Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (2): 206-215.DOI: 10.17521/cjpe.2022.0120
• Research Articles • Previous Articles Next Articles
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling*()
Received:
2022-04-06
Accepted:
2022-09-20
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition[J]. Chin J Plant Ecol, 2023, 47(2): 206-215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0120
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
Table 1 Locations of native and invasive Triadica sebifera populations used in the study
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
Table 2 Dependence of morphological traits of Triadica sebifera with different origin (O) on nitrogen deposition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
Table 3 Dependence of biomass of Triadica sebifera with different origin (O) on nitrogen addition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
Fig. 1 Effect of origin on morphological traits of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 2 Effect of origin on biomass of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 3 Effect of nitrogen addition (N) on growth performance of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 4 Effect of nitrogen addition (N) and origin on root shoot ratio of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 5 Effect of bacteria inhibitors (B) and fungal inhibitors (F) on leaf and aboveground biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 6 Effect of bacterial inhibitors (B) and origin on root biomass of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 7 Effect of nitrogen addition (N), bacterial inhibitors (B) and fungal inhibitors (F) on root biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
[1] |
Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[2] | Bruce KA, Cameron GN, Harcombe PA, Jubinsky G (1997). Introduction, impact on native habitats, and management of a woody invader, the Chinese tallow tree, Sapium sebiferum (L.) Roxb. Natural Areas Journal, 17, 255-260. |
[3] |
Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011). Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035.
PMID |
[4] |
Chang EH, Chiu CY (2015). Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 91, 1-7.
DOI URL |
[5] | Chen GS, Yang YS, Xie JS, Li L, Gao R (2004). Soil biological changes for a natural forest and two plantations in subtropical China. Pedosphere, 14, 297-304. |
[6] |
Deng BL, Liu Q, Liu XS, Zheng LY, Jiang LB, Guo XM, Liu YQ, Zhang L (2017). Effects of enhanced UV-B radiation and nitrogen deposition on the growth of invasive plant Triadica sebifera. Chinese Journal of Plant Ecology, 41, 471-479.
DOI URL |
[邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令 (2017). UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41, 471-479.]
DOI |
|
[7] |
Deng BL, Liu XS, Zheng LY, Liu Q, Guo XM, Zhang L (2019). Effects of nitrogen deposition and UV-B radiation on seedling performance of Chinese tallow tree (Triadica sebifera): a photosynthesis perspective. Forest Ecology and Management, 433, 453-458.
DOI URL |
[8] | Fang HF, Feng WX, Luo LC, Gao Y, Wang BH, Shad N, Wei QX, Zou Y, Su SS, Zhang L (2021). Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition. Acta Ecologica Sinica, 41, 9377-9387. |
[方海富, 冯为迅, 罗来聪, 高宇, 王佰慧, Shad N, 魏启轩, 邹瑜, 苏思思, 张令 (2021). 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响. 生态学报, 41, 9377-9387.] | |
[9] |
Fang H, Gao Y, Zhang Q, Ma L, Wang B, Shad N, Deng W, Liu X, Liu Y, Zhang L (2022). Moso bamboo and Japanese cedar seedlings differently affected soil N2O emissions. Journal of Plant Ecology, 15, 277-285.
DOI URL |
[10] |
Fritze H, Smolander A, Levula T, Kitunen V, Mälkönen E (1994). Wood-ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass, and microbial activity. Biology and Fertility of Soils, 17, 57-63.
DOI URL |
[11] |
Huang W, Carrillo J, Ding J, Siemann E (2012). Interactive effects of herbivory and competition intensity determine invasive plant performance. Oecologia, 170, 373-382.
DOI PMID |
[12] |
Inderjit, van der Putten WH, (2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512-519.
DOI URL |
[13] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present, and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[14] |
Li Q, Song XZ, Chang SX, Peng CH, Xiao WF, Zhang JB, Xiang WH, Li Y, Wang WF (2019). Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 268, 48-54.
DOI URL |
[15] |
Lucas-Borja ME, Candel D, Jindo K, Moreno JL, Andrés M, Bastida F (2012). Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant and Soil, 354, 359-370.
DOI URL |
[16] |
Nijjer S, Rogers WE, Lee CTA, Siemann E (2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11.
DOI URL |
[17] | Nijjer S, Rogers WE, Siemann E (2004). The effect of mycorrhizal inoculum on the growth of five native tree species and the invasive Chinese tallow tree (Sapium sebiferum). The Texas Journal of Science, 56, 357-368. |
[18] |
Peng Y, Peng PH, Li JJ (2016). Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations. Chinese Journal of Plant Ecology, 40, 679-685.
DOI URL |
[彭扬, 彭培好, 李景吉 (2016). 模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响. 植物生态学报, 40, 679-685.]
DOI |
|
[19] |
Pereira e Silva MC, Semenov AV, Schmitt H, van Elsas JD, Salles JF (2013). Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biology & Biochemistry, 57, 995-1002.
DOI URL |
[20] | Qi XX, Zhang SY, Lin F, Zhang LL, Yang DL, Huangfu CH, Wang H (2019). Effect of Flaveria bidentis invasion on plant community and soil microbial community of different invaded soil. Acta Ecologica Sinica, 39, 8472-8482. |
[祁小旭, 张思宇, 林峰, 张玲玲, 杨殿林, 皇甫超河, 王慧 (2019). 黄顶菊对不同入侵地植物群落及土壤微生物群落的影响. 生态学报, 39, 8472-8482.] | |
[21] |
Qin WC, Tao ZB, Wang YJ, Liu YJ, Huang W (2021). Research progress and prospect on the impacts of resource pulses on alien plant invasion. Chinese Journal of Plant Ecology, 45, 573-582.
DOI URL |
[秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟 (2021). 资源脉冲对外来植物入侵影响的研究进展和展望. 植物生态学报, 45, 573-582.] | |
[22] |
Reinhart KO, Callaway RM (2006). Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI PMID |
[23] |
Sun SM, Chen JX, Feng WW, Zhang C, Huang K, Guan M, Sun JK, Liu MC, Feng YL (2021). Plant strategies for nitrogen acquisition and their effects on exotic plant invasions. Biodiversity Science, 29, 72-80.
DOI URL |
[孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙 (2021). 植物氮形态利用策略及对外来植物入侵性的影响. 生物多样性, 29, 72-80.] | |
[24] |
Tang JQ, Guo XC, Lu XY, Liu MC, Zhang HY, Feng YL, Kong DL (2020). A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms. Chinese Journal of Plant Ecology, 44, 1095-1112.
DOI URL |
[唐金琦, 郭小城, 鲁新瑜, 刘明超, 张海艳, 冯玉龙, 孔德良 (2020). 外来入侵植物对本地植物菌根真菌的影响及其机制. 植物生态学报, 44, 1095-1112.] | |
[25] |
Theoharides KA, Dukes JS (2007). Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
DOI PMID |
[26] |
Valladares-Padua C (2006). Importance of knowledge-intensive economic development to conservation of biodiversity in developing countries. Conservation Biology, 20, 700-701.
PMID |
[27] | Wu H, Ding JQ (2014). Recent progress in invasion ecology. Chinese Science Bulletin, 59, 438-448. |
[吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.] | |
[28] |
Xu H, Hu CC, Xu SQ, Sun XC, Liu XY (2018). Effects of exotic plant invasion on soil nitrogen availability. Chinese Journal of Plant Ecology, 42, 1120-1130.
DOI |
[许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎 (2018). 外来植物入侵对土壤氮有效性的影响. 植物生态学报, 42, 1120-1130.]
DOI |
|
[29] |
Yang Q, Li B, Siemann E (2015). The effects of fertilization on plant-soil interactions and salinity tolerance of invasive Triadica sebifera. Plant and Soil, 394, 99-107.
DOI URL |
[30] | Zhang HL, Bai NL, Zheng XQ, Li SX, Zhang JQ, Zhang HY, Zhou S, Sun HF, Lyu WG (2021). Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil. Chinese Journal of Eco-Agriculture, 29, 531-539. |
[张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光 (2021). 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响. 中国生态农业学报, 29, 531-539.] | |
[31] | Zhang KD, Lin YT (1991). Chinese Sapium sebiferum. China Forestry Publishing House, Beijing. |
[张克迪, 林一天 (1991). 中国乌桕. 中国林业出版社, 北京.] | |
[32] | Zhang L, Wang H, Chen NN, Zou JW (2012). Effects of soil biotic communities on the seedling performance of native and invasive provenances of Triadica sebifera. Journal of Biosafety, 21, 41-45. |
[张令, 王泓, 陈楠楠, 邹建文 (2012). 土壤微生物对不同种源乌桕生长的影响. 生物安全学报, 21, 41-45.] | |
[33] |
Zhang L, Zhang YJ, Wang H, Zou JW, Siemann E (2013). Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLoS ONE, 8, e74233. DOI: 10.1371/journal.pone.0074233.
DOI |
[34] | Zheng X, Jiang LB, Deng BL, Liu Q, Liu XS, Zheng LY, Guo XM, Liu YQ, Zhang L (2018). Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera. Acta Agriculturae Zhejiangensis, 30, 248-254. |
[郑翔, 江亮波, 邓邦良, 刘倩, 刘喜帅, 郑利亚, 郭晓敏, 刘苑秋, 张令 (2018). UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响. 浙江农业学报, 30, 248-254.]
DOI |
|
[35] |
Zou J, Rogers WE, DeWalt SJ, Siemann E (2006). The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes. Oecologia, 150, 272-281.
PMID |
[36] |
Zou J, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
DOI URL |
[1] | Fei He Chuan Li Shah Faisal Min XieLu Ying Wang Meng Wang Jia Ruan lin MengWei Guang XingMa Zhuo Wang Hao Jiang. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 0-0. |
[2] | Jia-Rong YANG Dai Dong Junfang Chen Juan Liu Xian Wu Xiaolin Liu Yu Liu. Insight into the recent studies on diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 0-0. |
[3] | Tong-xin HU Bei Li Guang-Xin Li Yue-Xiao Ren Hai-Lei Ding Long SUN. Effect of adding black carbon after fire on community structure of ectomycorrhizal fungi in Larix gmelinii forest [J]. Chin J Plant Ecol, 2023, 47(6): 0-0. |
[4] | Ya-Qi ZHANG Pang danbo Meng-Hao CAO Wen-Qiang HE Li xuebin. Response of Ammonia Oxidizing Bacteria to Nitrogen Fertilization and Plant Litter Input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 0-0. |
[5] | ZHANG Hui, ZENG Wen-Jing, GONG Xin-Tao, MA Ze-Qing. Relationships between root hairs and mycorrhizal fungi across typical subtropical tree species [J]. Chin J Plant Ecol, 2023, 47(1): 88-100. |
[6] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[7] | LIU Mu-Qing, YANG Xiao-Feng, SHI Yu-Ming, LIU Yu-Wei, LI Xiao-Meng, LIAO Wan-Jin. Effects of simulated acid rain on the competitive relationship between invasive Ambrosia artemisiifolia and its co-occurring indigenous forb Bidens bipinnata [J]. Chin J Plant Ecol, 2022, 46(8): 932-940. |
[8] | XIA Ti-Ze, LI Lu-Shuang, YANG Han-Qi. Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense [J]. Chin J Plant Ecol, 2022, 46(7): 823-833. |
[9] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[10] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[11] | XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks [J]. Chin J Plant Ecol, 2022, 46(5): 493-515. |
[12] | SHAN Ting-Ting, CHEN Tong-Yao, CHEN Xiao-Mei, GUO Shun-Xing, WANG Ai-Rong. Advance on the association between mycorrhizal fungi and Orchidaceae in nitrogen nutrition [J]. Chin J Plant Ecol, 2022, 46(5): 516-528. |
[13] | XIE Yu-Hang, JIA Pu, ZHENG Xiu-Tan, LI Jin-Tian, SHU Wen-Sheng, WANG Yu-Tao. Impacts and action pathways of domestication on diversity and community structure of crop microbiome: a review [J]. Chin J Plant Ecol, 2022, 46(3): 249-266. |
[14] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[15] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn