Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (12): 1203-1214.DOI: 10.17521/cjpe.2020.0318
• Research Articles • Previous Articles Next Articles
LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu*()
Received:
2020-09-21
Accepted:
2020-11-04
Online:
2020-12-20
Published:
2021-04-01
Contact:
LIU Ju-Xiu
Supported by:
LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming[J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0318
Fig. 1 Leaf anatomical structure and stomatal characteristics of four tree species in southern subtropical evergreen broad-leaved forest. CT, cuticle thickness; LET, lower epidermis thickness; LT, leaf thickness; PT, palisade tissue thickness; ST, spongy tissue thickness; UET, upper epidermis thickness.
Fig. 3 Effects of warming on stomatal conductance (Gs), stomatal density (SD), and stomatal size (SS) of four tree species in southern subtropical evergreen broad-leaved forest (mean + SE, n = 6).*, p < 0.05; **, p < 0.01; ***, p < 0.001.
因子 Item | 气孔导度 Gs | 气孔密度 SD | 气孔大小 SS | 叶片厚度 LT | 栅栏组织厚度 PT | 海绵组织厚度 ST | 上表皮 厚度 UET | 下表皮 厚度 LET | 角质层 厚度 CT | 光合 速率 Pn | 蒸腾 速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.838 | 6.385* | 0.156 | 5.248* | 14.160*** | 0.000 | 1.358 | 0.147 | 0.177 | 6.973* | 3.558 | 0.370 | 3.692 | 4.172 |
S | 4.670* | 377.401*** | 115.697*** | 0.572 | 1.176 | 0.678 | 82.049*** | 64.682*** | 23.588*** | 9.032** | 1.878 | 19.357*** | 2.250 | 0.001 |
W × S | 8.638** | 12.526*** | 0.075 | 1.187 | 0.022 | 3.409 | 0.005 | 2.552 | 0.056 | 17.443*** | 9.874** | 0.186 | 8.099* | 20.012*** |
Table 1 Effects of warming (W), tree species (S) and their interactions on the leaf anatomical structure and photosynthetic characters of four tree species in southern subtropical evergreen broad-leaved forest
因子 Item | 气孔导度 Gs | 气孔密度 SD | 气孔大小 SS | 叶片厚度 LT | 栅栏组织厚度 PT | 海绵组织厚度 ST | 上表皮 厚度 UET | 下表皮 厚度 LET | 角质层 厚度 CT | 光合 速率 Pn | 蒸腾 速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.838 | 6.385* | 0.156 | 5.248* | 14.160*** | 0.000 | 1.358 | 0.147 | 0.177 | 6.973* | 3.558 | 0.370 | 3.692 | 4.172 |
S | 4.670* | 377.401*** | 115.697*** | 0.572 | 1.176 | 0.678 | 82.049*** | 64.682*** | 23.588*** | 9.032** | 1.878 | 19.357*** | 2.250 | 0.001 |
W × S | 8.638** | 12.526*** | 0.075 | 1.187 | 0.022 | 3.409 | 0.005 | 2.552 | 0.056 | 17.443*** | 9.874** | 0.186 | 8.099* | 20.012*** |
Fig. 4 Box plots illustrating the effects of warming on leaf thickness (LT), palisade tissue thickness (PT) and sponge tissue thickness (ST) of four tree species in southern subtropical evergreen broad-leaved forest. Whiskers of box plots indicates upper extreme, upper quartile, median, lower quartile and lower extreme, respectively. Each circle represents one individual tree. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9.
Fig. 5 Box plots illustrating the effects of warming on leaf upper epidermis thickness (UET), lower epidermis thickness (LET) and cuticle thickness (CT) of four tree species in southern subtropical evergreen broad-leaved forest. Whiskers of box plots indicates upper extreme, upper quartile, median, lower quartile and lower extreme, respectively. Each circle represents one individual tree. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 9.
Fig. 6 Effects of warming on photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) of four tree species in southern subtropical evergreen broad-leaved forest in 2018 and 2019 (mean + SE, n = 6). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 7 Effects of warming on the photosynthetic nitrogen-use efficiency (PNUE) and photosynthetic phosphorous-use efficiency (PPUE) of four tree species in southern subtropical evergreen broad-leaved forest in 2018 and 2019 (mean + SE, n = 6). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
树种 Species | 处理 Treatment | 斜率 Slope | 截距 Intercept | R2 | p |
---|---|---|---|---|---|
红枝蒲桃 Syzygium rehderianum | 对照 Control | 20.057 | 6.463 | 0.319 | 0.109 |
增温 Warming | 20.178 | 4.252 | 0.162 | 0.076 | |
海南红豆 Ormosia pinnata | 对照 Control | 123.374 | -0.843 | 0.492 | 0.021 |
增温 Warming | -8.698 | 9.819 | 0.039 | 0.490 | |
红锥 Castanopsis hystrix | 对照 Control | 20.228 | 4.090 | 0.530 | 0.007 |
增温 Warming | 18.066 | 3.978 | 0.159 | 0.070 | |
木荷 Schima superba | 对照 Control | 31.071 | 7.561 | 0.462 | 0.009 |
增温 Warming | 35.576 | 5.570 | 0.410 | 0.003 |
Table 2 Relationship between photosynthesis rate and stomatal conductance under control and warming environments of four tree species in southern subtropical evergreen broad-leaved forest (unary linear regression)
树种 Species | 处理 Treatment | 斜率 Slope | 截距 Intercept | R2 | p |
---|---|---|---|---|---|
红枝蒲桃 Syzygium rehderianum | 对照 Control | 20.057 | 6.463 | 0.319 | 0.109 |
增温 Warming | 20.178 | 4.252 | 0.162 | 0.076 | |
海南红豆 Ormosia pinnata | 对照 Control | 123.374 | -0.843 | 0.492 | 0.021 |
增温 Warming | -8.698 | 9.819 | 0.039 | 0.490 | |
红锥 Castanopsis hystrix | 对照 Control | 20.228 | 4.090 | 0.530 | 0.007 |
增温 Warming | 18.066 | 3.978 | 0.159 | 0.070 | |
木荷 Schima superba | 对照 Control | 31.071 | 7.561 | 0.462 | 0.009 |
增温 Warming | 35.576 | 5.570 | 0.410 | 0.003 |
变量 Variable | 光合速率 Pn | 气孔导度 Gs | 蒸腾速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|
气孔密度 SD | 0.350* | 0.080 | 0.113 | -0.198 | 0.270 | 0.337* |
气孔大小 SS | -0.241 | -0.126 | -0.155 | 0.018 | -0.146 | -0.100 |
叶片厚度 LT | -0.033 | 0.217 | 0.159 | -0.079 | -0.203 | -0.159 |
栅栏组织厚度 PT | -0.010 | 0.212 | 0.154 | -0.015 | -0.177 | -0.124 |
海绵组织厚度 ST | -0.077 | 0.145 | 0.065 | -0.396** | -0.262 | -0.189 |
上表皮厚度 UET | 0.095 | -0.199 | -0.075 | 0.035 | 0.252 | 0.054 |
下表皮厚度 LET | -0.400** | -0.115 | -0.208 | -0.121 | -0.359* | -0.364* |
角质层厚度 CT | 0.166 | 0.163 | 0.088 | -0.006 | 0.111 | -0.011 |
Table 3 Correlations between leaf anatomical structure and photosynthetic characters of four tree species in southern subtropical evergreen broad-leaved forest
变量 Variable | 光合速率 Pn | 气孔导度 Gs | 蒸腾速率 Tr | 水分利用效率 WUE | 光合氮利用效率 PNUE | 光合磷利用效率 PPUE |
---|---|---|---|---|---|---|
气孔密度 SD | 0.350* | 0.080 | 0.113 | -0.198 | 0.270 | 0.337* |
气孔大小 SS | -0.241 | -0.126 | -0.155 | 0.018 | -0.146 | -0.100 |
叶片厚度 LT | -0.033 | 0.217 | 0.159 | -0.079 | -0.203 | -0.159 |
栅栏组织厚度 PT | -0.010 | 0.212 | 0.154 | -0.015 | -0.177 | -0.124 |
海绵组织厚度 ST | -0.077 | 0.145 | 0.065 | -0.396** | -0.262 | -0.189 |
上表皮厚度 UET | 0.095 | -0.199 | -0.075 | 0.035 | 0.252 | 0.054 |
下表皮厚度 LET | -0.400** | -0.115 | -0.208 | -0.121 | -0.359* | -0.364* |
角质层厚度 CT | 0.166 | 0.163 | 0.088 | -0.006 | 0.111 | -0.011 |
[1] | Bremner J, Mulvaney C (1982). Nitrogen-total//Page AL. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison. |
[2] |
Cavaleri MA, Reed SC, Smith WK, Wood TE (2015). Urgent need for warming experiments in tropical forests. Global Change Biology, 21, 2111-2121.
DOI URL PMID |
[3] | Chen L, Wen YG, Zeng J, Wang H, Wang JX, Dell B, Liu SR (2019). Differential responses of net N mineralization and nitrification to throughfall reduction in a Castanopsis hystrix plantation in Southern China. Forest Ecosystems, 6, 1-11. |
[4] | Ding YH, Wang HJ (2016). Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chinese Science Bulletin, 61, 1029-1041. |
[ 丁一汇, 王会军 (2016). 近百年中国气候变化科学问题的新认识. 科学通报, 61, 1029-1041.] | |
[5] | Dusenge ME, Way DA (2017). Warming puts the squeeze on photosynthesis—Lessons from tropical trees. Journal of Experimental Botany, 68, 2073-2077. |
[6] | Ellsworth DS, Reich PB (1996). Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology, 77, 581-594. |
[7] | Escudero A, Mediavilla S (2003). Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 91, 880-889. |
[8] |
Feng YL, Fu GL, Zheng YL (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
URL PMID |
[9] | Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347. |
[10] |
Franks PJ, Farquhar GD (2007). The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 143, 78-87.
URL PMID |
[11] | Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE (2015). Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytologist, 208, 336-341. |
[12] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
URL PMID |
[13] | Hu JY, Guo K, Dong M (2008). Variation of leaf structure of two dominant species in alpine grassland and the relationship between leaf structure and ecological factors. Chinese Journal of Plant Ecology, 32, 370-378. |
[ 胡建莹, 郭柯, 董鸣 (2008). 高寒草原优势种叶片结构变化与生态因子的关系. 植物生态学报, 32, 370-378.] | |
[14] | Huang J, Chen C, Zhang WX, Ding CJ, Su XH, Huang QJ (2017). Effects of drought stress on anatomical structure and photosynthetic characteristics of transgenic JERF36 Populus alba × P. berolinensis seedling leaves. Scientia Silvae Sinicae, 53(5), 8-15. |
[ 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军 (2017). 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响. 林业科学, 53(5), 8-15.] | |
[15] | IPCC (2018). Summary for Policymakers. [2020-09-21]. https:// www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_HR.pdf. |
[16] |
James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiology, 20, 1007-1018.
URL PMID |
[17] |
Li DJ, Zhou XH, Wu LY, Zhou JZ, Luo YQ (2013). Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Global Change Biology, 19, 3553-3564.
URL PMID |
[18] | Li W, Fu Z, Hao XZ, Li QY, Zhang CP (2020). Leaf anatomical structure and photosynthetic characteristics of Megaskepasma erythrochlamys and Pachystachys lutea in greenhouse. Chinese Agricultural Science Bulletin, 36, 58-61. |
[ 李伟, 符喆, 郝晓哲, 李秋雨, 张翠萍 (2020). 温室内赤苞花和黄虾花叶片解剖结构及光合特性研究. 中国农学通报, 36, 58-61.] | |
[19] | Liu L (2016). Study on the Photosynthetic Characteristics of Liangshan Introduced Olive (Olea europaea L.) Cultivars. Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. |
[ 刘露 (2016). 凉山引进油橄榄品种的光合特性研究. 硕士学位论文, 四川农业大学, 四川雅安.] | |
[20] |
Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology, 19, 208-216.
URL PMID |
[21] | Liu JX, Li YL, Liu SZ, Li YY, Chu GW, Meng Z, Zhang DQ (2013). An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems. Chinese Journal of Plant Ecology, 37, 558-565. |
[ 刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强 (2013). 气温上升对模拟森林生态系统影响实验的介绍. 植物生态学报, 37, 558-565.] | |
[22] | Méndez-Alonzo R, Ewers FW, Jacobsen AL, Pratt RB, Scoffoni C, Bartlett MK, Sack L (2019). Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. Trees, 33, 507-519. |
[23] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[24] | Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214, 1447-1463. |
[25] |
Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
DOI URL |
[26] | Reich PB, Walters MB, Ellsworth DS, Uhl C (1994). Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 97, 62-72. |
[27] |
Robinson DE, Wagner RG, Bell FW, Swanton CJ (2001). Photosynthesis, nitrogen-use efficiency, and water-use efficiency of jack pine seedlings in competition with four boreal forest plant species. Canadian Journal of Forest Research, 31, 2014-2025.
DOI URL |
[28] |
Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
URL PMID |
[29] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[30] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL PMID |
[31] |
Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S (2013). Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiology, 33, 1192-1205.
URL PMID |
[32] |
Slot M, Winter K (2017). Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany, 68, 2275-2284.
URL PMID |
[33] | Stinziano JR, Hüner NPA, Way DA (2015). Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiology, 35, 1303-1313. |
[34] | Su J, Sun B, Wang DZ (1995). The biological characteristics and ornamental value of Ormosia pinnata. Forest Research, 8, 677-681. |
[ 栗娟, 孙冰, 王德祯 (1995). 海南红豆生物学特性和观赏价值. 林业科学研究, 8, 677-681.] | |
[35] | Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 198, 757-764. |
[36] | Tang B, Yin CY, Wang YJ, Sun YY, Liu Q (2016). Positive effects of night warming on physiology of coniferous trees in late growing season: leaf and root. Acta Oecologica, 73, 21-30. |
[37] |
Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013). SIERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of Experimental Botany, 64, 3237-3247.
URL PMID |
[38] | van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235. |
[39] |
Wu GL, Liu H, Hua L, Luo Q, Lin YX, He PC, Feng SW, Liu JX, Ye Q (2018). Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species. Frontiers in Plant Science, 9, 467. DOI: 10.3389/fpls.2018.00467.
URL PMID |
[40] | Ye WM, Xiong DC, Yang ZJ, Zhu YG, Zhang QF, Liu XF, Lin WS, Xu C, Zhang J, Yang YS (2019). Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings. Acta Ecologica Sinica, 39, 2501-2509. |
[ 叶旺敏, 熊德成, 杨智杰, 朱益广, 张秋芳, 刘小飞, 林伟盛, 胥超, 张景, 杨玉盛 (2019). 模拟增温对杉木幼树生长和光合特性的影响. 生态学报, 39, 2501-2509.] | |
[41] | Ye WM (2019). Effects of Simulated Warming on Photosynthetic Characteristics and Product Distribution of Cunninghamia lanceolata. Master degree dissertation, Fujian Normal University, Fuzhou. |
[ 叶旺敏 (2019). 模拟增温对杉木光合特性及产物分配的影响. 硕士学位论文, 福建师范大学, 福州.] | |
[42] | Zheng YP, Xu M, Hou RX, Shen RC, Qiu S, Ouyang Z (2013). Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 3, 3095-3111. |
[43] |
Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210.
URL PMID |
[44] | Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17, 3736-3746. |
[1] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[4] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[5] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[6] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[7] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[8] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[9] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[10] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[11] | WU Jian-Bo, WANG Xiao-Dan. Analyzing leaf anatomical structure of dominant species Stipa purpurea adapting to alpine and drought environment at Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(3): 265-273. |
[12] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[13] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[14] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[15] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn