Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 979-987.DOI: 10.17521/cjpe.2019.0149
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
ZHANG Zhi-Guo1,WEI Hai-Xia1,2,3,*()
Received:
2019-06-18
Accepted:
2019-11-15
Online:
2019-11-20
Published:
2020-03-26
Contact:
WEI Hai-Xia
Supported by:
ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land[J]. Chin J Plant Ecol, 2019, 43(11): 979-987.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0149
经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 年降水量 Annual precipitation (mm) | 年蒸发量 Annual pan-evaporation (mm) | 年平均气温 Annual mean temperature (℃) | 土壤全氮含量 Soil total N concentration (mg·g-1) | ||
---|---|---|---|---|---|---|---|---|
固定沙地 Fixed sandy land | 半固定沙地 Semi-fixed sandy land | |||||||
榆林 Yulin | 109.87° | 38.62° | 1 210 | 370 | 1 890 | 8.6 | 0.28 ± 0.049aBC | 0.18 ± 0.075bA |
乌审旗 Uxin Qi | 108.64° | 38.16° | 1 270 | 353 | 2 322 | 8.7 | 0.24 ± 0.012aC | 0.07 ± 0.016bB |
鄂托克前旗 Otog Qianqi | 108.46° | 37.70° | 1 320 | 310 | 2 133 | 8.8 | 0.32 ± 0.052aAB | 0.19 ± 0.038bA |
鄂托克旗 Otog Qi | 108.06° | 39.06° | 1 420 | 264 | 2 450 | 7.6 | 0.37 ± 0.039aA | 0.19 ± 0.018bA |
Table 1 Climatic and soil characteristics of study sites in the Mau Us sandy land
经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 年降水量 Annual precipitation (mm) | 年蒸发量 Annual pan-evaporation (mm) | 年平均气温 Annual mean temperature (℃) | 土壤全氮含量 Soil total N concentration (mg·g-1) | ||
---|---|---|---|---|---|---|---|---|
固定沙地 Fixed sandy land | 半固定沙地 Semi-fixed sandy land | |||||||
榆林 Yulin | 109.87° | 38.62° | 1 210 | 370 | 1 890 | 8.6 | 0.28 ± 0.049aBC | 0.18 ± 0.075bA |
乌审旗 Uxin Qi | 108.64° | 38.16° | 1 270 | 353 | 2 322 | 8.7 | 0.24 ± 0.012aC | 0.07 ± 0.016bB |
鄂托克前旗 Otog Qianqi | 108.46° | 37.70° | 1 320 | 310 | 2 133 | 8.8 | 0.32 ± 0.052aAB | 0.19 ± 0.038bA |
鄂托克旗 Otog Qi | 108.06° | 39.06° | 1 420 | 264 | 2 450 | 7.6 | 0.37 ± 0.039aA | 0.19 ± 0.018bA |
Fig. 1 Relationships between mass-based leaf construction cost and heat of combustion (A), ash content (B) and mass-based leaf nitrogen concentration (C) of leaves within species of Artemisia ordosica along a precipitation gradient.
Fig. 2 Comparisons of mass-based leaf construction cost (A) and area-based leaf construction cost (B) of Artemisia ordosica between two sandy land habitats and among different precipitation areas (mean + SD). Different uppercase letters indicate significant differences in leaf construction cost among different precipitation areas; different lowercase letters indicate significant differences in leaf construction cost between two sandy land habitats.
因变量 Dependent variables | 土壤全氮含量 Soil total nitrogen content (mg·g-1) | 年降水量 Annual precipitation (mm) |
---|---|---|
CCm | 0.28* | 0.03 |
CCa | 0.27* | 0.32* |
Table 2 Partial correlation coefficients for relationships of mass-based leaf construction cost (CCm) and area-based leaf construction cost (CCa) to annual precipitation and total soil nitrogen content within species of Artemisia ordosica along a precipitation gradient
因变量 Dependent variables | 土壤全氮含量 Soil total nitrogen content (mg·g-1) | 年降水量 Annual precipitation (mm) |
---|---|---|
CCm | 0.28* | 0.03 |
CCa | 0.27* | 0.32* |
Fig. 3 Relationships of mass-based leaf construction cost and area-based leaf construction cost to specific leaf area (A, B), area-based leaf nitrogen concentration (C, D) and leaf stable carbon isotopes ratio (δ13C) value (E, F) within species of Artemisia ordosica along a precipitation gradient.
Fig. 4 Relationships of mass-based leaf construction cost (A) and area-based leaf construction cost (B) to area-based leaf nitrogen concentration within species of Artemisia ordosica along a precipitation gradient in the sandy lands of the northern Qinghai-Xizang Plateau.
[1] | Amthor JS ( 1989). Respiration and Crop Productivity. Springer-Verlgag, New York. |
[2] | Atkin OK, Villar R, Cummins WR ( 1993). The ability of several high arctic plant species to utilize nitrate nitrogen under field conditions. Oecologia, 96, 239-245. |
[3] | Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LMVP, DaMatta FM ( 2012). Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. Journal of Experimental Botany, 63, 3071-3082. |
[4] | Chen FY, Luo TX, Zhang L, Deng KM, Tian XY ( 2006). Comparison of leaf construction cost in dominant tree species of the evergreen broad-leaved forest in Jiulian Mountain, Jiangxi Province. Acta Ecologica Sinica, 26, 2485-2493. |
[ 陈飞宇, 罗天祥, 张林, 邓坤枚, 田晓娅 ( 2006). 江西九连山常绿阔叶林主要树种叶建成消耗的比较. 生态学报, 26, 2485-2493.] | |
[5] | Dong ZY, Bai XF, Hou YP, Bu QM ( 2015). Leaf calorific value of 8 tree species in the coastal areas of Jiaodong and cost of construction of leaf biomass and its adaptability. Scientia Silvae Sinicae, 51(3), 8-15. |
[ 董周焱, 柏新富, 侯玉平, 卜庆梅 ( 2015). 胶东滨海8种树木叶片热值、建成成本及其适应能力. 林业科学, 51(3), 8-15.] | |
[6] | Falcão HM, Medeiros CD, Almeida-Cortez J, Santos MG ( 2017). Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theoretical and Experimental Plant Physiology, 29, 95-108. |
[7] | Fortunel C, Fine PVA, Baraloto C ( 2012). Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 26, 1153-1161. |
[8] | Griffin KL ( 1994). Calorimetric estimates of construction cost and their use in ecological studies. Functional Ecology, 8, 551-562. |
[9] | Griffin KL, Thomas RB, Strain BR ( 1993). Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda ( L.) seedlings. Oecologia, 95, 575-580. |
[10] | Griffin KL, Winner WE, Strain BR ( 1996). Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant, Cell & Environment, 19, 729-738. |
[11] | Li FL, Yang L, Zan QJ, Shin PKS, Cheung SG, Wong YS, Tam NoraFY, Lei AP ( 2017). Does energetic cost for leaf construction in Sonneratia change after introduce to another mangrove wetland and differ from native mangrove plants in South China? Marine Pollution Bulletin, 124, 1071-1077. |
[12] | Li YH, Luo TX, Lu Q, Tian XY, Wu B, Yang HH ( 2005). Comparisons of leaf traits among 17 major plant species in shazhuyu sand control experimental station of Qinghai Province. Acta Ecologica Sinica, 25, 994-999. |
[ 李永华, 罗天祥, 卢琦, 田晓娅, 吴波, 杨恒华 ( 2005). 青海省沙珠玉治沙站17种主要植物叶性因子的比较. 生态学报, 25, 994-999.] | |
[13] | Martinez F, Lazo YO, Fernandez-Galiano RM, Merino JA ( 2002). Chemical composition and construction cost for roots of Mediterranean trees, shrub species and grassland communities. Plant, Cell & Environment, 25, 601-608. |
[14] | Matías L, Quero JL, Zamora R, Castro J ( 2012). Evidence for plant traits driving specific drought resistance. A community field experiment. Environmental and Experimental Botany, 81, 55-61. |
[15] | Nagel JM, Griffin KL ( 2001). Construction cost and invasive potential: Comparing Lythrum salicaria ( Lythraceae) with co-occurring native species along pond banks. American Journal of Botany, 88, 2252-2258. |
[16] | Nagel JM, Wang XZ, Lewis JD, Fung HA, Tissue DT, Griffin KL ( 2005). Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium. New Phytologist, 166, 513-523. |
[17] | Penning de Vries FWT, Brunsting AHM, van Laar HH ( 1974). Products, requirements and efficiency of biosynthesis: A quantitative approach. Journal of Theoretical Biology, 45, 339-377. |
[18] | Pitelka LF ( 1978). Variation in caloric values of annual and perennial lupines (Lupinus: Leguminosae). American Midland Naturalist, 99, 454-462. |
[19] | Poorter H ( 1994). Construction costs and payback time of biomass: A whole plant perspective. In: Roy J, Gariner E eds. A Whole Plant Perspective on Carbon-Nitrogen Interactions. SPB Academic Publishing, Hague, The Netherlands. 11-127. |
[20] | Poorter H, de Jong R ( 1999). A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 143, 163-176. |
[21] | Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Körner C ( 2006). Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany, 57, 355-371. |
[22] | Poorter H, Villar R ( 1997). The fate of acquired carbon in plants: Chemical composition and construction costs. In: Bazzaz FA, Grace J eds. Plant Resource Allocation. Elsevier, New York. 39-72. |
[23] | Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ ( 2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17, 82-91. |
[24] | P'yankov VI, Ivanov LA, Lambers H ( 2001). Plant construction cost in the boreal species differing in their ecological strategies. Russian Journal of Plant Physiology, 48, 67-73. |
[25] | Ronzhina DA, Ivanov LA ( 2014). Construction costs and mesostructure of leaves in hydrophytes. Russian Journal of Plant Physiology, 61, 776-783. |
[26] | Shan BQ, He XL ( 2007). Leaf anatomic characteristics of 12 species of Artemisia in Mu Us desert. Journal of Northwest A & F University (Natural Science Edition), 35, 211-217. |
[ 山宝琴, 贺学礼 ( 2007). 毛乌素沙地12种蒿属植物叶的解剖特征. 西北农林科技大学学报(自然科学版), 35, 211-217.] | |
[27] | Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA ( 1997). Leaf form and photosynthesis. BioScience, 47, 785-793. |
[28] | Song LY, Peng CL, Peng SL ( 2009). Comparison of leaf construction costs between three invasive species and three native species in South China. Biodiversity Science, 17, 378-384. |
[ 宋莉英, 彭长连, 彭少麟 ( 2009). 华南地区3种入侵植物与本地植物叶片建成成本的比较. 生物多样性, 17, 378-384.] | |
[29] | Suárez N ( 2005). Leaf construction cost in Avicennia germinans as affected by salinity under field conditions. Biologia Plantarum, 49, 111-116. |
[30] | Tang SB, Zhang LL, Kuang YW, Yan JH, Chen FL ( 2017). Leaf construction costs of 34 dominant species in karst forest, Guizhou. Earth and Environment, 45, 18-24. |
[ 汤松波, 张玲玲, 旷远文, 闫俊华, 陈丰林 ( 2017). 贵州喀斯特森林34个优势种叶片构建成本特征. 地球与环境, 45, 18-24.] | |
[31] | Tu CY, Huangfu CH, Jiang N, Gao SB, Yang DL ( 2013). Comparison of leaf construction cost between invasive plant Flaveria bidentis and its five co-occuring plants. Chinese Journal of Ecology, 32, 2985-2991. |
[ 屠臣阳, 皇甫超河, 姜娜, 高尚宾, 杨殿林 ( 2013). 入侵植物黄顶菊与5种共生植物叶片建成成本的比较. 生态学杂志, 32, 2985-2991.] | |
[32] | Turner NC, Schulze ED, Nicolle D, Schumacher J, Kuhlmann I ( 2008). Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiologia Plantarum, 132, 440-445. |
[33] | Villar R, Merino J ( 2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151, 213-226. |
[34] | Wei H, Wu B, Yang W, Luo T ( 2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Plant Biology, 13, 85-92. |
[35] | Wei HX, Luo TX, Wu B ( 2016). Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Annals of Botany, 118, 541-553. |
[36] | Williams K, Percival F, Merino J, Mooney HA ( 1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell & Environment, 10, 725-734. |
[37] | Wright IJ, Reich PB, Westoby M ( 2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[38] | Wright IJ, Reich PB, Westoby M ( 2003). Least-cost input mixtures of water and nitrogen for photosynthesis. The American Naturalist, 161, 98-111. |
[39] | Wright IJ, Westoby M ( 2002). Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytologist, 155, 403-416. |
[40] | Wu B, Ci LJ ( 2002). Landscape change and desertification development in the Mu Us sandy land, northern China. Journal of Arid Environments, 50, 429-444. |
[41] | Zhang J, Huang YM, Jiao HJ, Xia XD ( 2007). Ecophysiological characteristics of Artemisia ordosica community succession in Mu Us sandy grassland. Journal of Desert Research, 27, 977-983. |
[ 张军, 黄永梅, 焦会景, 夏显东 ( 2007). 毛乌素沙地油蒿群落演替的生理生态学机制. 中国沙漠, 27, 977-983.] | |
[42] | Zhang JZ, Bai XF, Hou YP, Dong ZY, Bu QM ( 2016). Comparison on the competitiveness of the invaded pokeweed with its accompanying species in the coastal protection forest of Shandong Peninsula. Scientia Silvae Sinicae, 52(3), 23-29. |
[ 张靖梓, 柏新富, 侯玉平, 董周焱, 卜庆梅 ( 2016). 山东半岛沿海防护林入侵植物美洲商陆及其伴生种生长竞争力的比较. 林业科学, 52(3), 23-29.] | |
[43] | Zhang L, Luo TX, Liu XS, Wang Y ( 2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica, 43, 72-79. |
[44] | Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q ( 2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506. |
[1] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[2] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[3] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[4] | GUI Zi-Yang, QIN Shu-Gao, HU Zhao, BAI Feng, SHI Hui-Shu, ZHANG Yu-Qing. Foliar condensate absorption and its pathways of two typical shrub species in the Mu Us Desert [J]. Chin J Plant Ecol, 2021, 45(6): 583-593. |
[5] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[6] | ZHOU Ya-Dan, CHEN Shi-Ping, SONG Wei-Min, LU Qi, LIN Guang-Hui. Water-use strategies of two desert plants along a precipitation gradient in northwestern China [J]. Chin J Plant Ecol, 2011, 35(8): 789-800. |
[7] | HE Xue-Li, HOU Xiao-Fei. SPATIO-TEMPORAL DISTRIBUTION OF ARBUSCULAR MYCORRHIZAL FUNGI FROM ARTEMISIA ORDOSICAIN YULIN CITY OF SHAANXI PROVINCE, CHINA [J]. Chin J Plant Ecol, 2008, 32(6): 1373-1377. |
[8] | HE Xue-Li, ZHANG Huan-Shi, ZHAO Li-Li. EFFECTS OF AM FUNGI AND WATER STRESS ON DROUGHT RESISTANCE OF ARTEMISIA ORDOSICA IN DIFFERENT SOILS [J]. Chin J Plant Ecol, 2008, 32(5): 994-1001. |
[9] | WANG Hai-Tao, HE Xing-Dong, GAO Yu-Bao, LU Jian-Guo, XUE Ping-Ping, MA Di. DENSITY IN ARTEMISIA ORDOSICA SUCCESSIONAL COMMUNITY IN RESPONSE TO SPATIAL HETEROGENEITY OF SOIL MOISTURE AND ORGANIC MATTER [J]. Chin J Plant Ecol, 2007, 31(6): 1145-1153. |
[10] | YANG Hong-Xiao, ZHANG Jin-Tun, WU Bo, LI Xiao-Song, ZHANG You-Yan. POINT PATTERN ANALYSIS OF ARTEMISIA ORDOSICA POPULATION IN THE MU US SANDY LAND [J]. Chin J Plant Ecol, 2006, 30(4): 563-570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn