 Caragana microphylla | SH/PL | 0 | 2.46 | 0 | 0 | 0 | 0 |
独行菜 Lepidium apetalum | AG | 0 | 0 | 0 | 0 | 0 | 5.00 |
总计 Total | - | 10 | 18 | 18 | 14 | 14 | 13 |
Table 1 Species composition and dominance of plant community in different enclosure types of sandy lands in 2005 and 2017
物种 Species | 生活型 Biotype | 2005 | 2017 | ||||
---|---|---|---|---|---|---|---|
MD | FD | SG | MD | FD | SG | ||
沙蓬 Agriophyllum squarrosum | AF | 26.91 | 0 | 0 | 9.60 | 0 | 0 |
苦苣菜 Sonchus oleraceus | AF | 10.22 | 0 | 0 | 2.10 | 0 | 0 |
旋覆花 Inula japonica | PF | 9.26 | 0 | 0 | 8.75 | 0 | 0 |
狗尾草 Setaria viridis | AG | 8.65 | 2.81 | 1.52 | 7.45 | 3.72 | 6.72 |
蒺藜 Tribulus terrestris | AF | 5.24 | 1.00 | 0 | 15.77 | 0 | 0.92 |
地梢瓜 Cynanchum thesioides | PF | 5.48 | 0.98 | 0.84 | 1.47 | 2.18 | 1.88 |
大果虫实 Corispermum macrocarpum | AF | 5.32 | 1.49 | 0 | 3.30 | 2.12 | 0 |
差不嘎蒿 Artemisia halodendron | SH | 3.57 | 11.88 | 0 | 5.99 | 3.20 | 0 |
雾冰藜 Bassia dasyphylla | AF | 2.69 | 1.43 | 0 | 2.20 | 1.52 | 0 |
马唐 Digitaria sanguinalis | AG | 2.45 | 3.43 | 0.92 | 5.95 | 2.80 | 0 |
白草 Pennisetum flaccidum | PG | 0 | 1.92 | 4.27 | 0 | 0 | 10.55 |
猪毛菜 Salsola collina | AF | 0 | 0.85 | 0.85 | 2.52 | 7.50 | 2.17 |
花苜蓿 Medicago ruthenica | PL | 0 | 11.11 | 4.41 | 0 | 10.50 | 0 |
糙隐子草 Cleistogenes squarrosa | PG | 0 | 0 | 3.58 | 0 | 0 | 3.77 |
大籽蒿 Artemisia sieversiana | AF | 0 | 0 | 2.92 | 0 | 0 | 0 |
地锦 Euphorbia humifusa | AF | 0 | 13.27 | 0 | 0.94 | 1.99 | 0.85 |
二裂委陵菜 Potentilla bifurca | AF | 0 | 0 | 0.71 | 0 | 0 | 0 |
九顶草 Enneapogon desvauxii | AG | 0 | 0 | 0 | 0 | 0 | 1.90 |
兴安乌胡枝子 Lespedeza davurica | SH/PL | 0 | 1.39 | 2.74 | 0 | 2.24 | 2.83 |
虎尾草 Chloris virgata | AG | 0 | 0 | 1.19 | 0 | 0 | 0 |
画眉草 Eragrostis pilosa | AG | 0 | 3.41 | 0 | 1.72 | 9.99 | 0 |
黄蒿 Artemisia scoparia | AF | 0 | 0 | 22.09 | 0 | 6.53 | 6.11 |
灰绿藜 Chenopodium glaucum | AF | 0 | 2.46 | 0.69 | 0 | 0 | 0 |
鸡眼草 Kummerowia striata | AL | 0 | 0 | 1.54 | 0 | 0 | 0 |
尖头叶藜 Chenopodium acuminatum | AF | 0 | 0 | 0 | 3.54 | 4.01 | 4.94 |
芦苇 Phragmites australis | PG | 0 | 0 | 9.56 | 0 | 0 | 6.36 |
少花米口袋 Gueldenstaedtia verna | PL | 0 | 0 | 1.58 | 0 | 0 | 0 |
三芒草 Aristida adscensionis | AG | 0 | 3.07 | 4.37 | 0 | 0 | 0 |
砂蓝刺头 Echinops gmelinii | AF | 0 | 1.42 | 0 | 0 | 8.62 | 0 |
牻牛儿苗 Erodium stephanianum | AF | 0 | 0 | 1.67 | 0 | 0 | 12.76 |
中华苦荬菜 Ixeris chinensis | AF | 0 | 2.17 | 0 | 0 | 0 | 0 |
小叶锦鸡儿 Caragana microphylla | SH/PL | 0 | 2.46 | 0 | 0 | 0 | 0 |
独行菜 Lepidium apetalum | AG | 0 | 0 | 0 | 0 | 0 | 5.00 |
总计 Total | - | 10 | 18 | 18 | 14 | 14 | 13 |
Fig. 3 Interannual variation of the important value of plant community functional groups in different enclosure types of sandy lands in Horqin Sandy Land. FD, fixed dune; MD, mobile dune; SG, sandy grassland. AF, annual forbs; AG; annual grasses; PF, perennial forbs; PG, perennial grasses; PH, perennial grass layer; PL, perennial legumes; SH, shrubs or subshrubs. k, regression line slope. Only the test parameter values that reach the level of significance (p < 0.05) are listed in this figure.
沙地 Sandy land | 功能群 Functional group | R | p | 沙地 Sandy land | 功能群 Functional group | R | p |
---|---|---|---|---|---|---|---|
MD | AF vs AG | -0.28 | 0.35 | FD | PL vs SH | 0.33 | 0.28 |
MD | AF vs SH | -0.21 | 0.49 | SG | AF vs AG | -0.72 | <0.01 |
MD | AG vs SH | -0.11 | 0.72 | SG | AF vs PF | -0.23 | 0.44 |
FD | AF vs AG | -0.28 | 0.36 | SG | AF vs PG | -0.81 | <0.01 |
FD | AF vs PF | -0.13 | 0.67 | SG | AF vs PL | -0.17 | 0.58 |
FD | AF vs PL | -0.65 | <0.05 | SG | AG vs PF | 0.37 | 0.21 |
FD | AF vs SH | -0.71 | <0.01 | SG | AG vs PG | 0.22 | 0.47 |
FD | AG vs PF | -0.20 | 0.51 | SG | AG vs PL | -0.14 | 0.64 |
FD | AG vs PL | -0.03 | 0.93 | SG | PF vs PG | 0.14 | 0.64 |
FD | AG vs SH | -0.17 | 0.57 | SG | PF vs PL | -0.04 | 0.90 |
FD | PF vs PL | -0.14 | 0.65 | SG | PG vs PL | 0.53 | 0.14 |
FD | PF vs SH | -0.18 | 0.57 | SG |
Table 2 Pearson’s correlation coefficient between important values of community functional groups in different types enclosed sandy land in Horqin Sandy Land
沙地 Sandy land | 功能群 Functional group | R | p | 沙地 Sandy land | 功能群 Functional group | R | p |
---|---|---|---|---|---|---|---|
MD | AF vs AG | -0.28 | 0.35 | FD | PL vs SH | 0.33 | 0.28 |
MD | AF vs SH | -0.21 | 0.49 | SG | AF vs AG | -0.72 | <0.01 |
MD | AG vs SH | -0.11 | 0.72 | SG | AF vs PF | -0.23 | 0.44 |
FD | AF vs AG | -0.28 | 0.36 | SG | AF vs PG | -0.81 | <0.01 |
FD | AF vs PF | -0.13 | 0.67 | SG | AF vs PL | -0.17 | 0.58 |
FD | AF vs PL | -0.65 | <0.05 | SG | AG vs PF | 0.37 | 0.21 |
FD | AF vs SH | -0.71 | <0.01 | SG | AG vs PG | 0.22 | 0.47 |
FD | AG vs PF | -0.20 | 0.51 | SG | AG vs PL | -0.14 | 0.64 |
FD | AG vs PL | -0.03 | 0.93 | SG | PF vs PG | 0.14 | 0.64 |
FD | AG vs SH | -0.17 | 0.57 | SG | PF vs PL | -0.04 | 0.90 |
FD | PF vs PL | -0.14 | 0.65 | SG | PG vs PL | 0.53 | 0.14 |
FD | PF vs SH | -0.18 | 0.57 | SG |
土壤因子 Soil factor | MD | FD | SG | |||
---|---|---|---|---|---|---|
2008年 | 2017年 | 2008年 | 2017年 | 2008年 | 2017年 | |
SOM (g·kg-1) | 0.53 ± 0.08a | 0.42 ± 0.05b | 1.13 ± 0.39a | 1.05 ± 0.36a | 5.64 ± 2.18a | 4.05 ± 0.51a |
TN (g·kg-1) | 0.03 ± 0.05a | 0.024 ± 0.01a | 0.068 ± 0.02a | 0.072 ± 0.06a | 0.34 ± 0.11a | 0.35 ± 0.07a |
AN (mg·kg-1) | 5.35 ± 1.25b | 8.80 ± 2.52a | 6.35 ± 3.20b | 11.28 + 3.60a | 22.51 ± 2.98b | 29.87 ± 4.89a |
AP (mg·kg-1) | 4.14 ± 0.65b | 9.88 ± 0.17a | 3.88 ± 0.92b | 9.87 ± 0.07a | 3.22 ± 1.32b | 9.43 ± 0.11a |
AK (mg·kg-1) | 54.67 ± 7.08a | 43.05 ± 4.60b | 64.58 ± 9.80a | 65.61 ± 11.30a | 116.42 ± 23.30a | 112.47 ± 20.20a |
SSD (粒·m-2) | 492.0 ± 204.40a | 670.0 ± 268.6a | 2 669 ± 1 108a | 1 860 ± 687a | 3 344 ± 1 378a | 4 072 ± 1 639a |
SSR | 4.0 ± 1.20b | 5 ± 1.30a | 10 ± 0.50a | 8 ± 1.33b | 12 ± 2.10a | 9 ± 1.24b |
SM (%) | 2.43 ± 0.32b | 2.00 ± 0.07c | 3.72 ± 0.10a |
Table 3 Multiple comparisons of soil nutrients, soil moisture, soil organic matter and soil seed density, seed richness in different enclosure types of sandy lands in the Horqin Sandy Land in 2008 and 2017 (mean ± SD)
土壤因子 Soil factor | MD | FD | SG | |||
---|---|---|---|---|---|---|
2008年 | 2017年 | 2008年 | 2017年 | 2008年 | 2017年 | |
SOM (g·kg-1) | 0.53 ± 0.08a | 0.42 ± 0.05b | 1.13 ± 0.39a | 1.05 ± 0.36a | 5.64 ± 2.18a | 4.05 ± 0.51a |
TN (g·kg-1) | 0.03 ± 0.05a | 0.024 ± 0.01a | 0.068 ± 0.02a | 0.072 ± 0.06a | 0.34 ± 0.11a | 0.35 ± 0.07a |
AN (mg·kg-1) | 5.35 ± 1.25b | 8.80 ± 2.52a | 6.35 ± 3.20b | 11.28 + 3.60a | 22.51 ± 2.98b | 29.87 ± 4.89a |
AP (mg·kg-1) | 4.14 ± 0.65b | 9.88 ± 0.17a | 3.88 ± 0.92b | 9.87 ± 0.07a | 3.22 ± 1.32b | 9.43 ± 0.11a |
AK (mg·kg-1) | 54.67 ± 7.08a | 43.05 ± 4.60b | 64.58 ± 9.80a | 65.61 ± 11.30a | 116.42 ± 23.30a | 112.47 ± 20.20a |
SSD (粒·m-2) | 492.0 ± 204.40a | 670.0 ± 268.6a | 2 669 ± 1 108a | 1 860 ± 687a | 3 344 ± 1 378a | 4 072 ± 1 639a |
SSR | 4.0 ± 1.20b | 5 ± 1.30a | 10 ± 0.50a | 8 ± 1.33b | 12 ± 2.10a | 9 ± 1.24b |
SM (%) | 2.43 ± 0.32b | 2.00 ± 0.07c | 3.72 ± 0.10a |
气候因子 Climate factor | 沙地 Sandy land | 生物量 Biomass (g·m-2) | 物种丰富度 Spices richness | ||||
---|---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | ||
年降水量 Annual precipitation (mm) | MD | y = -0.1x + 17.08 | 0.3 | 0.98 | y = -0.35lg x + 13.34 | 0.03 | 0.26 |
FD | y = 0.09x + 55.96 | 0.22 | 0.45 | y = 14.78lg x - 19.67 | 0.15 | 0.10 | |
SG | y = 0.21x + 75.11 | 0.45 | 0.13 | y = 0.19lg x + 13.50 | 0.08 | 0.79 | |
生长季降水量 Growing season precipitation (mm) | MD | y = 0.03x + 8.39 | 0.13 | 0.66 | y = -0.35lg x + 13.35 | 0.03 | 0.27 |
FD | y = 0.09x + 58.26 | 0.21 | 0.48 | y = 14.53lg x - 18.32 | 0.15 | 0.11 | |
SG | y = 0.17x + 93.17 | 0.32 | 0.28 | y = 0.19lg x + 13.5 | 0.08 | 0.79 | |
年平均气温 Annual average air temperature (℃) | MD | y = 1.2x2 - 22.64x + 117.04 | 0.24 | 0.23 | y = -0.35x + 13.34 | 0.03 | 0.26 |
FD | y = 2.42x2 - 39.89x + 234.26 | 0.42 | 0.06 | y = -0.09x + 16.00 | 0.09 | 0.84 | |
SG | y = 2.65x2 - 44.46x + 306.24 | 0.19 | 0.35 | y = 0.19x + 1.5 | 0.08 | 0.79 |
Table 4 Relationships between plant community biomass and species richness with climatic factors in different habitats in different types enclosed sandy land in Horqin Sandy Land
气候因子 Climate factor | 沙地 Sandy land | 生物量 Biomass (g·m-2) | 物种丰富度 Spices richness | ||||
---|---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | ||
年降水量 Annual precipitation (mm) | MD | y = -0.1x + 17.08 | 0.3 | 0.98 | y = -0.35lg x + 13.34 | 0.03 | 0.26 |
FD | y = 0.09x + 55.96 | 0.22 | 0.45 | y = 14.78lg x - 19.67 | 0.15 | 0.10 | |
SG | y = 0.21x + 75.11 | 0.45 | 0.13 | y = 0.19lg x + 13.50 | 0.08 | 0.79 | |
生长季降水量 Growing season precipitation (mm) | MD | y = 0.03x + 8.39 | 0.13 | 0.66 | y = -0.35lg x + 13.35 | 0.03 | 0.27 |
FD | y = 0.09x + 58.26 | 0.21 | 0.48 | y = 14.53lg x - 18.32 | 0.15 | 0.11 | |
SG | y = 0.17x + 93.17 | 0.32 | 0.28 | y = 0.19lg x + 13.5 | 0.08 | 0.79 | |
年平均气温 Annual average air temperature (℃) | MD | y = 1.2x2 - 22.64x + 117.04 | 0.24 | 0.23 | y = -0.35x + 13.34 | 0.03 | 0.26 |
FD | y = 2.42x2 - 39.89x + 234.26 | 0.42 | 0.06 | y = -0.09x + 16.00 | 0.09 | 0.84 | |
SG | y = 2.65x2 - 44.46x + 306.24 | 0.19 | 0.35 | y = 0.19x + 1.5 | 0.08 | 0.79 |
Fig. 4 Relationships among plant community biomass, and growing season precipitation, growing season accumulated temperature in different enclosure types of sandy land in the Horqin Sandy Land. FD, fixed dune; MD, mobile dune; SG, sandy grassland.
Fig. 5 Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) among plant community species, soil seed bank and soil nutrients. A, the DCA analysis of community species and soil seed bank. B, the CCA analysis of community species and soil nutrients. C, the CCA analysis of soil seed bank species and soil nutrients. FD, fixed dune; MD, mobile dune; SG, sandy grassland. AK, available potassium; AN, available nitrogen; AP, available phosphorus; SM, soil moisture; SOM, soil organic matter; TN, total nitrogen. Veg, vegtation.
[1] | Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89, 2140-2153. |
[3] | Chang CM, Niu JM, Wang H, Zhang Q, Dong JJ, Kang SR, Han F, Na RS (2016). Dynamic change of soil moisture and its response to rainfall in a Stipa klemenzii steppe. Arid Zone Research, 33, 260-265. |
[ 常昌明, 牛建明, 王海, 张庆, 董建军, 康萨如拉, 韩芳, 那日苏 (2016). 小针茅荒漠草原土壤水分动态及其对降雨的响应. 干旱区研究, 33, 260-265.] | |
[4] | Cheng JM, Zou HY, Akio H (1995). The rational utilization of grassland and successional course of grassland vegetation in the Loess Plateau. Acta Prataculturae Sinica, 4(4), 17-22. |
[ 程积民, 邹后远, 本江昭夫 (1995). 黄土高原草地合理利用与草地植被演替过程的实验研究. 草业学报, 4(4), 17-22.] | |
[5] | Duan LM (2011). Dynamic Interrelation of Hydrology, Soil and Vegetation in the Horqin Sandy Land with Sand-Meadow Land Features. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 段利民 (2011). 科尔沁沙地沙丘-草甸相间地区水文-土壤-植被动态响应关系研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[6] | Gao K, Zhu TX, Han GD (2013). Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland. Acta Prataculturae Sinica, 22(6), 39-45. |
[ 高凯, 朱铁霞, 韩国栋 (2013). 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响. 草业学报, 22(6), 39-45.] | |
[7] | Gao TM, Zhang RQ, Yue ZW (2015). Influence of enclosure on vegetation productivity and biodiversity on Xilamuren Grassland, Inner Mogolia. 2015 4th International Conference on Energy and Environmental Protection: 654-657. . Cited: 2019-03-20 |
[8] | Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytologist, 214, 41-47. |
[9] | Liu R, Cieraad E, Li Y, Ma J (2016). Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem. Ecosystems, 19, 601-614. |
[10] | Liu XM, Zhao HL, Zhao AF (1999). Wind-Sand Environment and Vegetation in Horqin Sandy Land. Science Press, Beijing. 191-221. |
[ 刘新民, 赵哈林, 赵爱芬 (1999). 科尔沁沙地风沙环境与植被. 科学出版社, 北京. 191-221.] | |
[11] | Liu YL, Lei HM (2015). Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing, 7, 10243-10268. |
[12] | Lu RK (1999). Analytical Method of Soil Agricultural Chemistry. China Agriculture Science and Technique Press, Beijing. |
[ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[13] | Lü P, Zuo XA, Yue XY, Zhang J, Zhao SL, Cheng QP (2018). Temporal changes of vegetation characteristics during the long-term grazing exclusion in Horqin Sandy Land. Chinese Journal of Ecology, 37, 2880-2888. |
[ 吕朋, 左小安, 岳喜元, 张晶, 赵生龙, 程清平 (2018). 科尔沁沙地封育过程中植被特征的动态变化. 生态学杂志, 37, 2880-2888.] | |
[14] | Miao RH, Jiang DM, Wang YC (2013). Change and mechanism of vegetation in the fenced sandy grassland in Horqin Sandy Land. Arid Zone Research, 30, 264-270. |
[ 苗仁辉, 蒋德明, 王永翠 (2013). 科尔沁沙质草地封育过程中的植被变化及其机制. 干旱区研究, 30, 264-270.] | |
[15] | Niu CY, Alamusa, Liu Y, Guo YH, Tian YH, Wang JL, Zhang W (2015). The characteristics of sand-fixation plantations roots and soil moisture Horqin Sandy Land. Journal of Arid Land Resources and Environment, 29(10), 106-111. |
[ 牛存洋, 阿拉木萨, 刘亚, 郭宇航, 田英华, 王甲立, 张巍 (2015). 科尔沁沙地固沙植物根系与土壤水分特征研究. 干旱区资源与环境, 29(10), 106-111.] | |
[16] | Plassmann K, Brown N, Jones MLM, Edwards-Jones G (2009). Can soil seed banks contribute to the restoration of dune slacks under conservation management? Applied Vegetation Science, 12, 199-210. |
[17] | Rong YP, Zhao ML, Han GD (2004). Principle and Technology of Grassland Resource Sustainable Utilization. Chemical Industry Press, Beijing. |
[ 戎郁萍, 赵萌莉, 韩国栋 (2004). 草地资源可持续利用原理与技术. 化学工业出版社, 北京.] | |
[18] | Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012). Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135-3144. |
[19] | Shan GL, Xu Z, Ning F, Jiao Y (2009). Influence of seasonal on exclosure on plant and soil characteristics in typical steppe. Acta Prataculturae Sinica, 18, 3-10. |
[ 单贵莲, 徐柱, 宁发, 焦燕 (2009). 围封年限对典型草原植被与土壤特征的影响. 草业学报, 18, 3-10.] | |
[20] | Su YZ, Zhang TH, Li YL, Wang F (2005). Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin Sandy Land, Northern China. Environmental Management, 36, 272-281. |
[21] | Wairore JN, Mureithi SM, Wasonga OV, Nyberg G (2016). Benefits derived from rehabilitating a degraded semi-arid rangeland in private enclosures in West Pokot County, Kenya. Land Degradation & Development, 27, 532-541. |
[22] | Wang W, Liu ZL, Hao DY, Liang CZ (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia Ⅰ. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 20, 449-459. |
[ 王炜, 刘钟龄, 郝敦元, 梁存柱 (1996). 内蒙古草原退化群落恢复演替的研究——I. 退化草原的基本特征与恢复演替动力. 植物生态学报, 20, 449-459.] | |
[23] | Wang Y, Chu L, Daryanto S, Lü L, Ala MS, Wang L (2019). Sand dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Science of the Total Environment, 648, 500-507. |
[24] | Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology, 97, 561-568. |
[25] | Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill Jr J, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Peñuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo Y (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23, 4376-4385. |
[26] | Yan YC, Tang HP, Xin XP, Wang X (2009). Advances in research on the effects of exclosure on grasslands, Acta Ecologica Sinica, 29, 5039-5046. |
[ 闫玉春, 唐海萍, 辛晓平, 王旭 (2009). 围封对草地的影响研究进展. 生态学报, 29, 5039-5046.] | |
[27] | Yassir I, van der Kamp J, Buurman P (2010). Secondary succession after fire in Imperata grasslands of East Kalimantan, Indonesia. Agriculture, Ecosystems & Environment, 137, 172-182. |
[28] | Zhang H, Fu QK, Li FR, Shirato Y (2003). Features of soil-plant system changes in different restorative stages of degraded sandy grasslands. Bulletin of Soil and Water Conservation, 23(6), 1-6. |
[ 张华, 伏乾科, 李锋瑞, Shirato Y (2003). 退化沙质草地自然恢复过程中土壤-植物系统的变化特征. 水土保持通报, 23(6), 1-6.] | |
[29] | Zhang JP, Li YQ, Zhao XY, Zhang TH, She QN, Liu M, Wei SL (2017). Effects of exclosure on soil physicochemical properties and carbon sequestration potential recovery of desertified grassland. Journal of Desert Research, 37, 491-499. |
[ 张建鹏, 李玉强, 赵学勇, 张铜会, 佘倩楠, 刘敏, 魏水莲 (2017). 围封对沙漠化草地土壤理化性质和固碳潜力恢复的影响. 中国沙漠, 37, 491-499.] | |
[30] | Zhang JY, Zhao HL, Zhang TH, Zhao XY (2004). Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land. Acta Phytoecologica Sinica, 28, 86-92. |
[ 张继义, 赵哈林, 张铜会, 赵学勇 (2004). 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态. 植物生态学报, 28, 86-92.] | |
[31] | Zhao HL, Okuro T, Li YL, Zuo XA, Huang G, Zhou RL (2009). Changes of plant community in grazing and restoration processes in Horqin Sandy Land, Inner Mongolia. Journal of Desert Research, 29, 229-235. |
[ 赵哈林, 大黑俊哉, 李玉霖, 左小安, 黄刚, 周瑞莲 (2009). 科尔沁沙质草地植物群落的放牧退化及其自然恢复过程. 中国沙漠, 29, 229-235.] | |
[32] | Zhao HL, Su YZ, Zhou RL (2006). Restoration mechanism of degraded vegetation in sandy areas of northern China. Journal of Desert Research, 26, 323-328. |
[ 赵哈林, 苏永中, 周瑞莲 (2006). 我国北方沙区退化植被的恢复机理. 中国沙漠, 26, 323-328.] | |
[33] | Zhao HL, Zhao XY, Zhang TH, Wu W (2003). Desertification Process and Restoration Mechanism in Horqin Sandy Land. China Ocean Press, Beijing. |
[ 赵哈林, 赵学勇, 张铜会, 吴薇 (2003). 科尔沁沙地沙漠化过程及其恢复机理. 海洋出版社, 北京.] | |
[34] | Zhao LY, Li ZH, Zhao JH, Zhao HL, Zhao XY (2006). Comparison on the difference in soil seed bank between grazed and enclosed grasslands in Horqin Sandy Land. Journal of Plant Ecology (Chinese Version), 30, 617-623. |
[ 赵丽娅, 李兆华, 赵锦慧, 赵哈林, 赵学勇 (2006). 科尔沁沙质草地放牧和围封条件下的土壤种子库. 植物生态学报, 30, 617-623.] | |
[35] | Zhao LY, Zhang XY, Xiong BQ, Zhang J (2017). Influence of fencing and grazing on the soil and standing vegetation changes in Horqin sandy grassland. Ecology and Environmental Sciences, 26, 971-977. |
[ 赵丽娅, 张晓雨, 熊炳桥, 张劲 (2017). 围封和放牧对科尔沁沙质草地植被和土壤的影响. 生态环境学报, 26, 971-977.] | |
[36] | Zhao PP, Li GQ, Shao WS, Jin CQ (2018). Influence of herbivore exclusion on the soil seed bank and the aboveground vegetation characteristics of Agropyron mongolicum dominant desert steppe grassland. Acta Prataculturae Sinica, 27(1), 42-52. |
[ 赵盼盼, 李国旗, 邵文山, 靳长青 (2018). 围封对荒漠草原区沙芦草群落土壤种子库及地上植被的影响. 草业学报, 27(1), 42-52.] | |
[37] | Zuo XA, Wang SK, Zhao XY, Lian J (2014). Scale dependence of plant species richness and vegetation-environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China. Journal of Arid Land, 6, 334-342. |
[38] | Zuo XA, Yue XY, Lv P, Yu Q, Chen M, Zhang J, Luo YQ, Wang SK, Zhang J (2017). Contrasting effects of plant inter- and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem. Ecology and Evolution, 7, 1125-1134. |
[39] | Zuo XA, Zhao XY, Zhao HL, Li YQ, Guo YR, Zhao YP (2007). Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin Sandy Land. Environmental Science, 28, 945-951. |
[ 左小安, 赵学勇, 赵哈林, 李玉强, 郭轶瑞, 赵玉萍 (2007). 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 28, 945-951.] | |
[40] | Zuo XA, Zhao XY, Zhao HL, Zhang TH, Li YL, Wang SK, Li WJ, Powers R (2012). Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China. Geoderma, 173-174, 1-9. |
[1] | Guang-Shuai CUI Tian-Xiang LUO Eryuan LIANG Lin Zhang. Advances in the study of shrub facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[2] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[3] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
[4] | ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land [J]. Chin J Plant Ecol, 2019, 43(11): 979-987. |
[5] | NING Zhi-Ying, LI Yu-Lin, YANG Hong-Ling, ZHANG Zi-Qian. Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2019, 43(1): 46-54. |
[6] | YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plant Ecol, 2018, 42(6): 663-671. |
[7] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2018, 42(5): 595-608. |
[8] | YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(3): 327-336. |
[9] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224. |
[10] | Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963. |
[11] | Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plant Ecol, 2017, 41(8): 862-871. |
[12] | Jian-Rong GUO, Xian-Chong WAN. Circadian rhythm of root pressure in popular and its driving factors [J]. Chin J Plan Ecolo, 2017, 41(3): 369-377. |
[13] | LIU Zhu,YANG Yu-Sheng,SI You-Tao,KANG Gen-Li,ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plant Ecol, 2014, 38(11): 1174-1183. |
[14] | TANG Yi, LIU Zhi-Min. Advances, trends and challenges in seed bank research for sand dune ecosystems [J]. Chin J Plant Ecol, 2012, 36(8): 891-898. |
[15] | DAI Jing-Zhong, WEI Zhi-Jun, HE Nian-Peng, WANG Ruo-Meng, WEN Xue-Hua, ZHANG Yun-Hai, ZHAO Xiao-Ning, YU Gui-Rui. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China [J]. Chin J Plant Ecol, 2012, 36(12): 1226-1236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn