Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (7): 686-701.DOI: 10.17521/cjpe.2015.1043
Special Issue: 全球变化与生态系统; 植物功能性状
• Research Articles • Previous Articles Next Articles
Di XIAO1, Xiao-Jie WANG1, Kai ZHANG1, Nian-Peng HE2, Ji-Hua HOU1,*()
Received:
2015-01-29
Accepted:
2015-12-27
Online:
2016-07-10
Published:
2016-07-07
Contact:
Ji-Hua HOU
Di XIAO, Xiao-Jie WANG, Kai ZHANG, Nian-Peng HE, Ji-Hua HOU. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China[J]. Chin J Plant Ecol, 2016, 40(7): 686-701.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.1043
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Physical-chemical properties of soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
林龄 Stand age (a) | 密度 Density (plant·hm-2) | 平均胸径 Mean diameter at breast height (cm) | 平均株高 Mean plant height (m) | 坡度 Slope (°) | 土壤容重 Soil volume weight (g·cm-3) | 土壤pH Soil pH | 土壤有机碳含量 Soil organic carbon content (mg·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | ||
对照 Control | 75 | 1 267 | 23.9 | 17.7 | 24 | 0.94 | 7.12 | 45.30 | 1.70 | 0.43 | |
低氮 Low-N | 75 | 1 567 | 20.6 | 17.8 | 21 | 0.97 | 7.12 | 61.02 | 2.14 | 0.38 | |
中氮 Medium-N | 75 | 1 208 | 23.5 | 17.4 | 25 | 1.07 | 7.19 | 42.14 | 1.91 | 0.38 | |
高氮 High-N | 75 | 1 225 | 23.4 | 19 | 23 | 1.06 | 7.28 | 36.08 | 2.25 | 0.44 |
Table 1 Stand characteristics and soil physical-chemical properties of the nitrogen-loaded plots in the natural forest of Pinus tabuliformis
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Physical-chemical properties of soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
林龄 Stand age (a) | 密度 Density (plant·hm-2) | 平均胸径 Mean diameter at breast height (cm) | 平均株高 Mean plant height (m) | 坡度 Slope (°) | 土壤容重 Soil volume weight (g·cm-3) | 土壤pH Soil pH | 土壤有机碳含量 Soil organic carbon content (mg·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | ||
对照 Control | 75 | 1 267 | 23.9 | 17.7 | 24 | 0.94 | 7.12 | 45.30 | 1.70 | 0.43 | |
低氮 Low-N | 75 | 1 567 | 20.6 | 17.8 | 21 | 0.97 | 7.12 | 61.02 | 2.14 | 0.38 | |
中氮 Medium-N | 75 | 1 208 | 23.5 | 17.4 | 25 | 1.07 | 7.19 | 42.14 | 1.91 | 0.38 | |
高氮 High-N | 75 | 1 225 | 23.4 | 19 | 23 | 1.06 | 7.28 | 36.08 | 2.25 | 0.44 |
Fig. 1 Effects of nitrogen addition on leaf thickness (LT, A)、leaf area (LA, B)、specific leaf area (SLA, C)、chlorophyll content (CC, D) and leaf dry matter content (LDMC, E)(mean ± SE, n = 3). Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen. Different lowercase letters indicate the significant difference at 5% level between nitrogen treatments.
Fig. 2 Effects of nitrogen addition on leaf carbon content (LCC, A), leaf nitrogen content (LNC, B), leaf phosphorus content (LPC, C), and N-P ratio (N:P, D)(mean ± SE, n = 3). Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen. Different lowercase letters indicate the significant difference at 5% level between nitrogen treatments.
叶性状 Leaf trait | 处理 Treatment | 生活型 Life form | |||
---|---|---|---|---|---|
针叶乔木 Coniferous tree | 阔叶乔木 Broadleaf tree | 灌木 Shrub | 草本 Herb | ||
叶厚度 Leaf thickness (μm) | CK LN MN HN | 716.23 ± 15.16a 675.67 ± 27.71a 689.33 ± 27.24a 661.00 ± 17.85a | 160.45 ± 10.44a 136.88 ± 10.45a 147.48 ± 5.23a 154.85 ± 9.76a | 167.45 ± 18.16a 166.78 ± 13.89a 152.16 ± 7.41a 167.69 ± 16.35a | 199.43 ± 28.20a 198.07 ± 23.30a 168.19 ± 20.76a 161.35 ± 17.11a |
叶面积 Leaf area (cm2) | CK LN MN HN | 6.59 ± 0.14ab 7.13 ± 0.33a 7.18 ± 0.01a 6.45 ± 0.12b | 22.91 ± 2.70a 23.92 ± 4.38a 29.33 ± 4.91a 26.49 ± 3.74a | 25.59 ± 5.56a 23.79 ± 4.83a 25.97 ± 5.02a 30.02 ± 5.96a | 39.75 ± 12.70a 39.36 ± 12.85a 44.70 ± 13.22a 51.44 ± 20.18a |
比叶面积 Specific leaf area (m2·kg-1) | CK LN MN HN | 12.42 ± 0.53a 12.62 ± 0.33a 11.54 ± 0.40a 12.67 ± 0.79a | 24.32 ± 1.36ab 25.95 ± 0.91a 22.19 ± 1.43ab 21.73 ± 1.19b | 36.06 ± 0.86a 35.15 ± 1.27a 32.66 ± 1.69a 32.00 ± 1.56a | 34.22 ± 1.12a 33.30 ± 0.92a 32.98 ± 1.16a 31.60 ± 1.09a |
叶绿素含量 Chlorophyll content (SPAD) | CK LN MN HN | 45.73 ± 1.36a 40.37 ± 1.34a 44.03 ± 1.95a 42.23 ± 2.87a | 43.78 ± 1.91b 46.87 ± 2.17ab 48.75 ± 1.82ab 49.47 ± 1.21a | 35.20± 1.46a 37.03 ± 1.60a 39.65 ± 1.83a 39.71 ± 1.83a | 30.78 ± 1.50a 31.81 ± 1.74a 34.86 ± 1.47a 33.62 ± 1.43a |
叶干物质含量 Leaf dry matter content (g·kg-1) | CK LN MN HN | 391.87 ± 5.43b 421.10 ± 7.77a 420.03 ± 3.91a 416.17 ± 7.31a | 381.12 ± 15.37a 377.22 ± 3.14a 395.85 ± 11.58a 384.52 ± 5.94a | 284.66 ± 12.41a 287.51 ± 11.45a 290.32 ± 15.77a 295.34 ± 11.52a | 236.01 ± 16.81a 241.20 ± 16.62a 213.13 ± 23.40a 249.49 ± 11.31a |
叶有机碳含量 Leaf carbon content (mg·g-1) | CK LN MN HN | 587.59 ± 10.05a 541.67 ± 27.75a 553.05 ± 1.01a 548.83 ± 4.88a | 473.87 ± 15.47a 486.62 ± 17.09a 481.64 ± 13.02a 487.60 ± 13.23a | 484.68 ± 17.84a 450.92 ± 7.49a 454.37 ± 6.12a 468.28 ± 11.67a | 452.51 ± 7.97a 441.45 ± 8.30a 449.41 ± 9.61a 450.11 ± 6.43a |
叶氮含量 Leaf nitrogen content (mg·g-1) | CK LN MN HN | 12.09 ± 0.39b 13.48 ± 0.47a 11.91 ± 0.50b 12.50 ± 0.38ab | 25.25 ± 0.79Cc 26.60 ± 0.32BCb 27.56 ± 0.47Bb 29.78 ± 0.37Aa | 22.47 ± 0.61Bc 25.63 ± 0.56Ab 25.81 ± 0.47Ab 26.93 ± 0.45Aa | 22.96 ± 0.75Cc 28.04 ± 0.80Bb 28.20 ± 0.62Bb 30.47 ± 0.74Aa |
叶磷含量 Leaf phosphorus content (mg·g-1) | CK LN MN HN | 1.08 ± 0.12a 1.02 ± 0.10a 1.06 ± 0.11a 0.98 ± 0.07a | 1.60 ± 0.11ABb 1.48 ± 0.05Bb 1.70 ± 0.07ABab 1.92 ± 0.17Aa | 1.17 ± 0.05Cc 1.41 ± 0.03Bb 1.71 ± 0.07Aa 1.75 ± 0.05Aa | 1.26 ± 0.04Bc 1.68 ± 0.08Ab 1.91 ± 0.08Aa 1.86 ± 0.08Aab |
叶氮磷比 leaf N:P | CK LN MN HN | 12.54 ± 1.11a 14.75 ± 1.14a 12.44 ± 0.89a 14.40 ± 0.80a | 16.39 ± 0.96a 18.16 ± 0.46a 16.44 ± 0.52a 16.70 ± 1.08a | 19.86 ± 0.89Aa 18.47 ± 0.61ABa 15.80 ± 0.72Bb 15.77 ± 0.59Bb | 18.50 ± 0.50Aa 17.26 ± 0.66ABab 15.16 ± 0.44Bc 16.95 ± 0.59ABb |
Table 2 Variation of leaf traits in different life forms under different levels of nitrogen addition (mean ± SE)
叶性状 Leaf trait | 处理 Treatment | 生活型 Life form | |||
---|---|---|---|---|---|
针叶乔木 Coniferous tree | 阔叶乔木 Broadleaf tree | 灌木 Shrub | 草本 Herb | ||
叶厚度 Leaf thickness (μm) | CK LN MN HN | 716.23 ± 15.16a 675.67 ± 27.71a 689.33 ± 27.24a 661.00 ± 17.85a | 160.45 ± 10.44a 136.88 ± 10.45a 147.48 ± 5.23a 154.85 ± 9.76a | 167.45 ± 18.16a 166.78 ± 13.89a 152.16 ± 7.41a 167.69 ± 16.35a | 199.43 ± 28.20a 198.07 ± 23.30a 168.19 ± 20.76a 161.35 ± 17.11a |
叶面积 Leaf area (cm2) | CK LN MN HN | 6.59 ± 0.14ab 7.13 ± 0.33a 7.18 ± 0.01a 6.45 ± 0.12b | 22.91 ± 2.70a 23.92 ± 4.38a 29.33 ± 4.91a 26.49 ± 3.74a | 25.59 ± 5.56a 23.79 ± 4.83a 25.97 ± 5.02a 30.02 ± 5.96a | 39.75 ± 12.70a 39.36 ± 12.85a 44.70 ± 13.22a 51.44 ± 20.18a |
比叶面积 Specific leaf area (m2·kg-1) | CK LN MN HN | 12.42 ± 0.53a 12.62 ± 0.33a 11.54 ± 0.40a 12.67 ± 0.79a | 24.32 ± 1.36ab 25.95 ± 0.91a 22.19 ± 1.43ab 21.73 ± 1.19b | 36.06 ± 0.86a 35.15 ± 1.27a 32.66 ± 1.69a 32.00 ± 1.56a | 34.22 ± 1.12a 33.30 ± 0.92a 32.98 ± 1.16a 31.60 ± 1.09a |
叶绿素含量 Chlorophyll content (SPAD) | CK LN MN HN | 45.73 ± 1.36a 40.37 ± 1.34a 44.03 ± 1.95a 42.23 ± 2.87a | 43.78 ± 1.91b 46.87 ± 2.17ab 48.75 ± 1.82ab 49.47 ± 1.21a | 35.20± 1.46a 37.03 ± 1.60a 39.65 ± 1.83a 39.71 ± 1.83a | 30.78 ± 1.50a 31.81 ± 1.74a 34.86 ± 1.47a 33.62 ± 1.43a |
叶干物质含量 Leaf dry matter content (g·kg-1) | CK LN MN HN | 391.87 ± 5.43b 421.10 ± 7.77a 420.03 ± 3.91a 416.17 ± 7.31a | 381.12 ± 15.37a 377.22 ± 3.14a 395.85 ± 11.58a 384.52 ± 5.94a | 284.66 ± 12.41a 287.51 ± 11.45a 290.32 ± 15.77a 295.34 ± 11.52a | 236.01 ± 16.81a 241.20 ± 16.62a 213.13 ± 23.40a 249.49 ± 11.31a |
叶有机碳含量 Leaf carbon content (mg·g-1) | CK LN MN HN | 587.59 ± 10.05a 541.67 ± 27.75a 553.05 ± 1.01a 548.83 ± 4.88a | 473.87 ± 15.47a 486.62 ± 17.09a 481.64 ± 13.02a 487.60 ± 13.23a | 484.68 ± 17.84a 450.92 ± 7.49a 454.37 ± 6.12a 468.28 ± 11.67a | 452.51 ± 7.97a 441.45 ± 8.30a 449.41 ± 9.61a 450.11 ± 6.43a |
叶氮含量 Leaf nitrogen content (mg·g-1) | CK LN MN HN | 12.09 ± 0.39b 13.48 ± 0.47a 11.91 ± 0.50b 12.50 ± 0.38ab | 25.25 ± 0.79Cc 26.60 ± 0.32BCb 27.56 ± 0.47Bb 29.78 ± 0.37Aa | 22.47 ± 0.61Bc 25.63 ± 0.56Ab 25.81 ± 0.47Ab 26.93 ± 0.45Aa | 22.96 ± 0.75Cc 28.04 ± 0.80Bb 28.20 ± 0.62Bb 30.47 ± 0.74Aa |
叶磷含量 Leaf phosphorus content (mg·g-1) | CK LN MN HN | 1.08 ± 0.12a 1.02 ± 0.10a 1.06 ± 0.11a 0.98 ± 0.07a | 1.60 ± 0.11ABb 1.48 ± 0.05Bb 1.70 ± 0.07ABab 1.92 ± 0.17Aa | 1.17 ± 0.05Cc 1.41 ± 0.03Bb 1.71 ± 0.07Aa 1.75 ± 0.05Aa | 1.26 ± 0.04Bc 1.68 ± 0.08Ab 1.91 ± 0.08Aa 1.86 ± 0.08Aab |
叶氮磷比 leaf N:P | CK LN MN HN | 12.54 ± 1.11a 14.75 ± 1.14a 12.44 ± 0.89a 14.40 ± 0.80a | 16.39 ± 0.96a 18.16 ± 0.46a 16.44 ± 0.52a 16.70 ± 1.08a | 19.86 ± 0.89Aa 18.47 ± 0.61ABa 15.80 ± 0.72Bb 15.77 ± 0.59Bb | 18.50 ± 0.50Aa 17.26 ± 0.66ABab 15.16 ± 0.44Bc 16.95 ± 0.59ABb |
LT | LA | SLA | CC | LDMC | LCC | LNC | LPC | N:P | N-Tr. | Sp. | Sig. (N-Tr.× Sp.) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LT | 1 | -0.06 | -0.50** | 0.00 | ||||||||
LA | -0.17** | 1 | 0.06 | 0.37** | 0.00 | |||||||
SLA | -0.73** | 0.42** | 1 | -0.12* | 0.71** | 0.01 | ||||||
CC | 0.10 | 0.25** | -0.34** | 1 | 0.18** | -0.30** | 0.00 | |||||
LDMC | 0.11 | -0.43** | -0.56** | 0.35** | 1 | 0.04 | -0.72** | 0.00 | ||||
LCC | 0.44** | -0.55** | -0.64** | 0.22** | 0.52** | 1 | -0.04 | -0.58** | 0.00 | |||
LNC | -0.73** | 0.56** | 0.71** | 0.13* | -0.37** | -0.60** | 1 | 0.25** | 0.62** | 0.00 | ||
LPC | -0.46** | 0.42** | 0.50** | 0.03 | -0.40** | -0.54** | 0.71** | 1 | 0.34** | 0.39** | 0.00 | |
N:P | -0.36** | 0.17** | 0.29** | 0.14* | 0.08 | -0.06 | 0.29** | -0.41** | 1 | -0.17** | 0.26** | 0.00 |
Table 3 Pearson correlation coefficients among leaf traits and the effects of N-treatment and species
LT | LA | SLA | CC | LDMC | LCC | LNC | LPC | N:P | N-Tr. | Sp. | Sig. (N-Tr.× Sp.) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LT | 1 | -0.06 | -0.50** | 0.00 | ||||||||
LA | -0.17** | 1 | 0.06 | 0.37** | 0.00 | |||||||
SLA | -0.73** | 0.42** | 1 | -0.12* | 0.71** | 0.01 | ||||||
CC | 0.10 | 0.25** | -0.34** | 1 | 0.18** | -0.30** | 0.00 | |||||
LDMC | 0.11 | -0.43** | -0.56** | 0.35** | 1 | 0.04 | -0.72** | 0.00 | ||||
LCC | 0.44** | -0.55** | -0.64** | 0.22** | 0.52** | 1 | -0.04 | -0.58** | 0.00 | |||
LNC | -0.73** | 0.56** | 0.71** | 0.13* | -0.37** | -0.60** | 1 | 0.25** | 0.62** | 0.00 | ||
LPC | -0.46** | 0.42** | 0.50** | 0.03 | -0.40** | -0.54** | 0.71** | 1 | 0.34** | 0.39** | 0.00 | |
N:P | -0.36** | 0.17** | 0.29** | 0.14* | 0.08 | -0.06 | 0.29** | -0.41** | 1 | -0.17** | 0.26** | 0.00 |
Fig. 3 Effects of nitrogen addition on leaf nitrogen content (LNC) vs. specific leaf area (SLA) (A), LNC vs. leaf thickness (LT) (B), leaf phosphorus content (LPC) vs. SLA (C) and LPC vs. LT (D). CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen.
处理 Treatment | 叶氮含量/比叶面积 LNC:SLA | 叶磷含量/比叶面积 LPC:SLA | 叶氮含量/叶厚度 LNC:LT | 叶磷含量/叶厚度 LPC:LT |
---|---|---|---|---|
CK | 0.74 ± 0.022d | 0.05 ± 0.002b | 0.12 ± 0.007c | 0.01 ± 0.000b |
LN | 0.85 ± 0.018c | 0.05 ± 0.002b | 0.15 ± 0.009bc | 0.01 ± 0.001b |
MN | 0.92 ± 0.027b | 0.06 ± 0.002a | 0.16 ± 0.009ab | 0.01 ± 0.001a |
HN | 1.05 ± 0.033a | 0.07 ± 0.003a | 0.18 ± 0.012a | 0.01 ± 0.001a |
Table 4 Results of one-way ANOVA for the effect of nitrogen addition on the ratio of leaf nitrogen content (LNC) over specific leaf area (SLA) and leaf thickness (LT), and leaf phosphorus content (LPC) over specific leaf area (SLA) and leaf thickness (LT) (mean ± SE, n = 36)
处理 Treatment | 叶氮含量/比叶面积 LNC:SLA | 叶磷含量/比叶面积 LPC:SLA | 叶氮含量/叶厚度 LNC:LT | 叶磷含量/叶厚度 LPC:LT |
---|---|---|---|---|
CK | 0.74 ± 0.022d | 0.05 ± 0.002b | 0.12 ± 0.007c | 0.01 ± 0.000b |
LN | 0.85 ± 0.018c | 0.05 ± 0.002b | 0.15 ± 0.009bc | 0.01 ± 0.001b |
MN | 0.92 ± 0.027b | 0.06 ± 0.002a | 0.16 ± 0.009ab | 0.01 ± 0.001a |
HN | 1.05 ± 0.033a | 0.07 ± 0.003a | 0.18 ± 0.012a | 0.01 ± 0.001a |
载荷 Loading | 叶厚度 Leaf thickness | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶绿素含量 Chlorophyll content | 叶干物质含量 Leaf dry matter content | 叶碳含量 Leaf carbon content | 叶氮含量 Leaf nitrogen content | 叶磷含量 Leaf phosphorus content | 氮磷比 N-P ratio | 氮添加处理 N addition treatment |
---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | 0.70 | -0.64 | -0.83 | 0.09 | 0.58 | 0.80 | -0.91 | -0.80 | -0.11 | -0.20 |
主成分2 Principal component 2 | -0.40 | 0.08 | 0.16 | 0.32 | 0.33 | 0.10 | 0.24 | -0.43 | 0.94 | -0.57 |
Table 5 Loadings of leaf traits in principal components analyses
载荷 Loading | 叶厚度 Leaf thickness | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶绿素含量 Chlorophyll content | 叶干物质含量 Leaf dry matter content | 叶碳含量 Leaf carbon content | 叶氮含量 Leaf nitrogen content | 叶磷含量 Leaf phosphorus content | 氮磷比 N-P ratio | 氮添加处理 N addition treatment |
---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | 0.70 | -0.64 | -0.83 | 0.09 | 0.58 | 0.80 | -0.91 | -0.80 | -0.11 | -0.20 |
主成分2 Principal component 2 | -0.40 | 0.08 | 0.16 | 0.32 | 0.33 | 0.10 | 0.24 | -0.43 | 0.94 | -0.57 |
Fig. 4 Results of principle component analyses (PCA) of leaf traits across common species in the natural Pinus tabuliformis forest. Loadings of leaf traits across primary species in the natural forest of P. tabuliformis (A), factor scores of different species (B) and responses to nitrogen addition (C). Data were log10-transformed before analysis. CC, chlorophyll content; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; N:P, N-P ratio; SLA, specific leaf area. Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. C, coniferous tree; B, broadleaf tree; H, herb; S, shrub. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen.
1 | Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: Hypothesis revisited.BioScience, 48, 921-934. |
2 | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378-386. |
3 | Adams MA, Ineson P, Binkley D, Cadisch G, Tokuchi N, Scholes M, Hicks K (2004). Soil functional responses to excess nitrogen inputs at global scales. AMBIO, 33, 530-536. |
4 | Aerts R, Chapin SF (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
5 | Albert CH, Grasseina F, Schurrd FM, Vieilledente G, Violle C (2011). When and how should intraspecific variability be considered in trait-based plant ecology?Perspectives in Plant Ecology, Evolution, and Systematics, 13, 217-225. |
6 | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits.Functional Ecology, 24, 1192-1201. |
7 | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b). Intraspecific functional variability: Extent, structure and sources of variation.Journal of Ecology, 98, 603-613. |
8 | Bassin S, Werner RA, Sörgel K, Volk M, Buchmann N, Fuhrer J (2009). Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture.Oecologia, 158, 747-756. |
9 | Bleecker AB (1998). The evolutionary basis of leaf senescence: Method to the madness?Current Opinion in Plant Biology, 1, 73-78. |
10 | Blonder B, Violle C, Enquist BJ, Cornelissen H (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101, 981-989. |
11 | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation.Journal of Ecology, 86, 717-738. |
12 | Chabot BF, David JH (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259. |
13 | Chen LY (2010).Effects of N, P Addition on N:P Stoichiometry of Different Functional Groups in Potentilla fruticosa Community in a Sub-alpine Meadow. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)[陈凌云 (2010). 添加氮磷对亚高寒草甸金露梅群落各功能群化学计量学特征的影响. 硕士学位论文, 兰州大学, 兰州.] |
14 | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] |
15 | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature, 451, 712-715. |
16 | Comelissen JHC, Cerabolini B, Castro-Diez P, Villar-Salvador P, Montserrat-Marti G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings?Journal of Vegetation Science, 14, 311-322. |
17 | Crawley MJ (1983). Herbivory: The Dynamics of Animal-Plant Interactions. Blackwell Scientific Publications, Oxford, UK. |
18 | Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology Evolution, 26, 88-95. |
19 | Fang YT, Mo JM, Zhou GY, Xue JH (2005). Response of diameter at breast height increase to N addition in forests of Dinghushan Biosphere Reserve.Journal of Tropical and Subtropical Botany, 13(3), 198-204. (in Chinese with English abstract)[方运霆, 莫江明, 周国逸, 薛璟花 (2005). 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 13(3), 198-204.] |
20 | Fenn ME, Poth MA, Johnson DW (1996). Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California.Forest Ecology and Management, 82, 211-230. |
21 | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait combinations along rainfall and phosphorus gradients.Journal of Ecology, 88, 964-977. |
22 | Frak E, Roux XL, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001). Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves.Plant, Cell & Environment, 24, 1279-1288. |
23 | Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora.Journal of Ecology, 98, 362-373. |
24 | Grime JP (2001).Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley & Sons, Chichester, UK. |
25 | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
26 | Han WX, Fang YT, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
27 | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122. |
28 | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese with English abstract)[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
29 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
30 | Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999). Contemporary and pre-industrial global reactive nitrogen budgets.Biogeochemistry, 46, 7-43. |
31 | Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER (2013). Variability and association of leaf traits between current-year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China.Chinese Journal of Plant Ecology, 37, 912-921. (in Chinese with English abstract)[黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 (2013). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.] |
32 | Huang JY, Yuan ZY, Li LH (2009). Changes in N, P and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients.Chinese Journal of Plant Ecology, 33, 442-448. (in Chinese with English abstract)[黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.] |
33 | Kikuzawa K (1991). A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist, 138, 1250-1263. |
34 | Laughlin DC (2011). Nitrification is linked to dominant leaf traits rather than functional diversity.Journal of Ecology, 99, 1091-1099. |
35 | Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons.New Phytologist, 176, 635-643. |
36 | Li DJ, Mo JM, Fang YT, Li ZA (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China.Acta Phytoecologica Sinica, 29, 543-549. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 李志安 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29, 543-549.] |
37 | Li HS, Wang JS, Liu X, Jiang SS, Zhang CY, Zhao XH (2014). Effects and its sustained effect of simulated nitrogen deposition on soil respiration in Pinus tabulaeformis forests in the Taiyue Mountain, China.Acta Scientiae Circumstantiae, 34, 238-249. (in Chinese with English abstract)[李化山, 汪金松, 刘星, 蒋思思, 张春雨, 赵秀海 (2014). 模拟氮沉降对太岳山油松林土壤呼吸的影响及其持续效应. 环境科学学报, 34, 238-249.] |
38 | Li XR, Liu QJ, Cai Z, Ma ZQ (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China. Journal of Plant Ecology (Chinese Version), 31, 93-101. (in Chinese with English abstract)[李轩然, 刘琪璟, 蔡哲, 马泽清 (2007). 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31, 93-101.] |
39 | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
40 | Liu Y, Zhang J, Chen YM, Chen L, Liu Q (2013). Effect of nitrogen and phosphorus fertilization on biomass allocation and C:N:P stoichiometric characteristics of Eucalyptus grandis seedlings.Chinese Journal of Plant Ecology, 37, 933-941. (in Chinese with English abstract)[刘洋, 张健, 陈亚梅, 陈磊, 刘强 (2013). 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响. 植物生态学报, 37, 933-941.] |
41 | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA.Forest Ecology and Management, 196, 7-28. |
42 | Maire V, Gross N, Hill D, Martin R, Wirth C, Wright IJ, Soussana JF (2013). Disentangling coordination among functional traits using an individual-centred model: Impact on plant performance at intra- and inter-specific levels. PLOS ONE, 8, e77372. doi: 10.1371/journal.pone.00773-72.eCollection 2013. |
43 | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits.Trends in Ecology Evolution, 21, 178-185 |
44 | Nihlgard B (1985). The ammonium hypothesis—An additional explanation to the forest dieback in Europe.AMBIO, 14, 2-8 |
45 | Oguchi R, Hikosaka K, Hirose T (2003). Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell & Environment, 26, 505-512. |
46 | Ono K, Nishi Y, Watanable A, Terashima I (2001). Possible mechanisms of adaptive leaf senescence.Plant Biology, 3, 234-243. |
47 | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149. |
48 | Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum.Science, 340, 741-744. |
49 | Pensa M, Karu H, Luud A, Kund K (2010). Within-species correlations in leaf traits of three boreal plant species along a latitudinal gradient.Plant Ecology, 208, 155-166. |
50 | Pontes LDS, Soussana JF, Louault F, Andueza D, Carrère P (2007). Leaf traits affect the above-ground productivity and quality of pasture grasses.Functional Ecology, 21, 844-853. |
51 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
52 | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: Traits, spectra, and strategies.International Journal of Plant Sciences, 164(S3), S143-S164. |
53 | Richter A, Burrows JP, Nüss H, Granier C, Niemeier U (2005). Increase in tropospheric nitrogen dioxide over China observed from space.Nature, 437, 129-132. |
54 | Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows.Journal of Vegetation Science, 24, 239-250. |
55 | Royer DL (2009). Nutrient turnover rates in ancient terrestrial ecosystems.Palaios, 23, 421-423. |
56 | Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms.American Journal of Botany, 97, 438-445. |
57 | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
58 | Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. |
59 | Silvertown J, Franco FB, Harper JL (1997). Plant Life Histories: Ecology, Phylogeny and Evolution. Cambridge University Press, Cambridge, UK. |
60 | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization.Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
61 | Sultan SE (2000). Phenotypic plasticity for plant development, function and life history.Trends in Plant Science, 5, 537-542. |
62 | Tamm CO (1990). Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Change, and Ecological Stability. Springer, Berlin. 116. |
63 | Ti CP, Yan XY (2010). Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data.Journal of Agro-Environment Science, 29, 1606-1611. (in Chinese with English abstract)[遆超普, 颜晓元 (2010). 基于氮排放数据的中国大陆大气氮素湿沉降量估算. 农业环境科学学报, 29, 1606-1611.] |
64 | Ulrich B (1995). The history and possible causes of forest decline in central Europe, with particular attention to the German situation.Environmental Reviews, 3, 262-276. |
65 | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
66 | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. (in Chinese with English abstract)[万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] |
67 | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change.Chinese Journal of Plant Ecology, 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
68 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
69 | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
70 | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemet Ülo, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography, 14, 411-421. |
71 | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology, 15, 423-434. |
72 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
73 | Wright JP, Sutton-Grier A (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions?Functional Ecology, 26, 1390-1398. |
74 | Wright RF, Rasmussen L (1998). Introduction to the NITREX and EXMAN projects.Forest Ecology and Management, 101, 1-7. |
75 | Wyka T, Robakowski P, Zytkowiak R (2000). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research, 95, 87-99. |
76 | Zhang JL, Zhu JJ, Cao KF (2007). Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees, 21, 631-643. |
77 | Zhang WN, Liao ZY (2009). Research advances in the effect of nitrogen deposition on forest plants. Environmental Science Survey, 28(3), 21-24. (in Chinese)[张维娜, 廖周瑜 (2009). 氮沉降增加对森林植物影响的研究进展. 环境科学导刊, 28(3), 21-24.] |
78 | Zhao XF, Xu HL, Zhang P, Zhang QQ (2014). Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland.Chinese Journal of Plant Ecology, 38, 134-146. (in Chinese with English abstract)[赵新风徐海量, 张鹏, 张青青 (2014). 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 38, 134-146.] |
79 | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study.AMBIO, 31(2), 79-87. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[3] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[4] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[5] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[8] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[9] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[10] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[11] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[12] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[13] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[14] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[15] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn