Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (12): 1215-1223.DOI: 10.17521/cjpe.2020.0137
Special Issue: 入侵生态学
• Research Articles • Previous Articles Next Articles
LUO Jin-Huan1, TAN Zhao-Yuan2,3, CHEN Bin4, CHEN Guang-Wu4, JIANG Kai2,3, HEI Qi-Fang2,3, ZHANG Hui2,3,**()
Received:
2020-05-11
Accepted:
2020-06-17
Online:
2020-12-20
Published:
2021-04-01
Contact:
ZHANG Hui
About author:
**(993781@hainu.edu.cn)LUO Jin-Huan, TAN Zhao-Yuan, CHEN Bin, CHEN Guang-Wu, JIANG Kai, HEI Qi-Fang, ZHANG Hui. Key characteristics for facilitating Leucaena leucocephala to successfully invade pioneer communities of tropical rain forests[J]. Chin J Plant Ecol, 2020, 44(12): 1215-1223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0137
Fig. 3 Differences in four functional traits between dry and wet season for Leucaena leucocephala and the eight dominant native species in the Baopoling Mountain, Sanya, China (mean + SE). ***, p < 0.05; NS, p > 0.05.
Fig. 4 Differences in four functional traits between Leucaena leucocephala and each of the eight dominant native plant species in the Baopoling Mountain, Sanya, China (mean + SE). A, Leucaena leucocephala; B, Bridelia tomentosa; C, Radermachera frondosa; D, Lepisanthes rubiginosa; E, Rhaphiolepis indica; F, Pterospermum heterophyllum; G, Fissistigma oldhamii; H, Psychotria asiatica; I, Maclura cochinchinensis. ***, p < 0.05; NS, p > 0.05
Fig. 5 Principal component analysis of the four functional traits between Leucaena leucocephala and the eight doimant native plant species in the Baopoling Mountain, Sanya, China. A, Dry season. B, Wet season.
功能性状 Functional trait | 轴1 PC1 | 轴2 PC2 |
---|---|---|
蒸腾速率 Transpiration rate | 0.51 | -0.16 |
最大光合速率 Maximum photosynthesis rate | 0.77 | -0.15 |
气孔导度 Stomatal conductance | 0.58 | -0.19 |
叶片膨压丧失点 Leaf turgor loss point | 0.11 | 0.53 |
Table 1 The first two axes of a principal component analysis for Leucaena leucocephala and the eight dominant native species in the Baopoling Mountain, Sanya, China, based on four plant functional traits
功能性状 Functional trait | 轴1 PC1 | 轴2 PC2 |
---|---|---|
蒸腾速率 Transpiration rate | 0.51 | -0.16 |
最大光合速率 Maximum photosynthesis rate | 0.77 | -0.15 |
气孔导度 Stomatal conductance | 0.58 | -0.19 |
叶片膨压丧失点 Leaf turgor loss point | 0.11 | 0.53 |
[1] |
Barros V, Melo A, Santos M, Nogueira L, Frosi G, Santos MG (2020). Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry, 147, 181-190.
URL PMID |
[2] |
Bartlett MK, Scoffoni C, Sack L (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15, 393-405.
URL PMID |
[3] |
Bartlett MK, Zhang Y, Yang J, Kreidler N, Sun SW, Lin L, Hu YH, Cao KF, Sack L (2015). Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes. Ecology, 97,503-514.
DOI URL PMID |
[4] | Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytologist, 188, 1113-1123. |
[5] |
Bucci SJ, Carbonell-Silletta LM, Garré A, Cavallaro A, Efron ST, Arias NS, Goldstein G, Scholz FG (2019). Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant, Cell & Environment, 42,1603-1614.
URL PMID |
[6] | Chiou CR, Chen YJ, Wang HH, Grant WE (2016). Predicted range expansion of the invasive plant Leucaena leucocephala in the Hengchun Peninsula, Taiwan. Biological Invasions, 18, 381-394. |
[7] |
dos Santos VAHF, Ferreira MJ, Rodrigues JVFC, Garcia MN, Ceron JVB, Nelson BW, Saleska SR (2018). Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 24, 4266-4279.
URL PMID |
[8] |
Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008). Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology & Evolution, 23, 695-703.
URL PMID |
[9] | Gibson AH, Dreyfus BL, Dommergues YR (1982). Nitrogen Fixation by Legumes in the Tropics. Microbiology of Tropical Soils and Plant Productivity, Springer, Dordrecht, the Netherlands. |
[10] | Goel VL, Behl HM (2002). Selection of Leucaena species for afforestation and amelioration of sodic soils. Land Degradation & Development, 13, 387-393. |
[11] | Guan K, Pan M, Li H, Wolf A, Wu J, Medvigy D, Caylor KK, Sheffield J, Wood EF, Malhi Y, Liang M, Kimball JS, Saleska SR, Berry J, Joiner J, Lyapustin AI (2015). Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8, 284-289. |
[12] | Hua L, Chen Y, Zhang H, Fu P, Fan Z (2017). Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211. |
[13] |
Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vila M (2013). Bias and error in understanding plant invasion impacts. Trends in Ecology & Evolution, 28, 212-218.
URL PMID |
[14] | Ishihara KL, Honda MD, Bageel A, Borthakur D (2018). Leucaena leucocephala: a leguminous tree suitable for eroded habitats of Hawaiian islands. Ravine Lands: Greening for Livelihood and Environmental Security, 413-431. |
[15] | Ji ZH, Fang HD, Yang YX, Pan ZX, Yue XW, Li JZ (2010). Mechanism research of gully controlling with Leucaena leucocephala in the Yuanmou Arid Hot Valley. Journal of Soil and Water Conservation, 24, 19-22, 26. |
[ 纪中华, 方海东, 杨艳鲜, 潘志贤, 岳学文, 李建增 (2010). 银合欢对元谋干热河谷冲沟治理的机理研究. 水土保持学报, 24, 19-22, 26.] | |
[16] |
Kirschbaum MU (2011). Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology, 155, 117-124.
URL PMID |
[17] | Küster EC, Kühn I, Bruelheide H, Klotz S (2008). Trait interactions help explain plant invasion success in the German flora. Journal of Ecology, 96, 860-868. |
[18] |
Laughlin DC (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17, 771-784.
DOI URL PMID |
[19] | Lawson T, Vialet-Chabrand S (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221, 93-98. |
[20] | Li HS, Cai HJ, Li JM, Deng HY, Zhong BL (2015). A preliminary study on the alien invasive plant species in Huangshanlu Forest Park, Guangzhou. Journal of Guangdong University of Education, 35(5), 73-77. |
[ 李海生, 蔡惠娟, 李济明, 邓华源, 钟碧玲 (2015). 广州南沙黄山鲁森林公园外来入侵植物初步研究. 广东第二师范学院学报, 35(5), 73-77.] | |
[21] | Liu F, Gao C, Chen M, Li K (2018). Above- and below-ground biomass relationships of Leucaena leucocephala(Lam.) de Wit in different plant stands. PLOS ONE, 13, e0207059. DOI: 10.1371/journal.pone.0207059. |
[22] | Luo HX, Dai SP, Li MF, Xie ZH (2018). Analysis on climate change characteristics of Hainan Island from 1959 to 2015. Jiangsu Agricultural Sciences, 46, 261-268. |
[ 罗红霞, 戴声佩, 李茂芬, 谢铮辉 (2018). 海南岛1959-2015年气候变化特征分析. 江苏农业科学, 46, 261-268.] | |
[23] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[24] | Maherali H, Sherrard ME, Clifford MH, Latta RG (2008). Leaf hydraulic conductance and photosynthesis are genetically correlated in an annual grass. New Phytologist, 180, 240-247. |
[25] | McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist, 211, 1209-1220. |
[26] |
Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SS (2008). Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south- western Australia. Plant, Cell & Environment, 31, 1791-1802.
URL PMID |
[27] | Moran VC, Hoffmann JH, Zimmermann HG (2005). Biological control of invasive alien plants in South Africa: necessity, circumspection, and success. Frontiers in Ecology and the Environment, 3, 71-77. |
[28] | Ostertag R, Warman L, Cordell S, Vitousek PM (2015). Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 52, 805-809. |
[29] | Peng SH, Wang HH, Kuo YL (2019). Methods for preventing the invasion of Leucaena leucocephala in coastal forests of the Hengchun Peninsula, Taiwan. Taiwan Journal of Forest Science, 34, 99-112. |
[30] | Peng Y (2008). Study on Diversity and Invasion in Plantation of Alien Tree Species—Take Eucalyptus spp. Acacia dealbata, Leucaena leucocephala for Example. Master degree dissertation, Southwest Forestry University, Kunming. |
[ 彭芸 (2008). 外来树种人工林下植物多样性及其入侵性研究——以桉树、银荆、银合欢为例. 硕士学位论文, 西南林业大学, 昆明.] | |
[31] | Richardson DM, Rejmánek M (2011). Trees and shrubs as invasive alien species—A global review. Diversity and Distributions, 17, 788-809. |
[32] | Rowland L, da Costa ACL, Oliveira AAR, Almeida SS, Meir P (2018). Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics. Journal of Ecology, 106, 1673-1682. |
[33] | Sack L, Cowan P, Jaikumar N, Holbrook N (2003). The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[34] | Schulte P, Hinckley T (1985). A comparison of pressure-volume curve data analysis techniques. Journal of Experimental Botany, 36, 1590-1602. |
[35] | Seastedt TR (2015). Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytologist, 205, 490-502. |
[36] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
URL PMID |
[37] | Wang C, Zhang H, Liu H, Jian S, Yan J, Liu N (2020). Application of a trait-based species screening framework for vegetation restoration in a tropical coral island of China. Functional Ecology, 267, 25-34. |
[38] | Wang W, Zhang XM, Sha LH Cheng LS (2007). Roster of alien: invasive perilous species of animals and plants in Hainan Island (one). Chinese Journal of Tropical Agriculture, 27, 58-64. |
[ 王伟, 张先敏, 沙林华, 程立生 (2007). 海南岛外来入侵危险性动植物名录(一). 热带农业科学, 27, 58-64.] | |
[39] | Wolfe BT, van Bloem SJ (2012). Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: understanding why Leucaena leucocephala dominates and native species fail. Forest Ecology and Management, 267, 253-261. |
[40] | Yang XB, Chen ZZ, Li DH (2019). Vegetation of Hainan. Science Press, Beijing. |
[ 杨小波, 陈宗铸, 李东海(2019). 海南植被志. 科学出版社, 北京.] | |
[41] | Zhang H, Chen HYH, Lian J, Chandran RJ, Li RH, Liu H, Ye W, Berninger F, Ye Q (2018a). Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Functional Ecology, 32, 1379-1389. |
[42] |
Zhang H, Chandran RJ, Zhu S, Liu H, Xu Q, Qi W, Liu K, Chen HYH, Ye Q (2018b). Shifts in functional trait-species abundance relationships over secondary subalpine meadow succession in the Qinghai-Tibetan Plateau. Oecologia, 188, 547-557.
URL PMID |
[43] | Zhou LP, He YJ, Ma HC, Zhu CF, Gao Z, Li W, Li FX (2010). Effects of fertilization treatment on seedlings drought tolerance of Leucaena leucephala under different water conditions. Jiangxi Science, 28, 311-319, 358. |
[ 周利平, 和亚珺, 马焕成, 朱存福, 高柱, 李伟, 李福秀 (2010). 不同水分条件下施肥对新银合欢苗木抗旱性的影响. 江西科学, 28, 311-319, 358.] | |
[44] |
Zhu SD, Song JJ, Li RH, Ye Q (2013). Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant, Cell & Environment, 36, 879-891.
URL PMID |
[45] | Zou HP, Zhang JH, Chen XM, Liu SJ, Li WG (2015). Spatiotemporal change characteristics of agricultural climate resources in Hainan Island. Chinese Journal of Agrometeorology, 36, 417-427. |
[ 邹海平, 张京红, 陈小敏, 刘少军, 李伟光 (2015). 海南岛农业气候资源的时空变化特征. 中国农业气象, 36, 417-427.] |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1844
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1649
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn