Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (2): 206-215.DOI: 10.17521/cjpe.2022.0120
Special Issue: 入侵生态学
• Research Articles • Previous Articles Next Articles
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling*()
Received:
2022-04-06
Accepted:
2022-09-20
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition[J]. Chin J Plant Ecol, 2023, 47(2): 206-215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0120
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
Table 1 Locations of native and invasive Triadica sebifera populations used in the study
种源 Origin | 种群 Population | 经度 Longitude | 纬度 Latitude |
---|---|---|---|
中国 China | 江西 Jiangxi | 117.12° E | 28.45° N |
江苏 Jiangsu | 118.37° E | 31.23° N | |
浙江 Zhejiang | 118.20° E | 27.12° N | |
广西 Guangxi | 110.45° E | 24.80° N | |
美国 USA | Georgia | 81.01° W | 32.01° N |
Texas | 95.03° W | 29.78° N | |
Louisiana | 93.15° W | 30.23° N | |
Florida | 82.22° W | 29.35° N |
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
Table 2 Dependence of morphological traits of Triadica sebifera with different origin (O) on nitrogen deposition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 株高 Plant height | 叶片数 Leaf number | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶面积比 Leaf area ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 20.87 | <0.000 1 | 7.55 | <0.000 1 | 11.29 | <0.000 1 | 16.20 | <0.000 1 | 25.67 | <0.000 1 |
P | 6 | 15.54 | <0.000 1 | 3.07 | <0.000 1 | 2.66 | 0.016 9 | 2.24 | 0.041 3 | 4.11 | <0.000 1 |
N | 1 | 0.73 | 0.384 8 | 3.94 | 0.048 6 | 1.22 | 0.270 5 | 3.65 | 0.057 6 | 0.31 | 0.577 2 |
B | 1 | 3.02 | 0.084 0 | 0.00 | 0.995 6 | 0.84 | 0.360 1 | 0.03 | 0.871 6 | 0.00 | 0.991 9 |
F | 1 | 0.00 | 0.974 1 | 0.49 | 0.483 5 | 0.55 | 0.460 4 | 0.05 | 0.828 1 | 0.94 | 0.332 9 |
O × N | 1 | 0.78 | 0.379 1 | 0.01 | 0.942 8 | 0.65 | 0.422 6 | 0.97 | 0.325 1 | 0.67 | 0.413 5 |
O × B | 1 | 0.99 | 0.320 8 | 0.09 | 0.761 4 | 0.16 | 0.686 1 | 0.43 | 0.510 5 | 0.26 | 0.609 7 |
O × F | 1 | 0.09 | 0.763 5 | 0.09 | 0.769 8 | 0.07 | 0.788 3 | 1.10 | 0.295 4 | 0.08 | 0.772 3 |
N × B | 1 | 0.09 | 0.765 8 | 0.01 | 0.916 5 | 3.13 | 0.078 7 | 0.21 | 0.648 3 | 0.76 | 0.383 8 |
N × F | 1 | 0.12 | 0.727 2 | 0.28 | 0.600 0 | 0.28 | 0.595 1 | 0.04 | 0.843 3 | 0.04 | 0.839 6 |
B × F | 1 | 1.03 | 0.310 7 | 2.15 | 0.144 6 | 0.54 | 0.464 2 | 2.86 | 0.092 7 | 1.17 | 0.280 6 |
O × N × B | 1 | 1.66 | 0.198 9 | 0.40 | 0.525 7 | 0.87 | 0.351 5 | 0.01 | 0.942 8 | 0.30 | 0.587 0 |
O × N × F | 1 | 0.19 | 0.666 0 | 0.06 | 0.803 8 | 0.12 | 0.726 3 | 0.00 | 0.951 0 | 0.15 | 0.703 6 |
O × B × F | 1 | 0.63 | 0.428 1 | 2.15 | 0.144 6 | 0.08 | 0.784 4 | 1.40 | 0.237 9 | 1.03 | 0.311 1 |
N × B × F | 1 | 2.92 | 0.089 0 | 0.43 | 0.511 4 | 0.02 | 0.890 3 | 2.78 | 0.097 4 | 3.15 | 0.077 7 |
O × N × B × F | 1 | 0.39 | 0.534 1 | 0.32 | 0.569 7 | 0.01 | 0.907 2 | 0.29 | 0.589 5 | 0.53 | 0.467 8 |
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
Table 3 Dependence of biomass of Triadica sebifera with different origin (O) on nitrogen addition (N), bacteria inhibitors (B), fungal inhibitors (F) and their interactions in ANOVAs
处理 Treatment | 自由度 df | 叶生物量 Leaf biomass | 茎生物量 Stem biomass | 根生物量 Root biomass | 地上生物量 Aboveground biomass | 总生物量 Total biomass | 根冠比 Root shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
O | 1 | 5.31 | 0.022 3 | 17.09 | <0.000 1 | 17.70 | <0.000 1 | 13.80 | <0.000 1 | 17.25 | <0.000 1 | 1.37 | 0.244 0 |
P | 6 | 7.61 | <0.000 1 | 15.32 | <0.000 1 | 10.33 | <0.000 1 | 13.61 | <0.000 1 | 12.38 | <0.000 1 | 9.08 | <0.000 1 |
N | 1 | 8.21 | 0.004 6 | 0.69 | 0.406 6 | 13.40 | 0.000 3 | 2.77 | 0.097 6 | 0.49 | 0.486 5 | 57.08 | <0.000 1 |
B | 1 | 1.49 | 0.224 5 | 3.02 | 0.084 0 | 1.38 | 0.242 0 | 2.74 | 0.099 3 | 2.34 | 0.128 2 | 0.08 | 0.783 4 |
F | 1 | 1.95 | 0.164 5 | 0.10 | 0.757 7 | 0.51 | 0.475 6 | 0.10 | 0.748 4 | 0.02 | 0.890 0 | 1.41 | 0.236 1 |
O × N | 1 | 0.40 | 0.530 3 | 1.03 | 0.310 9 | 1.41 | 0.236 0 | 0.88 | 0.350 1 | 0.00 | 0.992 5 | 4.97 | 0.027 0 |
O × B | 1 | 0.71 | 0.400 2 | 0.68 | 0.410 6 | 4.81 | 0.029 5 | 0.79 | 0.375 9 | 2.37 | 0.125 2 | 3.71 | 0.055 7 |
O × F | 1 | 0.98 | 0.323 5 | 0.01 | 0.939 1 | 0.00 | 0.985 0 | 0.19 | 0.667 2 | 0.07 | 0.791 2 | 0.77 | 0.381 2 |
N × B | 1 | 0.07 | 0.785 6 | 0.40 | 0.526 3 | 0.16 | 0.685 9 | 0.11 | 0.740 9 | 0.15 | 0.701 3 | 0.12 | 0.728 7 |
N × F | 1 | 0.09 | 0.762 3 | 1.66 | 0.198 8 | 0.53 | 0.467 2 | 1.00 | 0.318 7 | 0.87 | 0.352 8 | 0.25 | 0.616 8 |
B × F | 1 | 6.52 | 0.011 5 | 2.37 | 0.125 2 | 1.23 | 0.269 0 | 4.13 | 0.043 7 | 2.96 | 0.086 9 | 0.57 | 0.452 3 |
O × N × B | 1 | 0.00 | 0.994 6 | 0.49 | 0.486 5 | 1.49 | 0.223 5 | 0.23 | 0.631 4 | 0.72 | 0.396 6 | 1.90 | 0.169 7 |
O × N × F | 1 | 0.32 | 0.569 5 | 1.04 | 0.310 3 | 2.99 | 0.085 6 | 0.84 | 0.361 3 | 1.80 | 0.181 2 | 0.99 | 0.321 1 |
O × B × F | 1 | 0.31 | 0.577 3 | 1.19 | 0.276 0 | 1.63 | 0.202 9 | 0.93 | 0.337 1 | 1.35 | 0.246 5 | 0.02 | 0.901 3 |
N × B × F | 1 | 0.18 | 0.670 6 | 1.67 | 0.198 3 | 4.45 | 0.036 2 | 1.10 | 0.296 1 | 2.55 | 0.111 8 | 0.61 | 0.434 3 |
O × N × B × F | 1 | 0.09 | 0.760 2 | 0.57 | 0.452 7 | 1.47 | 0.227 3 | 0.16 | 0.690 2 | 0.63 | 0.426 7 | 1.13 | 0.288 2 |
Fig. 1 Effect of origin on morphological traits of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 2 Effect of origin on biomass of Triadica sebifera (mean ± SE). In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 3 Effect of nitrogen addition (N) on growth performance of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 4 Effect of nitrogen addition (N) and origin on root shoot ratio of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 5 Effect of bacteria inhibitors (B) and fungal inhibitors (F) on leaf and aboveground biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 6 Effect of bacterial inhibitors (B) and origin on root biomass of Triadica sebifera (mean ± SE). CK, control; In, invasive; Na, native. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 7 Effect of nitrogen addition (N), bacterial inhibitors (B) and fungal inhibitors (F) on root biomass of Triadica sebifera (mean ± SE). CK, control. Different lowercase letters indicate significant differences (p < 0.05).
[1] |
Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[2] | Bruce KA, Cameron GN, Harcombe PA, Jubinsky G (1997). Introduction, impact on native habitats, and management of a woody invader, the Chinese tallow tree, Sapium sebiferum (L.) Roxb. Natural Areas Journal, 17, 255-260. |
[3] |
Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011). Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035.
PMID |
[4] |
Chang EH, Chiu CY (2015). Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 91, 1-7.
DOI URL |
[5] | Chen GS, Yang YS, Xie JS, Li L, Gao R (2004). Soil biological changes for a natural forest and two plantations in subtropical China. Pedosphere, 14, 297-304. |
[6] |
Deng BL, Liu Q, Liu XS, Zheng LY, Jiang LB, Guo XM, Liu YQ, Zhang L (2017). Effects of enhanced UV-B radiation and nitrogen deposition on the growth of invasive plant Triadica sebifera. Chinese Journal of Plant Ecology, 41, 471-479.
DOI URL |
[邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令 (2017). UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41, 471-479.]
DOI |
|
[7] |
Deng BL, Liu XS, Zheng LY, Liu Q, Guo XM, Zhang L (2019). Effects of nitrogen deposition and UV-B radiation on seedling performance of Chinese tallow tree (Triadica sebifera): a photosynthesis perspective. Forest Ecology and Management, 433, 453-458.
DOI URL |
[8] | Fang HF, Feng WX, Luo LC, Gao Y, Wang BH, Shad N, Wei QX, Zou Y, Su SS, Zhang L (2021). Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition. Acta Ecologica Sinica, 41, 9377-9387. |
[方海富, 冯为迅, 罗来聪, 高宇, 王佰慧, Shad N, 魏启轩, 邹瑜, 苏思思, 张令 (2021). 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响. 生态学报, 41, 9377-9387.] | |
[9] |
Fang H, Gao Y, Zhang Q, Ma L, Wang B, Shad N, Deng W, Liu X, Liu Y, Zhang L (2022). Moso bamboo and Japanese cedar seedlings differently affected soil N2O emissions. Journal of Plant Ecology, 15, 277-285.
DOI URL |
[10] |
Fritze H, Smolander A, Levula T, Kitunen V, Mälkönen E (1994). Wood-ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass, and microbial activity. Biology and Fertility of Soils, 17, 57-63.
DOI URL |
[11] |
Huang W, Carrillo J, Ding J, Siemann E (2012). Interactive effects of herbivory and competition intensity determine invasive plant performance. Oecologia, 170, 373-382.
DOI PMID |
[12] |
Inderjit, van der Putten WH, (2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512-519.
DOI URL |
[13] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present, and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[14] |
Li Q, Song XZ, Chang SX, Peng CH, Xiao WF, Zhang JB, Xiang WH, Li Y, Wang WF (2019). Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 268, 48-54.
DOI URL |
[15] |
Lucas-Borja ME, Candel D, Jindo K, Moreno JL, Andrés M, Bastida F (2012). Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant and Soil, 354, 359-370.
DOI URL |
[16] |
Nijjer S, Rogers WE, Lee CTA, Siemann E (2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11.
DOI URL |
[17] | Nijjer S, Rogers WE, Siemann E (2004). The effect of mycorrhizal inoculum on the growth of five native tree species and the invasive Chinese tallow tree (Sapium sebiferum). The Texas Journal of Science, 56, 357-368. |
[18] |
Peng Y, Peng PH, Li JJ (2016). Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations. Chinese Journal of Plant Ecology, 40, 679-685.
DOI URL |
[彭扬, 彭培好, 李景吉 (2016). 模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响. 植物生态学报, 40, 679-685.]
DOI |
|
[19] |
Pereira e Silva MC, Semenov AV, Schmitt H, van Elsas JD, Salles JF (2013). Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biology & Biochemistry, 57, 995-1002.
DOI URL |
[20] | Qi XX, Zhang SY, Lin F, Zhang LL, Yang DL, Huangfu CH, Wang H (2019). Effect of Flaveria bidentis invasion on plant community and soil microbial community of different invaded soil. Acta Ecologica Sinica, 39, 8472-8482. |
[祁小旭, 张思宇, 林峰, 张玲玲, 杨殿林, 皇甫超河, 王慧 (2019). 黄顶菊对不同入侵地植物群落及土壤微生物群落的影响. 生态学报, 39, 8472-8482.] | |
[21] |
Qin WC, Tao ZB, Wang YJ, Liu YJ, Huang W (2021). Research progress and prospect on the impacts of resource pulses on alien plant invasion. Chinese Journal of Plant Ecology, 45, 573-582.
DOI URL |
[秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟 (2021). 资源脉冲对外来植物入侵影响的研究进展和展望. 植物生态学报, 45, 573-582.] | |
[22] |
Reinhart KO, Callaway RM (2006). Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI PMID |
[23] |
Sun SM, Chen JX, Feng WW, Zhang C, Huang K, Guan M, Sun JK, Liu MC, Feng YL (2021). Plant strategies for nitrogen acquisition and their effects on exotic plant invasions. Biodiversity Science, 29, 72-80.
DOI URL |
[孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙 (2021). 植物氮形态利用策略及对外来植物入侵性的影响. 生物多样性, 29, 72-80.] | |
[24] |
Tang JQ, Guo XC, Lu XY, Liu MC, Zhang HY, Feng YL, Kong DL (2020). A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms. Chinese Journal of Plant Ecology, 44, 1095-1112.
DOI URL |
[唐金琦, 郭小城, 鲁新瑜, 刘明超, 张海艳, 冯玉龙, 孔德良 (2020). 外来入侵植物对本地植物菌根真菌的影响及其机制. 植物生态学报, 44, 1095-1112.] | |
[25] |
Theoharides KA, Dukes JS (2007). Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
DOI PMID |
[26] |
Valladares-Padua C (2006). Importance of knowledge-intensive economic development to conservation of biodiversity in developing countries. Conservation Biology, 20, 700-701.
PMID |
[27] | Wu H, Ding JQ (2014). Recent progress in invasion ecology. Chinese Science Bulletin, 59, 438-448. |
[吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.] | |
[28] |
Xu H, Hu CC, Xu SQ, Sun XC, Liu XY (2018). Effects of exotic plant invasion on soil nitrogen availability. Chinese Journal of Plant Ecology, 42, 1120-1130.
DOI |
[许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎 (2018). 外来植物入侵对土壤氮有效性的影响. 植物生态学报, 42, 1120-1130.]
DOI |
|
[29] |
Yang Q, Li B, Siemann E (2015). The effects of fertilization on plant-soil interactions and salinity tolerance of invasive Triadica sebifera. Plant and Soil, 394, 99-107.
DOI URL |
[30] | Zhang HL, Bai NL, Zheng XQ, Li SX, Zhang JQ, Zhang HY, Zhou S, Sun HF, Lyu WG (2021). Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil. Chinese Journal of Eco-Agriculture, 29, 531-539. |
[张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光 (2021). 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响. 中国生态农业学报, 29, 531-539.] | |
[31] | Zhang KD, Lin YT (1991). Chinese Sapium sebiferum. China Forestry Publishing House, Beijing. |
[张克迪, 林一天 (1991). 中国乌桕. 中国林业出版社, 北京.] | |
[32] | Zhang L, Wang H, Chen NN, Zou JW (2012). Effects of soil biotic communities on the seedling performance of native and invasive provenances of Triadica sebifera. Journal of Biosafety, 21, 41-45. |
[张令, 王泓, 陈楠楠, 邹建文 (2012). 土壤微生物对不同种源乌桕生长的影响. 生物安全学报, 21, 41-45.] | |
[33] |
Zhang L, Zhang YJ, Wang H, Zou JW, Siemann E (2013). Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLoS ONE, 8, e74233. DOI: 10.1371/journal.pone.0074233.
DOI |
[34] | Zheng X, Jiang LB, Deng BL, Liu Q, Liu XS, Zheng LY, Guo XM, Liu YQ, Zhang L (2018). Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera. Acta Agriculturae Zhejiangensis, 30, 248-254. |
[郑翔, 江亮波, 邓邦良, 刘倩, 刘喜帅, 郑利亚, 郭晓敏, 刘苑秋, 张令 (2018). UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响. 浙江农业学报, 30, 248-254.]
DOI |
|
[35] |
Zou J, Rogers WE, DeWalt SJ, Siemann E (2006). The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes. Oecologia, 150, 272-281.
PMID |
[36] |
Zou J, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
DOI URL |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[4] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[7] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[8] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[9] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[10] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[11] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[14] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[15] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn