Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 559-570.DOI: 10.17521/cjpe.2022.0188
• Research Articles • Previous Articles Next Articles
CHEN Xue-Chun, LIU Hong, ZHU Shao-Qi, SUN Ming-Yao, YU Zhen-Rong, WANG Qing-Gang*()
Received:
2022-05-11
Accepted:
2022-11-04
Online:
2023-04-20
Published:
2023-02-28
Contact:
*(wangqg@cau.edu.cn)
Supported by:
CHEN Xue-Chun, LIU Hong, ZHU Shao-Qi, SUN Ming-Yao, YU Zhen-Rong, WANG Qing-Gang. Intraspecific variations in plant functional traits of four common herbaceous species under different abandoned years and their relevant driving factors in Lijiang River Basin, China[J]. Chin J Plant Ecol, 2023, 47(4): 559-570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0188
种 Species | 科 Family | 生活型 Life form | 果实类型 Fruit type | 样地数量 No. of plots | 物候期 Phenological phase |
---|---|---|---|---|---|
白茅 Imperata cylindrica | 禾本科 Poaceae | 多年生 Perennial | 颖果 Caryopsis | 16 | 花果期 Flowering and fruiting phase |
双穗雀稗 Paspalum distichum | 禾本科 Poaceae | 多年生 Perennial | 颖果 Caryopsis | 11 | 花果期 Flowering and fruiting phase |
鬼针草 Bidens pilosa | 菊科 Asteraceae | 一年生 Annual | 瘦果 Achenium | 13 | 花期 Flowering phase |
喜旱莲子草 Alternanthera philoxeroides | 苋科 Amaranthaceae | 多年生 Perennial | 胞果 Utricle | 15 | 花果期 Flowering and fruiting phase |
Table 1 Basic information of four common herbaceous species in natural and semi-natural habitats of agricultural landscape in Guilin
种 Species | 科 Family | 生活型 Life form | 果实类型 Fruit type | 样地数量 No. of plots | 物候期 Phenological phase |
---|---|---|---|---|---|
白茅 Imperata cylindrica | 禾本科 Poaceae | 多年生 Perennial | 颖果 Caryopsis | 16 | 花果期 Flowering and fruiting phase |
双穗雀稗 Paspalum distichum | 禾本科 Poaceae | 多年生 Perennial | 颖果 Caryopsis | 11 | 花果期 Flowering and fruiting phase |
鬼针草 Bidens pilosa | 菊科 Asteraceae | 一年生 Annual | 瘦果 Achenium | 13 | 花期 Flowering phase |
喜旱莲子草 Alternanthera philoxeroides | 苋科 Amaranthaceae | 多年生 Perennial | 胞果 Utricle | 15 | 花果期 Flowering and fruiting phase |
Fig. 1 Locations of plots for four natural and semi-natural habitats (field margin, abandoned grassland, shrub-grassland and forest) in agricultural landscape of Guilin.
白茅Imperata cylindrica | 双穗雀稗Paspalum distichum | 鬼针草Bidens pilosa | 喜旱莲子Alternanthera philoxeroides | |||||
---|---|---|---|---|---|---|---|---|
平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | |
比叶质量 LMA (g·m-2) | 78.716 ± 14.373a | 0.183 | 49.190 ± 19.453b | 0.395 | 38.768 ± 14.882b | 0.384 | 37.871 ± 10.858b | 0.287 |
叶干物质含量 LDMC | 0.460 ± 0.063a | 0.137 | 0.288 ± 0.063b | 0.218 | 0.270 ± 0.108b | 0.400 | 0.175 ± 0.052c | 0.296 |
叶片氮含量 LNC (mg·g-1) | 10.957 ± 1.658c | 0.151 | 21.987 ± 9.355b | 0.425 | 27.948 ± 7.738b | 0.277 | 37.437 ± 8.546a | 0.229 |
叶片磷含量 LPC (mg·g-1) | 1.282 ± 0.664b | 0.519 | 2.452 ± 0.962a | 0.393 | 2.848 ± 1.224a | 0.428 | 3.185 ± 0.822a | 0.258 |
植株高度 plant height (m) | 0.521 ± 0.205a | 0.393 | 0.225 ± 0.157b | 0.698 | 0.487 ± 0.161a | 0.331 | 0.214 ± 0.088b | 0.413 |
Table 2 Average value, standard deviation and coefficient of variation for functional traits of four common herbaceous species in natural and semi-natural habitats of agricultural landscape in Guilin
白茅Imperata cylindrica | 双穗雀稗Paspalum distichum | 鬼针草Bidens pilosa | 喜旱莲子Alternanthera philoxeroides | |||||
---|---|---|---|---|---|---|---|---|
平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | 平均值±标准差 Mean ± SD | 变异系数 CV | |
比叶质量 LMA (g·m-2) | 78.716 ± 14.373a | 0.183 | 49.190 ± 19.453b | 0.395 | 38.768 ± 14.882b | 0.384 | 37.871 ± 10.858b | 0.287 |
叶干物质含量 LDMC | 0.460 ± 0.063a | 0.137 | 0.288 ± 0.063b | 0.218 | 0.270 ± 0.108b | 0.400 | 0.175 ± 0.052c | 0.296 |
叶片氮含量 LNC (mg·g-1) | 10.957 ± 1.658c | 0.151 | 21.987 ± 9.355b | 0.425 | 27.948 ± 7.738b | 0.277 | 37.437 ± 8.546a | 0.229 |
叶片磷含量 LPC (mg·g-1) | 1.282 ± 0.664b | 0.519 | 2.452 ± 0.962a | 0.393 | 2.848 ± 1.224a | 0.428 | 3.185 ± 0.822a | 0.258 |
植株高度 plant height (m) | 0.521 ± 0.205a | 0.393 | 0.225 ± 0.157b | 0.698 | 0.487 ± 0.161a | 0.331 | 0.214 ± 0.088b | 0.413 |
Fig. 2 Changes of soil nitrogen and phosphorus contents, soil pH and woody plant coverage with abandoned years and the change of soil phosphorus content with woody plant coverage in natural and semi-natural habitats of agricultural landscape in Guilin. SNC, soil nitrogen (N) content; SPC, soil phosphorus (P) content; WPC, woody plant coverage. The woody plant coverage is calculated as the sum of coverages of tree layer and shrub layer.
Fig. 3 Changes of functional traits with abandoned years of four common herbaceous species in natural and semi-natural habitats of agricultural landscape in Guilin. Field margin was not included in the analysis. LDMC, leaf dry matter content; LMA, leaf mass per area; LNC, leaf nitrogen content; LPC, leaf phosphorus content.
Fig. 4 Coefficient of determination of regression relationship of functional traits of four common herbaceous species with soil nitrogen (SNC) and phosphorus (SPC) contents, soil nitrogen to phosphorus ration (N:P), soil pH and woody plant coverage (WPC) in natural and semi-natural habitats of agricultural landscape in Guilin. LDMC, leaf dry matter content; LMA, leaf mass per area; LNC, leaf nitrogen content; LPC, leaf phosphorus content. Red and blue cirles represent positive and negative regression coefficient, respectively. *, p < 0.1; **, p < 0.01. The woody plant coverage is calculated as the sum of coverages of tree layer and shrub layer.
Fig. 5 Changes of functional traits for the four common herbaceous species with soil nitrogen (SNC), phosphorus contents (SPC) and soil nitrogen to phosphorus ratio (N:P) in natural and semi-natural habitats of agricultural landscape in Guilin. LDMC, leaf dry matter content; LMA, leaf mass per area; LNC, leaf nitrogen content; LPC, leaf phosphorus content.
[1] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-201.
DOI URL |
[2] | Bao SD (2008). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 25-144. |
[鲍士旦 (2008). 土壤农化分析. 第3版. 中国农业出版社, 北京. 25-114.] | |
[3] |
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003). The ecology of indiiduals: Incidence and implications of individual specialiation. The American Naturalist, 161, 1-28.
DOI URL |
[4] | Chen W, Wang JH, Peng YJ, Wu XR, Zhang SR, Wang CL, Ma YT (2018). Carbon, nitrogen and phosphorus stoiciometric characteristics of alien species Bidens pilosa from different habitats and strategy on their nutrient utilization. Guihaia, 38, 281-288. |
[陈文, 王桔红, 彭玉姣, 吴晓蓉, 张淑柔, 汪翠丽, 马伊婷 (2018). 不同生境中鬼针草(Bidens pilosa)碳氮磷化学计量特征及其营养利用策略. 广西植物, 38, 281-288.] | |
[5] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] |
Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007). Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil, 296, 19-34.
DOI URL |
[8] |
Díaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[9] |
Díaz S, Kattge J, Cornelissen J, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin PI, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI |
[10] | Gong XY, Rao XQ, Zhou LX, Wang XL, Zhu XL, Cai XA (2018). Dynamics of shade tolerance, biomass, and individual growth of five understory plant species in Eucalyptus urophylla plantations. Acta Ecologica Sinica, 38, 1124-1133. |
[公绪云, 饶兴权, 周丽霞, 王晓玲, 朱小林, 蔡锡安 (2018). 尾叶桉林下5种植物的耐阴性、生物量及其个体消长. 生态学报, 38, 1124-1133.] | |
[11] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[12] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006a). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grasslands of China. Oecologia, 149, 115-122.
DOI URL |
[13] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006b). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL |
[14] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[15] |
Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G (2007). Componets of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Functional Ecology, 21, 235-245.
DOI URL |
[16] | Li T, Deng Q, Yuan ZY, Jiao F (2015). Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau. Environmental Science, 36, 2988-2996. |
[李婷, 邓强, 袁志友, 焦峰 (2015). 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征. 环境科学, 36, 2988-2996.] | |
[17] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, appliations and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[18] |
Luo XQ, Wang SJ, Wang CY, Liao XR (2011). Adaptability and regulation mechanisms of plants on phosphorus stress in calcareous soil. Chinese Agricultural Science Bulletin, 27, 223-228.
DOI |
[罗绪强, 王世杰, 王程媛, 廖昕荣 (2011). 石灰性土植物磷胁迫的适应性调控机制研究. 中国农学通报, 27, 223-228.] | |
[19] |
Mitchell RM, Bakker JD (2014). Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Functional Ecology, 28, 258-269.
DOI URL |
[20] |
Mitchell RM, Ames GM, Wright JP (2021). Intraspecific trait variability shapes leaf trait response to altered fire regimes. Annals of Botany, 127, 543-552.
DOI PMID |
[21] |
Mi XC, Sun ZH, Song YF, Liu XJ, Yang J, Wu JJ, Ci XQ, Li J, Lin LX, Cao M, Ma KP (2021). Rare tree species have narrow environmental but not functional niches. Functional Ecology, 35, 511-520.
DOI URL |
[22] |
Niinemets Ü, Kull O, Tenhunen JD (1998). An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18, 681-696.
PMID |
[23] |
Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327.
DOI URL |
[24] |
Ramankutty N, Foley JA (1999). Estimating historical changes in land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997-1027.
DOI URL |
[25] |
Shen GC, Yan ER, Bar-Massada A, Zhang J, Liu HM, Wang XH, Xu MS (2019). Species with moderate intraspecific trait variability are locally abundant within an environmentally heterogeneous subtropical forest. Oecologia, 190, 629-637.
DOI PMID |
[26] | Shi TC, Li XB (2013). Farmland abandonment in Europe and its enlightenment to China. Geography and Geo-Information Science, 29(3), 101-103. |
[史铁丑, 李秀彬 (2013). 欧洲耕地撂荒研究及对我国的启示. 地理与地理信息科学, 29(3), 101-103.] | |
[27] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VL, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, et al. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI PMID |
[28] |
Vile D, Shipley B, Garnier E (2006). A structural equation model to integrate changes in functional strategies during old-field succession. Ecology, 87, 504-517.
PMID |
[29] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[30] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
DOI PMID |
[31] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[32] | Wu H, Jiang JH, Luo L, Ma JN (2022). Eco-stoichiometric characteristics of carbon, nitrogen and phosphorus in Alternanthera philoxeroides-A. sessilis and their responses to heterogeneous environments. Journal of South China Agricultural University, 43(3), 89-98. |
[吴昊, 姜俊慧, 罗莉, 马佳宁 (2022). 空心莲子草-莲子草碳氮磷生态化学计量特征及其对异质环境的响应. 华南农业大学学报, 43, 89-98.] | |
[33] | Xu HG, Qiang S (2011). China’s Invasive Alien Species. Science Press, Beijing. 230, 257. |
[徐海根, 强胜 (2011). 中国外来入侵生物. 科学出版社, 北京. 230, 257.] | |
[34] |
Yang X, Chi XL, Ji CJ, Liu HY, Ma WH, Mohhammat A, Shi ZY, Wang XP, Yu SL, Yue M, Tang ZY (2016). Variations of leaf N and P concentrations in shrubland biomes across Northern China: phylogeny, climate, and soil. Biogeosciences, 13, 4429-4438.
DOI URL |
[35] | Yao K, Ao JL, Xu H (2019). Characteristics and nitrogen- phosphorus stoichiometry of rock herb communities in Huajiang gorge. Journal of Ecology and Rural Environment, 35, 197-204. |
[姚凯, 敖家林, 徐僡 (2019). 花江峡谷岩生草本植物群落及其氮磷计量特征. 生态与农村环境学报, 35, 197-204.] |
[1] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[2] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[3] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[4] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[5] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[6] | JIANG Lan, WEI Chen-Si, HE Zhong-Sheng, ZHU Jing, XING Cong, WANG Xue-Lin, LIU Jin-Fu, SHEN Cai-Xia, SHI You-Wen. Functional trait variation of plant communities in canopy gaps of Castanopsis kawakamii natural forest [J]. Chin J Plant Ecol, 2022, 46(3): 267-279. |
[7] | Nan DONG, Ming-Ming TANG, Wen-Qian CUI, Meng-Yao YUE, Jie LIU, Yu-Jie HUANG. Growth of chestnut and tea seedlings under different root partitioning patterns [J]. Chin J Plant Ecol, 2022, 46(1): 62-73. |
[8] | WANG Xue-Mei, YAN Bang-Guo, SHI Liang-Tao, LIU Gang-Cai. Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus [J]. Chin J Plant Ecol, 2020, 44(12): 1247-1261. |
[9] | ZHONG Qiao-Lian, LIU Li-Bin, XU Xin, YANG Yong, GUO Yin-Ming, XU Hai-Yang, CAI Xian-Li, NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plant Ecol, 2018, 42(5): 562-572. |
[10] | PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2018, 42(2): 209-219. |
[11] | ZHOU Wei, LI Hong-Bo, ZENG Hui. Variations of root traits in three Xizang grassland communities along a precipitation gradient [J]. Chin J Plant Ecol, 2018, 42(11): 1094-1102. |
[12] | Jing GAO, Jin-Niu WANG, Bo XU, Yu XIE, Jun-Dong HE, Yan WU. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chin J Plant Ecol, 2016, 40(8): 775-787. |
[13] | Di XIAO, Xiao-Jie WANG, Kai ZHANG, Nian-Peng HE, Ji-Hua HOU. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. Chin J Plant Ecol, 2016, 40(7): 686-701. |
[14] | HOU Zhao-Jiang, ZHAO Cheng-Zhang, LI Yu, ZHANG Qian, MA Xiao-Li. Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland [J]. Chin J Plant Ecol, 2014, 38(3): 281-288. |
[15] | YU Hong-Ying, CHEN Ying-Ting, XU Zhen-Zhu, ZHOU Guang-Sheng. Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(10): 1029-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn