Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (9): 1225-1233.DOI: 10.17521/cjpe.2022.0478
Special Issue: 全球变化与生态系统; 光合作用; 碳循环
• Research Articles • Previous Articles Next Articles
LI Wei-Bin1,2(), ZHANG Hong-Xia3, ZHANG Yu-Shu1, CHEN Ni-Na1,*()
Received:
2022-11-28
Accepted:
2023-06-27
Online:
2023-09-20
Published:
2023-09-28
Contact:
* CHEN Ni-Na(Supported by:
LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China[J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0478
变量 Variable | 单位 Unit | 输入值 Input value | 数据来源 Data source |
---|---|---|---|
气象数据 Meteorological data | |||
太阳辐射 Solar radiation | W·m-2 | 2003-2010年气候数据 Meteorological data from 2003 to 2010 | |
降水量 Precipitation | mm | ||
风速 Wind speed | m·s-1 | ||
大气温度 Air temperature | ℃ | ||
土壤温度 Soil temperature | ℃ | ||
饱和水汽压差 Vapor pressure deficit | kPa | ||
样地参数 Site parameters | |||
纬度 Latitude | °(N) | 42.4 | - |
经度 Longitude | °(E) | 128.1 | - |
海拔 Altitude | m | 740 | - |
单位土地面积的基径面积 Basal area to ground area | m2·hm-2 | 97.6 | Wang et al., |
植物参数1) Plant parameters1) | |||
树高 Tree height | m | 22.2/24.3 | Liang & Liu, |
叶宽 Leaf width | m | 0.001 3/0.051 9 | - |
25 ℃最大羧化速率 Maximum carboxylation rate of 25 °C | μmol·m-2·s-1 | 68.8/86.3 | Liang & Liu, |
叶片角度 Leaf angle parameter | - | 1 (随机 Random leaf orientation) | Sperry et al., |
冠层叶面积指数 Canopy leaf area index | - | 7.7 | Zhou et al., |
土壤参数 Soil parameters | |||
土层数 Number of soil layers | - | 5 | Sperry et al., |
岩石比例 Fraction of soil volume in rocks | - | 0 | Li et al., |
Table 1 Main input parameters and driving variables of the Sperry model
变量 Variable | 单位 Unit | 输入值 Input value | 数据来源 Data source |
---|---|---|---|
气象数据 Meteorological data | |||
太阳辐射 Solar radiation | W·m-2 | 2003-2010年气候数据 Meteorological data from 2003 to 2010 | |
降水量 Precipitation | mm | ||
风速 Wind speed | m·s-1 | ||
大气温度 Air temperature | ℃ | ||
土壤温度 Soil temperature | ℃ | ||
饱和水汽压差 Vapor pressure deficit | kPa | ||
样地参数 Site parameters | |||
纬度 Latitude | °(N) | 42.4 | - |
经度 Longitude | °(E) | 128.1 | - |
海拔 Altitude | m | 740 | - |
单位土地面积的基径面积 Basal area to ground area | m2·hm-2 | 97.6 | Wang et al., |
植物参数1) Plant parameters1) | |||
树高 Tree height | m | 22.2/24.3 | Liang & Liu, |
叶宽 Leaf width | m | 0.001 3/0.051 9 | - |
25 ℃最大羧化速率 Maximum carboxylation rate of 25 °C | μmol·m-2·s-1 | 68.8/86.3 | Liang & Liu, |
叶片角度 Leaf angle parameter | - | 1 (随机 Random leaf orientation) | Sperry et al., |
冠层叶面积指数 Canopy leaf area index | - | 7.7 | Zhou et al., |
土壤参数 Soil parameters | |||
土层数 Number of soil layers | - | 5 | Sperry et al., |
岩石比例 Fraction of soil volume in rocks | - | 0 | Li et al., |
Fig. 2 Changes of CO2 flux in a broadleaf Korean pine forest in Changbai Mountains under different warming scenarios from 2003 to 2010. A, Daily average dynamics. B, Annual cumulative carbon sequestration. *, p < 0.05; ***, p < 0.001; ns, p > 0.05.
Fig. 3 Water use efficiency of a broadleaf Korean pine forest in Changbai Mountains under different warming scenarios from 2003 to 2010. ns, p > 0.05.
Fig. 4 Relationship between changes in model simulated CO2 flux and changes in simulated percentage of water conductivity loss (PLC) under different warming scenarios under ambient conditions in Changbai Mountains from 2003 to 2010.
[1] |
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285-1291.
DOI |
[2] |
Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP, Houghton RA, Myneni RB, Pan YD, Sarmiento JL, Serota N, Shevliakova E, Tans P, et al. (2015). Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 112, 15591-15596.
DOI PMID |
[3] |
Anderegg WRL, Kane JM, Anderegg LDL (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36.
DOI |
[4] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[5] |
Bai E, Li SL, Xu W, Li WH, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL |
[6] |
Bai WM, Xia JY, Wan SQ, Zhang WH, Li LH (2012). Day and night warming have different effect on root lifespan. Biogeosciences, 9, 375-384.
DOI URL |
[7] |
Cao J, Zhao B, Gao LS, Li J, Li ZS, Zhao XH (2018). Increasing temperature sensitivity caused by climate warming, evidence from Northeastern China. Dendrochronologia, 51, 101-111.
DOI URL |
[8] |
Das S, Bhattacharyya P, Adhya TK (2011). Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environmental Monitoring and Assessment, 182, 555-569.
DOI URL |
[9] |
Du Y, Lu RL, Xia JY (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536.
DOI URL |
[10] | Gong XW, Hao GY (2023). The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. Science of the Total Environment, 856, 159017. DOI: 10.1016/j.scitotenv.2022.159017. |
[11] |
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550-1566.
DOI PMID |
[12] |
Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD (2022). Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73, 673-702.
DOI PMID |
[13] | IPCC (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. [2022-11-10]. https://www.ipcc.ch/srccl/. |
[14] | Li WB (2017). The Influence of Tree Species on Small Scale Spatial Heterogeneity of Soil Respiration in a Temperate Mixed Forest. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[李伟斌 (2017). 树种对针阔混交林土壤呼吸空间异质性的影响. 博士学位论文, 中国科学院大学, 北京.] | |
[15] |
Li WB, Bai Z, Jin CJ, Zhang XZ, Guan DX, Wang AZ, Yuan FH, Wu JB (2017). The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest. Science of the Total Environment, 590-591, 242-248.
DOI URL |
[16] | Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB (2018). The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 38, 1706-1723. |
[17] | Li WB, Jin CJ, Jing YL, Wu JB, Yuan FH, Guan DX, Wang AZ (2014). Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains. Journal of Northeast University, 42(12), 89-93. |
[李伟斌, 金昌杰, 井艳丽, 吴家兵, 袁凤辉, 关德新, 王安志 (2014). 长白山阔叶红松林土壤呼吸对氮沉降增加的响应. 东北林业大学学报, 42(12), 89-93.] | |
[18] |
Li WB, McDowell NG, Zhang HX, Wang WZ, MacKay DS, Leff R, Zhang PP, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu CG, et al. (2022). The influence of increasing atmospheric CO2, temperature, and vapor pressure deficit on seawater-induced tree mortality. New Phytologist, 235, 1767-1779.
DOI URL |
[19] |
Li WB, Zhang HX, Huang GZ, Liu RX, Wu HJ, Zhao CY, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
DOI URL |
[20] |
Liang JY, Xia JY, Liu LL, Wan SQ (2013). Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 6, 437-447.
DOI URL |
[21] | Liang XY, Liu SR (2019). In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, northeastern China. Chinese Journal of Applied Ecology, 30, 1494-1502. |
[梁星云, 刘世荣 (2019). 基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征. 应用生态学报, 30, 1494-1502.]
DOI |
|
[22] | Liu YL, Parolari AJ, Kumar M, Huang CW, Katul GG, Porporato A (2017). Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proceedings of the National Academy of Sciences of the United States of America, 114, 9918-9923. |
[23] |
Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
DOI URL |
[罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI |
|
[24] |
McDowell NG, Allen CD (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672.
DOI |
[25] | McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, eaaz9463. DOI: 10.1126/science.aaz946. |
[26] |
McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[27] | McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, Cochard H, de Cáceres M, De Kauwe MG, Grossiord C, Hammond WM, et al. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3, 294-308. |
[28] |
Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Peñuelas J, Zhang GX, Vicca S, Wan SQ, Wang SP, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
DOI |
[29] |
Pivovaroff AL, McDowell NG, Rodrigues TB, Brodribb T, Cernusak LA, Choat B, Grossiord C, Ishida Y, Jardine KJ, Laurance S, Leff R, Li WB, Liddell M, MacKay DS, Pacheco H, et al. (2021). Stability of tropical forest tree carbon-water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 27, 6454-6466.
DOI PMID |
[30] |
Prieto I, Querejeta JI (2020). Simulated climate change decreases nutrient resorption from senescing leaves. Global Change Biology, 26, 1795-1807.
DOI PMID |
[31] | Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, MacKay DS, Wang YJ, Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40, 816-830. |
[32] | Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang YJ, Tai XN (2019). The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences of the United States of America, 116, 25734-25744. |
[33] |
Tan JG, Piao SL, Chen AP, Zeng ZZ, Ciais P, Janssens IA, Mao JF, Myneni RB, Peng SS, Peñuelas J, Shi XY, Vicca S (2015). Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Global Change Biology, 21, 377-387.
DOI PMID |
[34] | Vose RS, Easterling DR, Gleason B (2005). Maximum and minimum temperature trends for the globe: an update through 2004. Geophysical Research Letters, 32, L23822. DOI: 10.1029/2005GL024379. |
[35] |
Wan SQ, Xia JY, Liu WX, Niu SL (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
PMID |
[36] | Wang M, Guan DX, Wang YS, Hao ZQ, Liu YQ (2006). Estimation on ecosystem productivity of the broad leaved-Korean pine forest in Changbai Mountain. Science in China: Earth Science, 36(Suppl. I), 70-82. |
[王淼, 关德新, 王跃思, 郝占庆, 刘亚琴 (2006). 长白山红松针阔叶混交林生态系统生产力的估算. 中国科学: 地球科学, 36(增I), 70-82.] | |
[37] |
Wu J, Serbin SP, Ely KS, Wolfe BT, Dickman LT, Grossiord C, Michaletz ST, Collins AD, Detto M, McDowell NG, Wright SJ, Rogers A (2020). The response of stomatal conductance to seasonal drought in tropical forests. Global Change Biology, 26, 823-839.
DOI PMID |
[38] |
Xia JY, Chen JQ, Piao SL, Ciais P, Luo YQ, Wan SQ (2014). Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 7, 173-180.
DOI |
[39] |
Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514.
DOI URL |
[夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.]
DOI |
|
[40] |
Zhang HX, McDowell NG, Adams HD, Wang AZ, Wu JB, Jin CJ, Tian JY, Zhu K, Li WB, Zhang YS, Yuan FH, Guan DX (2020a). Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. Tree Physiology, 40, 230-244.
DOI URL |
[41] |
Zhang HX, Yuan FH, Wu JB, Jin CJ, Pivovaroff AL, Tian JY, Li WB, Guan DX, Wang AZ, McDowell NG (2020b). Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. Tree Physiology, 41, 190-205.
DOI URL |
[42] | Zhang N, Yu GR, Zhao SD, Yu ZL (2003). Carbon budget of ecosystem in Changbai Mountain Natural Reserve. Chinese Journal of Enviromental Science, 24, 24-32. |
[张娜, 于贵瑞, 赵士洞, 于振良 (2003). 长白山自然保护区生态系统碳平衡研究. 环境科学, 24, 24-32.] | |
[43] |
Zhang XH, Qin HY, Huang YL, Huang YN, Qiao ZH (2022). Intertemporal allocation and cost of forest carbon sequestration in China under the carbon neutrality target. Chinese Journal of Applied Ecology, 33, 2413-2421.
DOI |
[张祥华, 秦会艳, 黄颖利, 黄亚楠, 乔振华 (2022). 碳中和目标下中国森林固碳量跨期分配及成本. 应用生态学报, 33, 2413-2421.]
DOI |
|
[44] |
Zhang XZ, Shen ZX, Fu G (2015). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[45] | Zhao J, Du ZQ, Wu ZT, Zhang H, Guo N, Ma ZT, Liu XJ (2018). Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China’s temperate zone. Acta Geographica Sinica, 73, 395-404. |
[赵杰, 杜自强, 武志涛, 张红, 郭娜, 马志婷, 刘雪佳 (2018). 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 73, 395-404.]
DOI |
|
[46] | Zhou YY, Tang SH, Zhu QJ, Li JT, Sun R, Liu SH (2003). Measurement of LAI in Changbai Mountains Nature Reserve and its result. Resources Science, 25(6), 38-42. |
[周宇宇, 唐世浩, 朱启疆, 李江涛, 孙睿, 刘素红 (2003). 长白山自然保护区叶面积指数测量及结果. 资源科学, 25(6), 38-42.] | |
[47] |
Zhu EX, Cao ZJ, Jia J, Liu CZ, Zhang ZH, Wang H, Dai GH, He JS, Feng XJ (2021). Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27, 2241-2253.
DOI PMID |
[48] | Zhu JT, Zheng JH (2022). Effects of diurnal asymmetric warming on terrestrial ecosystems. Chinese Journal of Ecology, 41, 777-783. |
[朱军涛, 郑家禾 (2022). 昼夜不对称变暖对陆地生态系统的影响. 生态学杂志, 41, 777-783.] |
[1] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[2] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[3] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[4] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[5] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[6] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[7] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[8] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[9] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[10] | HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China [J]. Chin J Plant Ecol, 2021, 45(12): 1350-1364. |
[11] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[12] | ZHOU Xiong, SUN Peng-Sen, ZHANG Ming-Fang, LIU Shi-Rong. Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China [J]. Chin J Plant Ecol, 2020, 44(6): 628-641. |
[13] | FENG Zhao-Zhong, LI Pin, ZHANG Guo-You, LI Zheng-Zhen, PING Qin, PENG Jin-Long, LIU Shuo. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: problems and prospective [J]. Chin J Plant Ecol, 2020, 44(5): 461-474. |
[14] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[15] | Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn