Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (9): 1270-1277.DOI: 10.17521/cjpe.2022.0255
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin*(), YUE Ming
Received:
2022-06-16
Accepted:
2022-10-11
Online:
2023-09-20
Published:
2023-09-28
Contact:
* GUO Yao-Xin(Supported by:
YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest[J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0255
器官 Organ | 功能性状 Functional trait | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|
叶 Leaf | 叶厚度 Leaf thickness | LT | mm |
叶面积 Leaf area | LA | cm2 | |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | |
比叶质量 Leaf mass per unit area | LMA | g·cm-2 | |
叶氮含量 Leaf nitrogen content | LNC | mg·g-1 | |
叶碳含量 Leaf carbon content | LCC | mg·g-1 | |
叶碳氮比 Leaf carbon nitrogen ratio | Leaf C:N | ||
茎 Stem | 木质密度 Wood density | WD | g·cm-3 |
细根 Fine root | 比根长 Specific root length | SRL | cm·g-1 |
根氮含量 Root nitrogen content | RNC | mg·g-1 | |
根碳含量 Root carbon content | RCC | mg·g-1 | |
根碳氮比 Root carbon nitrogen ratio | Root C:N |
Table 1 Functional traits measured in this study
器官 Organ | 功能性状 Functional trait | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|
叶 Leaf | 叶厚度 Leaf thickness | LT | mm |
叶面积 Leaf area | LA | cm2 | |
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | |
比叶质量 Leaf mass per unit area | LMA | g·cm-2 | |
叶氮含量 Leaf nitrogen content | LNC | mg·g-1 | |
叶碳含量 Leaf carbon content | LCC | mg·g-1 | |
叶碳氮比 Leaf carbon nitrogen ratio | Leaf C:N | ||
茎 Stem | 木质密度 Wood density | WD | g·cm-3 |
细根 Fine root | 比根长 Specific root length | SRL | cm·g-1 |
根氮含量 Root nitrogen content | RNC | mg·g-1 | |
根碳含量 Root carbon content | RCC | mg·g-1 | |
根碳氮比 Root carbon nitrogen ratio | Root C:N |
Fig. 1 Differential functional traits of tree species in the Quercus aliena var. acuteserrata forest. Different lowercase letters indicate significant difference (p < 0.05). Abbreviations of functional traits see Table 1.
功能性状 Functional trait | PCA1 | PCA2 | PCA3 |
---|---|---|---|
LT | -0.17 | -0.17 | 0.33 |
LA | -0.03 | 0.29 | 0.39 |
LDMC | 0.25 | 0.41 | 0.22 |
LMA | 0.06 | 0.04 | 0.11 |
LNC | -0.44 | -0.08 | 0.18 |
LCC | 0.16 | 0.52 | 0.07 |
Leaf C:N | 0.44 | 0.25 | -0.20 |
WD | 0.30 | -0.16 | 0.42 |
SRL | 0.08 | -0.23 | -0.25 |
RNC | -0.45 | 0.22 | 0.05 |
RCC | 0.11 | -0.38 | 0.40 |
Root C:N | 0.41 | -0.34 | 0.08 |
方差贡献率 Variance contribution (%) | 32.45 | 19.30 | 13.25 |
Table 2 Principal component analysis (PCA) of measured traits for different tree species in the Quercus aliena var. acuteserrata forest
功能性状 Functional trait | PCA1 | PCA2 | PCA3 |
---|---|---|---|
LT | -0.17 | -0.17 | 0.33 |
LA | -0.03 | 0.29 | 0.39 |
LDMC | 0.25 | 0.41 | 0.22 |
LMA | 0.06 | 0.04 | 0.11 |
LNC | -0.44 | -0.08 | 0.18 |
LCC | 0.16 | 0.52 | 0.07 |
Leaf C:N | 0.44 | 0.25 | -0.20 |
WD | 0.30 | -0.16 | 0.42 |
SRL | 0.08 | -0.23 | -0.25 |
RNC | -0.45 | 0.22 | 0.05 |
RCC | 0.11 | -0.38 | 0.40 |
Root C:N | 0.41 | -0.34 | 0.08 |
方差贡献率 Variance contribution (%) | 32.45 | 19.30 | 13.25 |
Fig. 2 Distribution of the different tree species in the traits space defined by the first two axes of principal components analysis (PCA) in the Quercus aliena var. acuteserrata forest. Abbreviations of functional traits see Table 1.
Fig. 3 Differences in scores between different tree species in the first two axes of principal components analysis (PCA) in the Quercus aliena var. acuteserrata forest. Different lowercase letters indicate significance difference among them (p < 0.05).
[1] |
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013). Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306.
DOI PMID |
[2] | Chai YF, Yue M (2016). Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572. |
[柴永福, 岳明 (2016). 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.] | |
[3] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[4] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[5] |
Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] |
de Smedt P, Ottaviani G, Wardell-Johnson G, Sýkora KV, Mucina L (2018). Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobotanica, 53, 133-145.
DOI |
[8] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[9] |
Ehrlich E, Becks L, Gaedke U (2017). Trait-fitness relationships determine how trade-off shapes affect species coexistence. Ecology, 98, 3188-3198.
DOI PMID |
[10] |
Ellis AR, Hubbell SP, Potvin C (2000). In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis. Canadian Journal of Botany, 78, 1336-1347.
DOI URL |
[11] |
Fajardo A, Siefert A (2016). Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA). Annals of Botany, 118, 1307-1315.
PMID |
[12] | Guo YX, Zhao P, Zhou Z, Yi JJ, Chai YF, Yue M (2020). Coexistence of three common species in a temperate mixed forest: linking seedling microhabitats and functional traits. Forest Ecology and Management, 465, 118057. DOI: 10.1016/j.foreco.2020.118057. |
[13] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[14] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[15] |
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution and Systematics, 43, 227-248.
DOI URL |
[16] |
Julieta BM, Ana M, González DP, Lombera R, Susana G, Estrada A (2014). Seed source, seed traits, and frugivore habits: implications for dispersal quality of two sympatric primates. American Journal of Botany, 101, 970-978.
DOI URL |
[17] |
Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
DOI PMID |
[18] |
Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI PMID |
[19] |
Laughlin DC, Lusk CH, Bellingham PJ, Burslem DFRP, Simpson AH, Kramer-Walter KR (2017). Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 7, 8936-8949.
DOI PMID |
[20] |
Lin B, Liu Q (2008). Plasticity responses of 4 tree species in subalpine-coniferous-forest to different light regimes. Acta Ecologica Sinica, 28, 4665-4675.
DOI URL |
[林波, 刘庆 (2008). 四种亚高山针叶林树种的表型可塑性对不同光照强度的响应. 生态学报, 28, 4665-4675.] | |
[21] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica, 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[22] |
Lusk CH, Laughlin DC (2017). Regeneration patterns, environmental filtering and tree species coexistence in a temperate forest. New Phytologist, 213, 657-668.
DOI PMID |
[23] | Muledi J, Bauman D, Jacobs A, Meerts P, Shutcha M, Drouet T (2020). Tree growth, recruitment, and survival in a tropical dry woodland: the importance of soil and functional identity of the neighbourhood. Forest Ecology and Management, 460, 117894. DOI: 10.1016/j.foreco.2020.117894. |
[24] | Niu XD, Sun PS, Liu XJ, Luan JW, Liu SR (2020). Net ecosystem carbon dioxide exchange in an oak (Quercus aliena) forest at transitional zone from subtropics to warm temperate, China. Acta Ecologica Sinica, 40, 5980-5991. |
[牛晓栋, 孙鹏森, 刘晓静, 栾军伟, 刘世荣 (2020). 中国亚热带-暖温带过渡区锐齿栎林净生态系统碳交换特征. 生态学报, 40, 5980-5991.] | |
[25] | Pang RR, Peng JY, Yan Y (2021). Factors influencing aboveground biomass in the secondary forest of Quercus aliena var. acutiserrata in Taibai Mountain. Scientia Silvae Sinicae, 57(10), 157-165. |
[庞荣荣, 彭潔莹, 闫琰 (2021). 太白山次生锐齿栎林地上生物量影响因素. 林业科学, 57(10), 157-165.] | |
[26] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2016). Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715-716.
DOI URL |
[27] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI PMID |
[28] | Ren XM, Zhu Y, Chen ZJ, Ding CY, Li YY, Yang GH (2019). Regeneration of arbor trees and its contributing factors in an oak forest in Taibai Mountain, China. Scientia Silvae Sinicae, 55(1), 11-21. |
[任学敏, 朱雅, 陈兆进, 丁传雨, 李玉英, 杨改河 (2019). 太白山锐齿槲栎林乔木更新特征及其影响因子. 林业科学, 55(1), 11-21.] | |
[29] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611.
DOI URL |
[30] | Sun P, Wei X, Ye WH, Shen H (2022). Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest. Guihaia, 42, 510-519. |
[孙鹏, 韦霄, 叶万辉, 沈浩 (2022). 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异. 广西植物, 42, 510-519.] | |
[31] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytologist, 199, 322-323.
DOI PMID |
[32] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[33] | Yu W, Song WC, Guo YC, Zhang HF, Yan Y, Zhang SX (2021). Species-abundance distribution patterns of Quercus aliena var. acutiserrata forest in Taibai Mountain, China. Chinese Journal of Applied Ecology, 32, 1717-1725. |
[尉文, 宋文超, 郭毅春, 张厚发, 闫琰, 张硕新 (2021). 太白山锐齿栎林物种-多度分布格局. 应用生态学报, 32, 1717-1725.]
DOI |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | Chen-Hui CHANG Jiangling Zhu Wan-Qin YANG. A review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[3] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[4] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[5] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[6] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[7] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[8] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[9] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, XIN Xiao-Ping, YAN Yu-Chun, YAN Rui-Rui. Dynamic response of functional traits to fertilization in Leymus chinensis [J]. Chin J Plant Ecol, 2023, 47(7): 943-953. |
[10] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[11] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[12] | CHEN Xue-Chun, LIU Hong, ZHU Shao-Qi, SUN Ming-Yao, YU Zhen-Rong, WANG Qing-Gang. Intraspecific variations in plant functional traits of four common herbaceous species under different abandoned years and their relevant driving factors in Lijiang River Basin, China [J]. Chin J Plant Ecol, 2023, 47(4): 559-570. |
[13] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[14] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[15] | ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China [J]. Chin J Plant Ecol, 2023, 47(2): 275-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn