Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (7): 922-931.DOI: 10.17521/cjpe.2022.0105
Special Issue: 全球变化与生态系统; 生态化学计量; 青藏高原植物生态学:生态系统生态学; 生物地球化学
• Research Articles • Previous Articles Next Articles
LI Hong-Qin1,2,3, ZHANG Fa-Wei2,3,4,*(), YI Lü-Bei5
Received:
2022-03-25
Accepted:
2022-07-15
Online:
2023-07-20
Published:
2023-07-21
Contact:
*ZHANG Fa-Wei(Supported by:
LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow[J]. Chin J Plant Ecol, 2023, 47(7): 922-931.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0105
Fig. 1 Layout of experiment plots of the alpine meadow in Haibei Station. +50%, rainfall enrichment by 50%; -50%, rainfall reduction by 50%; CK, control check; E, microorganism addition; K, potassium addition; N, nitrogen addition; N+50%, N and rainfall enrichment by 50%; N-50%, N and rainfall reduction by 50%; NK, N and K; NP, N and phosphorus addition; NPK, N, P, and K; NPK+50%, N, P, and K and rainfall enrichment by 50%; NPK-50%, N, P, K and rainfall reduction by 50%; NPK+E, N, P, K and microorganism addition; PK, P and K.
处理 Treatment | SOC | SN | SP | SOC:SN | SOC:SP | SN:SP | PB |
---|---|---|---|---|---|---|---|
年份 Year | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
降水改变 Rain | 0.24 | 0.23 | 0.67 | 0.85 | 0.76 | 0.79 | 0.23 |
氮添加 N | 0.59 | 0.69 | 0.50 | 0.40 | 0.76 | 0.88 | 0.01 |
年份×降水改变 Year × Rain | 0.08 | 0.35 | 0.72 | 0.08 | 0.32 | 0.74 | 0.99 |
年份×氮添加 Year × N | 0.85 | 0.62 | 0.74 | 0.78 | 0.86 | 0.90 | 0.02 |
降水改变×氮添加 Rain × N | 0.04 | 0.19 | 0.18 | 0.42 | 0.97 | 0.98 | 0.54 |
Table 1 Linear mixed-effect models of soil stoichiometry and aboveground plant biomass (PB) to precipitation change (Rain) and nitrogen addition (N) in an alpine meadow of Haibei Station
处理 Treatment | SOC | SN | SP | SOC:SN | SOC:SP | SN:SP | PB |
---|---|---|---|---|---|---|---|
年份 Year | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
降水改变 Rain | 0.24 | 0.23 | 0.67 | 0.85 | 0.76 | 0.79 | 0.23 |
氮添加 N | 0.59 | 0.69 | 0.50 | 0.40 | 0.76 | 0.88 | 0.01 |
年份×降水改变 Year × Rain | 0.08 | 0.35 | 0.72 | 0.08 | 0.32 | 0.74 | 0.99 |
年份×氮添加 Year × N | 0.85 | 0.62 | 0.74 | 0.78 | 0.86 | 0.90 | 0.02 |
降水改变×氮添加 Rain × N | 0.04 | 0.19 | 0.18 | 0.42 | 0.97 | 0.98 | 0.54 |
Fig. 2 Interannual differences of topsoil organic carbon content (SOC, A), total nitrogen content (SN, B), total phosphorus content (SP, C), and aboveground plant biomass (PB, D) of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and lines of boxes are mean and median values, respectively.
Fig. 3 Response of relative changes of aboveground plant biomass (ΔPB, A), leaf carbon content (ΔLC) of Oxytropis ochrocephala (B), leaf phosphorus content (ΔLP, C) and ΔLC (D) of Kobresia humilis to precipitation change (Rain) and nitrogen addition (N) of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and lines of boxes are mean and median values, respectively. +50%, rainfall enrichment by 50%; -50%, rainfall reduction by 50%; CK, control check; N+50%, N addition and rainfall enrichment by 50%; N-50%, N addition and rainfall reduction by 50%.
Fig. 4 Differences of leaf carbon content (LC, A), nitrogen content (LN, B), phosphorus content (LP, C), and potassium content (LK, D) of Gentiana straminea, Elymus nutans, Oxytropis ochrocephala, and Kobresia humilis of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and line of boxes are mean and median values, respectively.
物种 Species | 化学计量 Stoichiometry | 年份 Year | Rain | N | 年份×降水改变 Year × Rain | 年份×氮添加 Year × N | Rain × N |
---|---|---|---|---|---|---|---|
麻花艽 Gentiana straminea | LC | 0.18 | 0.52 | 0.79 | 0.43 | 0.47 | 0.94 |
LN | 0.02 | 0.59 | 0.97 | 0.77 | 0.08 | 0.87 | |
LP | 0.02 | 0.79 | 0.33 | 0.41 | 0.40 | 0.18 | |
LK | 0.44 | 0.27 | 0.69 | 0.29 | 0.92 | 0.95 | |
垂穗披碱草 Elymus nutans | LC | 0.68 | 0.42 | 0.71 | 0.23 | 0.49 | 0.27 |
LN | 0.31 | 0.06 | 0.26 | 0.59 | 0.42 | 0.26 | |
LP | 0.65 | 0.69 | 0.56 | 0.90 | 0.83 | 0.89 | |
LK | 0.45 | 0.67 | 0.19 | 0.79 | 0.64 | 0.68 | |
黄花棘豆 Oxytropis ochrocephala | LC | 0.03 | 0.03 | 0.97 | 0.03 | 0.82 | 0.70 |
LN | 0.36 | 0.78 | 0.21 | 0.79 | 0.44 | 0.73 | |
LP | 0.13 | 0.99 | 0.29 | 0.71 | 0.62 | 0.96 | |
LK | 0.06 | 0.51 | 0.54 | 0.73 | 0.68 | 0.40 | |
矮生嵩草 Kobresia humilis | LC | 0.02 | 0.05 | 0.61 | 0.01 | 0.23 | 0.38 |
LN | 0.03 | 0.64 | 0.23 | 0.48 | 0.38 | 0.16 | |
LP | <0.001 | 0.02 | 0.62 | 0.34 | 0.53 | 0.53 | |
LK | <0.001 | 0.16 | 0.21 | 0.53 | 0.72 | 0.47 |
Table 2 Linear mixed-effect models of leaf carbon (LC), nitrogen (LN), phosphor (LP), and potassium (LK) of dominant plant species to precipitation change (P) and nitrogen addition (N)
物种 Species | 化学计量 Stoichiometry | 年份 Year | Rain | N | 年份×降水改变 Year × Rain | 年份×氮添加 Year × N | Rain × N |
---|---|---|---|---|---|---|---|
麻花艽 Gentiana straminea | LC | 0.18 | 0.52 | 0.79 | 0.43 | 0.47 | 0.94 |
LN | 0.02 | 0.59 | 0.97 | 0.77 | 0.08 | 0.87 | |
LP | 0.02 | 0.79 | 0.33 | 0.41 | 0.40 | 0.18 | |
LK | 0.44 | 0.27 | 0.69 | 0.29 | 0.92 | 0.95 | |
垂穗披碱草 Elymus nutans | LC | 0.68 | 0.42 | 0.71 | 0.23 | 0.49 | 0.27 |
LN | 0.31 | 0.06 | 0.26 | 0.59 | 0.42 | 0.26 | |
LP | 0.65 | 0.69 | 0.56 | 0.90 | 0.83 | 0.89 | |
LK | 0.45 | 0.67 | 0.19 | 0.79 | 0.64 | 0.68 | |
黄花棘豆 Oxytropis ochrocephala | LC | 0.03 | 0.03 | 0.97 | 0.03 | 0.82 | 0.70 |
LN | 0.36 | 0.78 | 0.21 | 0.79 | 0.44 | 0.73 | |
LP | 0.13 | 0.99 | 0.29 | 0.71 | 0.62 | 0.96 | |
LK | 0.06 | 0.51 | 0.54 | 0.73 | 0.68 | 0.40 | |
矮生嵩草 Kobresia humilis | LC | 0.02 | 0.05 | 0.61 | 0.01 | 0.23 | 0.38 |
LN | 0.03 | 0.64 | 0.23 | 0.48 | 0.38 | 0.16 | |
LP | <0.001 | 0.02 | 0.62 | 0.34 | 0.53 | 0.53 | |
LK | <0.001 | 0.16 | 0.21 | 0.53 | 0.72 | 0.47 |
[1] |
Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH (2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 38, 231-237.
DOI URL |
[宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 (2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.]
DOI |
|
[2] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014). Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[3] |
Broderick CM, Wilkins K, Smith MD, Blair JM (2022). Climate legacies determine grassland responses to future rainfall regimes. Global Change Biology, 28, 2639-2656.
DOI URL |
[4] |
Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243.
DOI URL |
[5] | Chai JL, Xu CL, Zhang DG, Xiao H, Pan TT, Yu XJ (2019). Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow. Acta Ecologica Sinica, 39, 333-344. |
[柴锦隆, 徐长林, 张德罡, 肖红, 潘涛涛, 鱼小军 (2019). 模拟践踏和降水对高寒草甸土壤养分和酶活性的影响. 生态学报, 39, 333-344.] | |
[6] | Chapin III FS, Matson PA, Mooney HA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer-Verlag, New York, USA. 142-145. |
[7] | Fu YW, Tian DS, Niu SL, Zhao KT (2020). Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow. Journal of Beijing Forestry University, 42(5), 115-123. |
[符义稳, 田大栓, 牛书丽, 赵垦田 (2020). 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响. 北京林业大学学报, 42(5), 115-123.] | |
[8] | He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020). Close-to-nature restoration of degraded alpine grasslands: theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020). 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[9] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[10] | He YC, Tian DS, Wang JS, Fu YW, Wei XH, Li JW (2021). Spatial patterns and impacting factors of leaf potassium content among different functional groups of herbaceous plants across China. Journal of Beijing Forestry University, 43(8), 83-89. |
[何奕成, 田大栓, 汪金松, 符义稳, 魏学红, 李景文 (2021). 中国不同草本功能群叶片钾含量的空间格局及控制因素. 北京林业大学学报, 43(8), 83-89.] | |
[11] | Heng T, Wu JG, Xie SY, Wu MX (2011). The responses of soil C and N, microbial biomass C or N under alpine meadow of Qinghai-Tibet Plateau to the change of temperature and precipitation. Chinese Agricultural Science Bulletin, 27, 425-430. |
[衡涛, 吴建国, 谢世友, 武美香 (2011). 高寒草甸土壤碳和氮及微生物生物量碳和氮对温度与降水量变化的响应. 中国农学通报, 27, 425-430.] | |
[12] |
Jiang CM, Yu GR, Li YN, Cao GM, Yang ZP, Sheng WP, Yu WT (2012). Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecological Engineering, 44, 1-9.
DOI URL |
[13] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, et al. (2017). Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI PMID |
[14] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer-Verlag, Berlin Heidelberg. |
[15] |
Li HQ, Zhang FW, Li YN, Zhao XQ, Cao GM (2015). Thirty-year variations of above-ground net primary production and precipitation-use efficiency of an alpine meadow in the north-eastern Qinghai-Tibetan Plateau. Grass and Forage Science, 71, 208-218.
DOI URL |
[16] |
Li HQ, Zhu JB, Zhang FW, Qin G, Yang YS, Li YN, Wang JB, Cao GM, Li YK, Zhou HK, Du MY (2022). The predominance of nongrowing season emissions to the annual methane budget of a semiarid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecosystems, 25, 526-536.
DOI |
[17] | Li Y, Lin L, Zhu WY, Zhang ZH, He JS (2017). Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 535-544. |
[李颖, 林笠, 朱文琰, 张振华, 贺金生 (2017). 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 53, 535-544.] | |
[18] |
Liang XY, Zhang T, Lu XK, Ellsworth DS, BassiriRad H, You CM, Wang D, He PC, Deng Q, Liu H, Mo JM, Ye Q (2020). Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biology, 26, 3585-3600.
DOI PMID |
[19] | Lin L, Cao GM, Zhang FW, Ke X, Li YK, Xu XL, Li Q, Guo XW, Fan B, Du YG (2019). Spatial and temporal variations in available soil nitrogen—A case study in Kobresia alpine meadow in the Qinghai-Tibetan Plateau, China. Journal of Geoscience and Environment Protection, 7, 177-189. |
[20] | Liu GS, Jiang NH, Zhang LD (1996). Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network: Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. |
[刘光崧, 蒋能慧, 张连第 (1996). 中国生态系统研究网络观测与分析标准方法——土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[21] |
Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[22] |
Peng JL, Ma FF, Quan Q, Chen XL, Wang JS, Yan YJ, Zhou QP, Niu SL (2022). Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow. Science of the Total Environment, 835, 155418. DOI: 10.1016/j.scitotenv.2022.155418.
DOI URL |
[23] | Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294. |
[沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.] | |
[24] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[25] |
Wang JS, Song B, Ma FF, Tian DS, Li Y, Yan T, Quan Q, Zhang FY, Li ZL, Wang BX, Gao Q, Chen WN, Niu SL (2019). Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Functional Ecology, 33, 2239-2253.
DOI URL |
[26] | Yang CJ, Han YZ, Li ZK, Zhang DC, Wang HB, Li HL (2022). Responses of root vessel anatomical structures to drought exposure for two Kobresia species in an alpine meadow habitat in southeast Tibet. Acta Prataculturae Sinica, 31(2), 76-87. |
[杨春娇, 韩雨圳, 李忠馗, 张大才, 王洪斌, 栗宏林 (2022). 藏东南高寒草甸两种嵩草根系导管解剖结构对生境干旱化的响应. 草业学报, 31(2), 76-87.]
DOI |
|
[27] |
Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[28] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[29] |
Zhang BW, Cadotte MW, Chen SP, Tan XR, You CH, Ren TT, Chen ML, Wang SS, Li WJ, Chu CJ, Jiang L, Bai YF, Huang JH, Han XG (2019). Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 100, e2828. DOI: 10.1002/ecy.2828.
DOI |
[30] |
Zhang BW, Tan XR, Wang SS, Chen ML, Chen SP, Ren TT, Xia JY, Bai YF, Huang JH, Han XG (2017). Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi-arid steppe. Functional Ecology, 31, 1301-1311.
DOI URL |
[31] |
Zhang L, Ni M, Zhu T, Xu X, Zhou S, Shipley B (2022). Nitrogen addition in a Tibetan alpine meadow increases intraspecific variability in nitrogen uptake, leading to increased community-level nitrogen uptake. Ecosystems, 25, 172-183.
DOI |
[32] | Zhao XQ (2009). Alpine Meadow and Global Climate Change. Science Press, Beijing. |
[赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[33] |
Zhao YF, Wang X, Jiang SL, Zhou XH, Liu HY, Xiao JJ, Hao ZG, Wang KC (2021). Climate and geochemistry interactions at different altitudes influence soil organic carbon turnover times in alpine grasslands. Agriculture, Ecosystems & Environment, 320, 107591. DOI: 10.1016/j.agee.2021.107591.
DOI URL |
[34] | Zheng D, Zhang QS, Wu SH (2000). Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Dordercht, the Netherlands. |
[35] |
Zong N, Shi PL, Song MH, Zhang XZ, Jiang J, Chai X (2016). Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management, 57, 531-542.
DOI PMID |
[1] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[2] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[3] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[4] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | HAN Lu, FENG Yu, LI Yuan-Kai, WANG Yu-Qing, WANG Hai-Zhen. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 92-102. |
[7] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[10] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[11] | LI Zhao-Guang, YANG Wen-Gao, HE Gui-Qing, XU Tian-Cai, HE Qiong-Ji, HOU Zhi-Jiang, LI Yan, XUE Run-Guang. Phenological dynamics of nitrogen, phosphorus and potassium stoichiometry in Chenopodium quinoa in northwest Yunnan, China [J]. Chin J Plant Ecol, 2023, 47(5): 724-732. |
[12] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[13] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[14] | LIU Jing, GOU Qian-Qian, WANG Guo-Hua, ZHAO Feng-Xia. Leaf and soil ecological stoichiometry of Caragana korshinskii in windy and sandy hilly region of northwest Shanxi, China [J]. Chin J Plant Ecol, 2023, 47(4): 546-558. |
[15] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn