Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 889-898.DOI: 10.17521/cjpe.2019.0214
• Research Articles • Previous Articles Next Articles
LI Xin-Hao1,2,YAN Hui-Juan1,2,WEI Teng-Zhou1,2,ZHOU Wen-Jun1,2,JIA Xin1,2,3,ZHA Tian-Shan1,2,3,*()
Received:
2019-08-07
Accepted:
2019-10-14
Online:
2019-10-20
Published:
2020-02-24
Contact:
ZHA Tian-Shan
Supported by:
LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season[J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0214
Fig. 1 Dynamics in daily means of environmental variables from May 1 to October 1 in the sample plots of Artemisia ordosica in Mau Us Sandyland. P, precipitation; PARa, photosynthetically active radiation; RHa, air relative humidity; SWC, soil water content; Ta, air temperature; VPDa, air saturated water vapor pressure difference.
日期 Date (Month-day) | E (mmol·m-2·s-1) | gs (mol·m2·s-1) | Narea (g·m-2) | SLA (cm2·g-1) | LSP (μmol·m-2·s-1) | Pn (μmol·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|---|---|
05-16 | 14.11 (1.6) | 0.51 (0.03) | 4.29 (1.20) | 61.30 (10.20) | 1 057 (95.1) | 28.78 (5.6) | 1 476.21 (96.7) |
05-22 | 10.60 (2.4) | 0.72 (0.11) | 4.16 (0.41) | 72.77 (12.10) | 1 034 (26.8) | 39.30 (5.1) | 1 787.40 (102.4) |
06-04 | 11.63 (1.9) | 0.38 (0.05) | 4.24 (0.57) | 43.22 (6.07) | 792 (54.7) | 22.40 (4.2) | 1 185.47 (123.7) |
06-13 | 12.84 (1.5) | 0.41 (0.06) | 4.36 (0.81) | 45.55 (5.47) | 784 (43.2) | 22.42 (4.1) | 1 357.43 (111.9) |
06-23 | 16.40 (3.4) | 0.53 (0.09) | 3.85 (0.73) | 61.98 (8.81) | 694 (41.9) | 24.30 (3.6) | 1 260.54 (98.6) |
07-05 | 17.93 (4.1) | 0.48 (0.08) | 3.70 (0.42) | 75.20 (7.34) | 1 119 (80.6) | 21.16 (2.7) | 1 662.20 (89.4) |
07-13 | 16.14 (1.9) | 0.52 (0.12) | 3.61 (0.64) | 60.50 (10.31) | 731 (45.7) | 19.77 (3.4) | 1 319.01 (127.5) |
07-23 | 6.68 (0.9) | 0.37 (0.06) | 3.83 (0.78) | 83.50 (14.81) | 1 234 (56.4) | 33.36 (4.1) | 1 152.30 (131.6) |
08-05 | 5.30 (0.8) | 0.36 (0.09) | 3.83 (0.17) | 60.84 (4.59) | 594 (12.9) | 10.70 (1.9) | 766.48 (234.8) |
08-14 | 8.80 (1.1) | 0.46 (0.10) | 4.04 (0.59) | 56.34 (4.96) | 779 (61.1) | 23.10 (5.1) | 927.46 (194.5) |
08-23 | 12.83 (5.4) | 0.49 (0.14) | 3.95 (0.88) | 58.53 (10.31) | 613 (31.8) | 11.94 (2.7) | 746.55 (84.9) |
09-02 | 14.20 (3.9) | 0.68 (0.22) | 3.91 (0.46) | 72.58 (11.62) | 847 (61.7) | 27.01 (4.1) | 1 148.57 (154.6) |
09-14 | 7.21 (2.1) | 0.63 (0.19) | 3.81 (0.53) | 68.65 (9.96) | 880 (31.1) | 23.34 (4.5) | 1 156.36 (164.8) |
09-23 | 5.68 (1.1) | 0.59 (0.18) | 4.12 (0.33) | 65.02 (8.13) | 764 (26.8) | 20.28 (4.2) | 1 192.83 (147.6) |
Table 1 Gas exchange parameters of Artemisia ordosica in Mau Us Sandyland
日期 Date (Month-day) | E (mmol·m-2·s-1) | gs (mol·m2·s-1) | Narea (g·m-2) | SLA (cm2·g-1) | LSP (μmol·m-2·s-1) | Pn (μmol·m-2·s-1) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|---|---|
05-16 | 14.11 (1.6) | 0.51 (0.03) | 4.29 (1.20) | 61.30 (10.20) | 1 057 (95.1) | 28.78 (5.6) | 1 476.21 (96.7) |
05-22 | 10.60 (2.4) | 0.72 (0.11) | 4.16 (0.41) | 72.77 (12.10) | 1 034 (26.8) | 39.30 (5.1) | 1 787.40 (102.4) |
06-04 | 11.63 (1.9) | 0.38 (0.05) | 4.24 (0.57) | 43.22 (6.07) | 792 (54.7) | 22.40 (4.2) | 1 185.47 (123.7) |
06-13 | 12.84 (1.5) | 0.41 (0.06) | 4.36 (0.81) | 45.55 (5.47) | 784 (43.2) | 22.42 (4.1) | 1 357.43 (111.9) |
06-23 | 16.40 (3.4) | 0.53 (0.09) | 3.85 (0.73) | 61.98 (8.81) | 694 (41.9) | 24.30 (3.6) | 1 260.54 (98.6) |
07-05 | 17.93 (4.1) | 0.48 (0.08) | 3.70 (0.42) | 75.20 (7.34) | 1 119 (80.6) | 21.16 (2.7) | 1 662.20 (89.4) |
07-13 | 16.14 (1.9) | 0.52 (0.12) | 3.61 (0.64) | 60.50 (10.31) | 731 (45.7) | 19.77 (3.4) | 1 319.01 (127.5) |
07-23 | 6.68 (0.9) | 0.37 (0.06) | 3.83 (0.78) | 83.50 (14.81) | 1 234 (56.4) | 33.36 (4.1) | 1 152.30 (131.6) |
08-05 | 5.30 (0.8) | 0.36 (0.09) | 3.83 (0.17) | 60.84 (4.59) | 594 (12.9) | 10.70 (1.9) | 766.48 (234.8) |
08-14 | 8.80 (1.1) | 0.46 (0.10) | 4.04 (0.59) | 56.34 (4.96) | 779 (61.1) | 23.10 (5.1) | 927.46 (194.5) |
08-23 | 12.83 (5.4) | 0.49 (0.14) | 3.95 (0.88) | 58.53 (10.31) | 613 (31.8) | 11.94 (2.7) | 746.55 (84.9) |
09-02 | 14.20 (3.9) | 0.68 (0.22) | 3.91 (0.46) | 72.58 (11.62) | 847 (61.7) | 27.01 (4.1) | 1 148.57 (154.6) |
09-14 | 7.21 (2.1) | 0.63 (0.19) | 3.81 (0.53) | 68.65 (9.96) | 880 (31.1) | 23.34 (4.5) | 1 156.36 (164.8) |
09-23 | 5.68 (1.1) | 0.59 (0.18) | 4.12 (0.33) | 65.02 (8.13) | 764 (26.8) | 20.28 (4.2) | 1 192.83 (147.6) |
日期 Date (Month-day) | Pc | Pb | Pl | Pp |
---|---|---|---|---|
05-16 | 0.210 (0.06) | 0.015 (0.005) | 0.050 (0.010) | 0.275 (0.06) |
05-22 | 0.340 (0.06) | 0.025 (0.006) | 0.006 (0.021) | 0.347 (0.05) |
06-04 | 0.281 (0.02) | 0.014 (0.002) | 0.018 (0.015) | 0.301 (0.03) |
06-13 | 0.282 (0.04) | 0.016 (0.003) | 0.050 (0.010) | 0.297 (0.04) |
06-23 | 0.230 (0.07) | 0.019 (0.003) | 0.013 (0.021) | 0.248 (0.05) |
07-05 | 0.211 (0.06) | 0.030 (0.005) | 0.002 (0.012) | 0.253 (0.06) |
07-13 | 0.206 (0.04) | 0.020 (0.002) | 0.050 (0.012) | 0.276 (0.04) |
07-23 | 0.242 (0.10) | 0.029 (0.006) | 0.075 (0.026) | 0.350 (0.03) |
08-05 | 0.190 (0.01) | 0.023 (0.003) | 0.044 (0.011) | 0.253 (0.02) |
08-14 | 0.282 (0.03) | 0.029 (0.008) | 0.004 (0.011) | 0.311 (0.03) |
08-23 | 0.270 (0.03) | 0.015 (0.002) | 0.030 (0.006) | 0.291 (0.03) |
09-02 | 0.272 (0.06) | 0.018 (0.001) | 0.004 (0.012) | 0.282 (0.04) |
09-14 | 0.261 (0.04) | 0.015 (0.003) | 0.039 (0.010) | 0.308 (0.04) |
09-23 | 0.290 (0.04) | 0.022 (0.006) | 0.006 (0.009) | 0.318 (0.05) |
Table 2 Nitrogen allocation parameters in photosynthetic system of Artemisia ordosica in Mau Us Sandyland
日期 Date (Month-day) | Pc | Pb | Pl | Pp |
---|---|---|---|---|
05-16 | 0.210 (0.06) | 0.015 (0.005) | 0.050 (0.010) | 0.275 (0.06) |
05-22 | 0.340 (0.06) | 0.025 (0.006) | 0.006 (0.021) | 0.347 (0.05) |
06-04 | 0.281 (0.02) | 0.014 (0.002) | 0.018 (0.015) | 0.301 (0.03) |
06-13 | 0.282 (0.04) | 0.016 (0.003) | 0.050 (0.010) | 0.297 (0.04) |
06-23 | 0.230 (0.07) | 0.019 (0.003) | 0.013 (0.021) | 0.248 (0.05) |
07-05 | 0.211 (0.06) | 0.030 (0.005) | 0.002 (0.012) | 0.253 (0.06) |
07-13 | 0.206 (0.04) | 0.020 (0.002) | 0.050 (0.012) | 0.276 (0.04) |
07-23 | 0.242 (0.10) | 0.029 (0.006) | 0.075 (0.026) | 0.350 (0.03) |
08-05 | 0.190 (0.01) | 0.023 (0.003) | 0.044 (0.011) | 0.253 (0.02) |
08-14 | 0.282 (0.03) | 0.029 (0.008) | 0.004 (0.011) | 0.311 (0.03) |
08-23 | 0.270 (0.03) | 0.015 (0.002) | 0.030 (0.006) | 0.291 (0.03) |
09-02 | 0.272 (0.06) | 0.018 (0.001) | 0.004 (0.012) | 0.282 (0.04) |
09-14 | 0.261 (0.04) | 0.015 (0.003) | 0.039 (0.010) | 0.308 (0.04) |
09-23 | 0.290 (0.04) | 0.022 (0.006) | 0.006 (0.009) | 0.318 (0.05) |
Fig. 3 Seasonal changes in nitrogen use efficiency (NUE), water use efficiency (WUE), light use efficiency (LUE) of Artemisia ordosica in Mau Us Sandyland (mean ± SD). The horizontal dashed lines in the figure are the average values of the corresponding resource use efficiency.
a | b | c | d | i | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|
E | -0.004 5 (0.774 5) | 21.130 0 (9.446 3) | 347.4 | 0.083 3 | 0.998 9 | 50.95 | |||
Tl | -0.567 3 (5.304 0) | 37.450 0 (2.940 0) | 224.7 | 0.353 1 | 0.025 1 | 44.86 | |||
PARl | -0.007 6 (0.010 6) | 29.320 0 (11.833 7) | 288.6 | 0.169 2 | 0.144 0 | 48.36 | |||
Narea | -0.125 7 (4.862 4) | 21.560 0 (18.830 0) | 347.3 | 0.000 3 | 0.956 0 | 50.96 | |||
E × Tl | 0.373 2 (0.684 5) | -0.689 4 (0.529 1) | 36.698 2 (14.125 5) | 198.7 | 0.427 9 | 0.046 3 | 45.14 | ||
E × PARl | 0.892 3 (0.979 6) | -0.017 8 (0.014 7) | 30.043 7 (10.716 9) | 211.4 | 0.391 5 | 0.065 1 | 46.01 | ||
E × Narea | -0.006 7 (0.824 3) | -0.130 0 (5.157 6) | 21.650 4 (22.947 2) | 347.3 | 0.000 3 | 0.998 4 | 52.96 | ||
Tl × PARl | -0.526 2 (0.648 0) | -0.001 3 (0.012 6) | 37.658 2 (15.047 4) | 223.7 | 0.356 1 | 0.088 8 | 46.80 | ||
Tl × Narea | -0.581 4 (0.510 8) | -0.796 4 (4.135 7) | 40.900 1 (23.240 6) | 221.1 | 0.363 5 | 0.083 4 | 46.63 | ||
Narea × PARl | -0.776 6 (4.740 7) | -0.008 0 (0.011 4) | 32.677 2 (23.971 2) | 285.2 | 0.178 9 | 0.338 2 | 52.20 | ||
E × Tl × PARl | 0.824 8 (0.903 7) | -0.478 1 (0.581 3) | -0.011 3 (0.015 7) | 37.566 1 (13.437 9) | 158.2 | 0.544 5 | 0.041 8 | 43.95 | |
E × Tl × Narea | 0.367 4 (0.722 6) | -0.699 8 (0.561 1) | -0.696 5 (4.138 5) | 39.723 7 (23.345 1) | 195.9 | 0.435 9 | 0.112 3 | 46.94 | |
E × PARl × Narea | 0.909 9 (1.027 7) | -0.018 5 (0.015 7) | -1.043 5 (4.281 2) | 34.571 8 (21.699 6) | 205.3 | 0.408 9 | 0.138 7 | 47.60 | |
Tl × PARl × Narea | -0.529 9 (0.681 9) | -0.001 7 (0.013 4) | -0.871 6 (4.416 7) | 41.487 4 (25.038 0) | 219.5 | 0.368 3 | 0.186 7 | 48.53 | |
E × Tl × PARl × Narea | 0.843 1 (0.948 1) | -0.481 7 (0.608 5) | -0.012 0 (0.016 7) | -1.110 3 (3.935 1) | 42.441 8 (22.281 5) | 151.4 | 0.564 2 | 0.084 3 | 45.33 |
Table 3 Fitting parameters of the relationship between photosynthesis rate of Artemisia ordosica and environmental variables in Mau Us Sandyland
a | b | c | d | i | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|
E | -0.004 5 (0.774 5) | 21.130 0 (9.446 3) | 347.4 | 0.083 3 | 0.998 9 | 50.95 | |||
Tl | -0.567 3 (5.304 0) | 37.450 0 (2.940 0) | 224.7 | 0.353 1 | 0.025 1 | 44.86 | |||
PARl | -0.007 6 (0.010 6) | 29.320 0 (11.833 7) | 288.6 | 0.169 2 | 0.144 0 | 48.36 | |||
Narea | -0.125 7 (4.862 4) | 21.560 0 (18.830 0) | 347.3 | 0.000 3 | 0.956 0 | 50.96 | |||
E × Tl | 0.373 2 (0.684 5) | -0.689 4 (0.529 1) | 36.698 2 (14.125 5) | 198.7 | 0.427 9 | 0.046 3 | 45.14 | ||
E × PARl | 0.892 3 (0.979 6) | -0.017 8 (0.014 7) | 30.043 7 (10.716 9) | 211.4 | 0.391 5 | 0.065 1 | 46.01 | ||
E × Narea | -0.006 7 (0.824 3) | -0.130 0 (5.157 6) | 21.650 4 (22.947 2) | 347.3 | 0.000 3 | 0.998 4 | 52.96 | ||
Tl × PARl | -0.526 2 (0.648 0) | -0.001 3 (0.012 6) | 37.658 2 (15.047 4) | 223.7 | 0.356 1 | 0.088 8 | 46.80 | ||
Tl × Narea | -0.581 4 (0.510 8) | -0.796 4 (4.135 7) | 40.900 1 (23.240 6) | 221.1 | 0.363 5 | 0.083 4 | 46.63 | ||
Narea × PARl | -0.776 6 (4.740 7) | -0.008 0 (0.011 4) | 32.677 2 (23.971 2) | 285.2 | 0.178 9 | 0.338 2 | 52.20 | ||
E × Tl × PARl | 0.824 8 (0.903 7) | -0.478 1 (0.581 3) | -0.011 3 (0.015 7) | 37.566 1 (13.437 9) | 158.2 | 0.544 5 | 0.041 8 | 43.95 | |
E × Tl × Narea | 0.367 4 (0.722 6) | -0.699 8 (0.561 1) | -0.696 5 (4.138 5) | 39.723 7 (23.345 1) | 195.9 | 0.435 9 | 0.112 3 | 46.94 | |
E × PARl × Narea | 0.909 9 (1.027 7) | -0.018 5 (0.015 7) | -1.043 5 (4.281 2) | 34.571 8 (21.699 6) | 205.3 | 0.408 9 | 0.138 7 | 47.60 | |
Tl × PARl × Narea | -0.529 9 (0.681 9) | -0.001 7 (0.013 4) | -0.871 6 (4.416 7) | 41.487 4 (25.038 0) | 219.5 | 0.368 3 | 0.186 7 | 48.53 | |
E × Tl × PARl × Narea | 0.843 1 (0.948 1) | -0.481 7 (0.608 5) | -0.012 0 (0.016 7) | -1.110 3 (3.935 1) | 42.441 8 (22.281 5) | 151.4 | 0.564 2 | 0.084 3 | 45.33 |
SWC10 | SWC30 | Tl | VPDl | ||
---|---|---|---|---|---|
NUE | R2 | 0.38 | 0.21 | -0.30 | -0.29 |
p | 0.176 9 | 0.461 3 | 0.031 0 | 0.025 5 | |
WUE | R2 | -0.08 | 0.07 | -0.42 | -0.31 |
p | 0.772 0 | 0.804 6 | 0.010 9 | 0.036 9 | |
LUE | R2 | 0.001 | 0.12 | -0.28 | -0.27 |
p | 0.996 4 | 0.679 2 | 0.051 3 | 0.058 0 |
Table 4 Correlation between nitrogen use efficiency (NUE), water use efficiency (WUE), light use efficiency (LUE) and environmental variables of Artemisia ordosica in Mau Us Sandyland
SWC10 | SWC30 | Tl | VPDl | ||
---|---|---|---|---|---|
NUE | R2 | 0.38 | 0.21 | -0.30 | -0.29 |
p | 0.176 9 | 0.461 3 | 0.031 0 | 0.025 5 | |
WUE | R2 | -0.08 | 0.07 | -0.42 | -0.31 |
p | 0.772 0 | 0.804 6 | 0.010 9 | 0.036 9 | |
LUE | R2 | 0.001 | 0.12 | -0.28 | -0.27 |
p | 0.996 4 | 0.679 2 | 0.051 3 | 0.058 0 |
[1] |
.Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants—An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392.
DOI URL |
[2] | .Burnham KP, Anderson DR (2002). Model selection and multi- model inference: A practical information. In: The Oretic Approach. 2nd edn. Springer-Verlag, New York, USA. |
[3] |
.Burnham KP, Anderson DR, Huyvaert KP (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons.Behavioral Ecology and Sociobiology, 65, 23-35.
DOI URL |
[4] | .Chaves MM, Osório J, Pereira JS (2004). Water use efficiency and photosynthesis. Plant Biology, 42-74. |
[5] |
.Chen ZH, Zha TS, Jia X, Wu YJ, Wu B, Zhang YQ, Guo JB, Qin SG, Chen GP, Peltola H (2015). Leaf nitrogen is closely coupled to phenophases in a desert shrub ecosystem in China.Journal of Arid Environments, 122, 124-131.
DOI URL |
[6] | .Cowan IR, Farquhar GD (1977). Stomatal function in relation leaf metabolism and environment. In: Jennings DH ed. Integration of Activity in the Higher Plant. Cambridge University Press, Cambridge, UK. 471-505. |
[7] |
.Han Q, Kawasaki T, Nakano T, Chiba Y (2004). Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiology, 24, 737-744.
DOI URL PMID |
[8] |
.Haque MS, Kjaer KH, Rosenqvist E, Sharma DK, Ottosen CO (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environmental and Experimental Botany, 99, 1-8.
DOI URL |
[9] |
.Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2.Plant, Cell and Environment, 15, 271-282.
DOI URL |
[10] | .Kang BW, Liu JJ, Sun JH, Li YF (2010). Study on root distribution of Artemisa ordosica in the Mu Us Sandy land. Research of Soil and Water Conservation, 17, 119-123. |
[康博文, 刘建军, 孙建华, 李岩峰 (2010). 陕北毛乌素沙漠黑沙蒿根系分布特征研究. 水土保持研究, 17, 119-123.] | |
[11] | .Li JC, Sun Y, Zhao G, Pan ZX, Zhang L, Yue XW, Fan JC, Wang YD, He GX, Fan B, Fang HD (2018). Light response characteristics of photosynthesis of sweet corn under different soil moisture at the filling stage in dry-hot valley.Chinese Journal of Tropical Crops, 39, 2169-2175. |
[李建查, 孙毅, 赵广, 潘志贤, 张雷, 岳学文, 范建成, 王艳丹, 何光熊, 樊博, 方海东 (2018). 干热河谷不同土壤水分下甜玉米灌浆期光合作用光响应特征. 热带作物学报, 39, 2169-2175.] | |
[12] | .Liu HX, Guo ZG, Guo XH, Zhou XR, Hui WS, Wang KY (2009). Effect of addition of silicon on water use efficiency and yield components of alfalfa under the different soil moisture.Acta Ecologica Sinica, 29, 3075-3080. |
[刘慧霞, 郭正刚, 郭兴华, 周雪荣, 惠文森, 王康英 (2009). 不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响. 生态学报, 29, 3075-3080.] | |
[13] |
.Loustau D, Brahim MB, Gaudillere JP, Dreyer E (1999). Photosynthetic responses to phosphorus nutrition in two-year- old maritime pine seedlings.Tree Physiology, 19, 707-715.
DOI URL PMID |
[14] |
.Ma JY, Zha TS, Jia X, Tian Y, Bourque CPA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China.Agricultural and Forest Meteorology, 263, 334-345.
DOI URL |
[15] | .Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data.Plant, Cell & Environment, 25, 1167-1179. |
[16] | .Meng P, Li YL, You GC, Wang M (2012). Characteristics of photosynthetic productivity and water-consumption for transpiration inPinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica. Acta Ecologica Sinica, 32, 3050-3060. |
[孟鹏, 李玉灵, 尤国春, 王曼 (2012). 彰武松、樟子松光合生产与蒸腾耗水特性. 生态学报, 32, 3050-3060.] | |
[17] | .Niinemets Ü, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment, 20, 845-866. |
[18] |
.Pei B, Zhang GC, Zhang SY, Wu Q, Xu ZQ (2013). Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings. Acta Ecologica Sinica, 33, 1386-1396.
DOI URL |
[裴斌, 张光灿, 张淑勇, 吴芹, 徐志强 (2013). 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响. 生态学报, 33, 1386-1396.]
DOI URL |
|
[19] |
.Porcar-Castell A (2011). A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiologia Plantarum, 143, 139-153.
DOI URL |
[20] |
.Reich PB, Walters MB, Tabone TJ (1989). Response of Ulmus americana seedlings to varying nitrogen and water status. 2. Water and nitrogen use efficiency in photosynthesis. Tree Physiology, 5, 173-184.
DOI URL PMID |
[21] | .Ruan CJ, Li DQ (2001). Stomatal conductance and influence factors of seabuckthorn in Loess Hilly Region.Acta Botanica Boreali-Occidentalia Sinica, 21, 30-36. |
[阮成江, 李代琼 (2001). 黄土丘陵区沙棘气孔导度及其影响因子. 西北植物学报, 21, 30-36.] | |
[22] |
.Schimel DS (2010). Drylands in the earth system.Science, 327, 418-419.
DOI URL PMID |
[23] | .Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects.Acta Ecologica Sinica, 35, 5909-5919. |
[史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[24] | .Sun Y, Xu WJ, Fan AL (2006). Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light.Chinese Journal of Applied Ecology, 17, 399-402. |
[孙艳, 徐伟君, 范爱丽 (2006). 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响. 应用生态学报, 17, 399-402.] | |
[25] | .Tang JC, Liu P, Shi ZM (2016). Photosynthetic characteristics of five tree species in southern subtropical China.Chinese Journal of Ecology, 35, 2341-2347. |
[唐敬超, 刘萍, 史作民 (2016). 南亚热带五种树种幼苗光合特征. 生态学杂志, 35, 2341-2347.] | |
[26] |
.Tarvainen L, Wallin G, Räntfors M, Uddling J (2013). Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.Oecologia, 173, 1179-1189.
DOI URL |
[27] |
.Tarvainen L, Räntfors M, Wallin G (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.Tree Physiology, 34, 488-502.
DOI URL |
[28] |
.Tarvainen L, Räntfors M, Wallin G (2015). Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand.Plant, Cell & Environment, 38, 2487-2496.
DOI URL PMID |
[29] |
.Troeng E, Linder S (1982). Gas exchange in a 20-year-old stand of scots pine. I. Net photosynthesis of current and one-year-old shoots within and between seasons.Physiologia Plantarum, 54, 7-14.
DOI URL |
[30] | .Wang JY, Zhao YS, Yang HR, Yan Y (2006). Response to soil drought stress of photosynthesis and transpiration of Poplar ( Populus alba × Populus berolinensis). Science of Soil and Water Conservation, 4, 56-61. |
[王晶英, 赵雨森, 杨海如, 闫毅 (2006). 银中杨光合作用和蒸腾作用对土壤干旱的响应. 中国水土保持科学, 4, 56-61.] | |
[31] |
.Wang KY, Kellomäki S, Li C, Zha T (2003). Light and water- use efficiencies of pine shoots exposed to elevated carbon dioxide and temperature.Annals of Botany, 92, 53-64.
DOI URL PMID |
[32] | .Wang YL, Liu J, Li WB, Li F (2015). Study on characteristics in photosynthesis, transpiration and water use efficiency of Tamarix hispida Willd. in the lower reaches of the Tarim river. Xinjiang Agricultural Sciences, 52, 292-299. |
[王燕凌, 刘君, 李文兵, 李芳 (2015). 塔里木河下游刚毛柽柳光合作用、蒸腾作用及水分利用效率特性研究. 新疆农业科学, 52, 292-299.] | |
[33] | .Wang Y, Lü GH, Gao LJ, Ren ML, Su Q, Sun LJ (2013). Stomatal conductance characteristics of desert species Poacynum pictum(Schrenk.) Baill of and the impact factors. Journal of Arid Land Resources and Environment, 27, 158-163. |
[王芸, 吕光辉, 高丽娟, 任曼丽, 苏前, 孙丽君 (2013). 荒漠植物白麻气孔导度特征及其影响因子研究. 干旱区资源与环境, 27, 158-163.] | |
[34] | .Zhang WQ, He KN, Wang ZN, Tian JH, Yin J (2006). Effects of light radiation intensity on photosynthetic characteristics and water use efficiency to seedlings of Platycladus orientalis and Pinus tabulaeformis. Science of Soil and Water Conservation, 4, 108-113. |
[张卫强, 贺康宁, 王正宁, 田晶会, 尹婧 (2006). 光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响. 中国水土保持科学, 4, 108-113.] |
[1] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[4] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[5] | FENG Xu-Fei, LEI Zhang-Ying, ZHANG Yu-Jie, XIANG Dao, YANG Ming-Feng, ZHANG Wang-Feng, ZHANG Ya-Li. Effect of leaf nitrogen allocation on photosynthetic nitrogen use efficiency at flowering and boll stage of Gossypium spp. [J]. Chin J Plant Ecol, 2023, 47(11): 1600-1610. |
[6] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[7] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[8] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[9] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[10] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[11] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[12] | GUI Zi-Yang, QIN Shu-Gao, HU Zhao, BAI Feng, SHI Hui-Shu, ZHANG Yu-Qing. Foliar condensate absorption and its pathways of two typical shrub species in the Mu Us Desert [J]. Chin J Plant Ecol, 2021, 45(6): 583-593. |
[13] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[14] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[15] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn