Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (5): 713-723.DOI: 10.17521/cjpe.2022.0331
Special Issue: 植被生态学
• Research Articles • Previous Articles Next Articles
Received:
2022-08-17
Accepted:
2022-11-11
Online:
2023-05-20
Published:
2022-11-11
LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow[J]. Chin J Plant Ecol, 2023, 47(5): 713-723.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0331
物种丰富度 Species richness | 物种组合与物种组成 Species combination and species composition | |||||
---|---|---|---|---|---|---|
1 | FS100 | EN100 | MS100 | DG100 | ||
2 | FS50EN50 | FS50MS50 | FS50DG50 | EN50MS50 | EN50DG50 | MS50DG50 |
3 | FS33EN33MS33 | FS33EN33DG33 | FS33MS33DG33 | EN33MS33DG33 | ||
4 | FS25EN25MS25DG25-SC23 | |||||
FS10EN20MS30DG40- SC14 | FS10EN20MS40DG30- SC13 | FS10EN30MS20DG40- SC21 | FS10EN30MS40DG20- SC25 | FS10EN40MS20DG30- SC24 | FS10EN40MS30DG20- SC19 | |
FS20EN10MS30DG40- SC1 | FS20EN10MS40DG30- SC4 | FS20EN30MS10DG40- SC18 | FS20EN30MS40DG10- SC16 | FS20EN40MS10DG30- SC10 | FS20EN40MS30DG10- SC11 | |
FS30EN10MS20DG40- SC7 | FS30EN10MS40DG20- SC17 | FS30EN20MS10DG40- SC3 | FS30EN20MS40DG10- SC6 | FS30EN40MS10DG20- SC8 | FS30EN40MS20DG10- SC15 | |
FS30EN40MS20DG10- SC2 | FS40EN10MS30DG20- SC9 | FS40EN20MS10DG30- SC20 | FS40EN20MS30DG10- SC5 | FS40EN30MS10DG20- SC12 | FS40EN30MS20DG10- SC22 |
Table 1 Species combination and species composition of plant communities at different species richness levels
物种丰富度 Species richness | 物种组合与物种组成 Species combination and species composition | |||||
---|---|---|---|---|---|---|
1 | FS100 | EN100 | MS100 | DG100 | ||
2 | FS50EN50 | FS50MS50 | FS50DG50 | EN50MS50 | EN50DG50 | MS50DG50 |
3 | FS33EN33MS33 | FS33EN33DG33 | FS33MS33DG33 | EN33MS33DG33 | ||
4 | FS25EN25MS25DG25-SC23 | |||||
FS10EN20MS30DG40- SC14 | FS10EN20MS40DG30- SC13 | FS10EN30MS20DG40- SC21 | FS10EN30MS40DG20- SC25 | FS10EN40MS20DG30- SC24 | FS10EN40MS30DG20- SC19 | |
FS20EN10MS30DG40- SC1 | FS20EN10MS40DG30- SC4 | FS20EN30MS10DG40- SC18 | FS20EN30MS40DG10- SC16 | FS20EN40MS10DG30- SC10 | FS20EN40MS30DG10- SC11 | |
FS30EN10MS20DG40- SC7 | FS30EN10MS40DG20- SC17 | FS30EN20MS10DG40- SC3 | FS30EN20MS40DG10- SC6 | FS30EN40MS10DG20- SC8 | FS30EN40MS20DG10- SC15 | |
FS30EN40MS20DG10- SC2 | FS40EN10MS30DG20- SC9 | FS40EN20MS10DG30- SC20 | FS40EN20MS30DG10- SC5 | FS40EN30MS10DG20- SC12 | FS40EN30MS20DG10- SC22 |
变异来源 Source of variation | df | 平方和 Sum of square | 方差 Mean square | F | p |
---|---|---|---|---|---|
物种丰富度 Species richness | 3 | 5.61 | 1.870 | 4.924 | 0.00 256 |
误差 Error | 191 | 72.53 | 0.380 | ||
物种组合 Species combination | 14 | 26.05 | 1.861 | 6.428 | 2.07e-10 |
误差 Error | 180 | 52.10 | 0.289 | ||
物种组成 Species composition | 24 | 21.22 | 0.884 | 4.778 | 1.33e-08 |
误差 Error | 100 | 18.50 | 0.185 |
Table 2 Variance analysis of the effects of species richness, species combination and species composition on aboveground biomass
变异来源 Source of variation | df | 平方和 Sum of square | 方差 Mean square | F | p |
---|---|---|---|---|---|
物种丰富度 Species richness | 3 | 5.61 | 1.870 | 4.924 | 0.00 256 |
误差 Error | 191 | 72.53 | 0.380 | ||
物种组合 Species combination | 14 | 26.05 | 1.861 | 6.428 | 2.07e-10 |
误差 Error | 180 | 52.10 | 0.289 | ||
物种组成 Species composition | 24 | 21.22 | 0.884 | 4.778 | 1.33e-08 |
误差 Error | 100 | 18.50 | 0.185 |
Fig. 1 Relationship between species richness and aboveground biomass of community (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05).
Fig. 2 Magnitude of total relative yield (A), net effect of diversity (B), complementary effect (C), and sampling effect (D) of communities with different species richness (mean ± SE).
Fig. 3 Comparison between aboveground biomass of communities with different species combinations (mean ± SE). A, Monoculture community. B, Mixed sowing community of two species. C, Mixed sowing community of three species. D, Mixed sowing community of four species. DG, Dactylis glomerata; EN, Elymus nutans; FS, Festuca sinensis; MS, Medicago sativa. Different lowercase letters indicate significant difference (p < 0.05).
Fig. 4 Comparison between aboveground biomass of communities with different species composition (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05). Species composition corresponding to abscissa label see Table 1.
Fig. 5 Variation on aboveground biomass of the mixed community and each species constituting the community. Ab, aboveground biomass of mixed community; Ab-DG, aboveground biomass of Dactylis glomerata in mixed community; Ab-EN, aboveground biomass of Elymus nutans in mixed community; Ab-FS, aboveground biomass of Festuca sinensis in mixed community; Ab-MS, aboveground biomass of Medicago sativa in mixed community. Species composition corresponding to abscissa label see Table 1.
Fig. 6 Actual contribution proportion of species constituting the community to aboveground biomass in the mixed community. The broken line represents the change of the proportion of each species’ contribution to aboveground biomass in the mixed community. The straight line represents the expected contribution proportion of each species in a mixed community based on the aboveground biomass of the mixed community. A, B, C, D, E and F represent mixed communities with species combinations classified as FS-EN, FS-MS, FS-DG, EN-MS, EN-DG, and MS-DG, respectively. DG, Dactylis glomerata; EN, Elymus nutans; FS, Festuca sinensis; MS, Medicago sativa.
[1] |
Armas C, Pugnaire FI (2005). Plant interactions govern population dynamics in a semi-arid plant community. Journal of Ecology, 93, 978-989.
DOI URL |
[2] |
Baer SG, Blair JM, Collins SL, Knapp AK (2004). Plant community responses to resource availability and heterogeneity during restoration. Oecologia, 139, 617-629.
PMID |
[3] | Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai YF, Connolly J, de Deyn GB, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A (2019). The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution, 34, 167-180. |
[4] |
Belote RT, Prisley S, Jones RH, Fitzpatrick M, de Beurs K (2011). Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). Forest Ecology and Management, 261, 1315-1324.
DOI URL |
[5] | Bilá K, Moretti M, Bello F, Dias AT, Pezzatti GB, Van Oosten AR, Berg MP (2014). Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis. Ecology and Evolution, 4, 408-416. |
[6] |
Bowker MA, Rengifo-Faiffer MC, Antoninka AJ, Grover HS, Coe KK, Fisher K, Mishler BD, Oliver M, Stark LR (2021). Community composition influences ecosystem resistance and production more than species richness or intraspecific diversity. Oikos, 130, 1399-1410.
DOI URL |
[7] |
Brun P, Violle C, Mouillot D, Mouquet N, Enquist BJ, Munoz F, Münkemüller T, Ostling A, Zimmermann NE, Thuiller W (2022). Plant community impact on productivity: trait diversity or key (stone) species effects? Ecology Letters, 25, 913-925.
DOI URL |
[8] |
Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78, 1958-1965.
DOI URL |
[9] |
Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009). Separating the influence of resource “availability” from resource “imbalance” on productivity-diversity relationships. Ecology Letters, 12, 475-487.
DOI PMID |
[10] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL |
[11] | Chun JH, Lim JH, Lee CB (2020). Different contribution of species and functional trait diversity to aboveground biomass dynamics in a forest long-term ecological research site, south Korea. The Journal of Animal and Plant Sciences, 30, 730-741. |
[12] |
Du Q, Zhou L, Chen P, Liu XM, Song C, Yang F, Wang XC, Liu WG, Sun X, Du JB, Liu J, Shu K, Yang WY, Yong TW (2020). Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. The Crop Journal, 8, 140-152.
DOI URL |
[13] | Du GZ, Qin GL, Li ZZ, Liu ZH, Dong GS (2003). Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica, 27, 125-132. |
[杜国祯, 覃光莲, 李自珍, 刘正恒, 董高生 (2003). 高寒草甸植物群落中物种丰富度与生产力的关系研究. 植物生态学报, 27, 125-132.]
DOI |
|
[14] |
Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, et al. (2021). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
DOI URL |
[15] |
Gillman LN, Wright SD (2006). The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87, 1234-1243.
PMID |
[16] |
Goldberg DE, Werner PA (1983). Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. American Journal of Botany, 70, 1098-1104.
DOI URL |
[17] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, et al. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI |
[18] |
Grace JB, Michael Anderson T, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007). Does species diversity limit productivity in natural grassland communities? Ecology Letters, 10, 680-689.
PMID |
[19] |
Jiang L, Wan SQ, Li LH (2009). Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608.
DOI URL |
[20] |
Kirkman LK, Mitchell RJ, Helton RC, Drew MB (2001). Productivity and species richness across an environmental gradient in a fire dependent ecosystem. American Journal of Botany, 88, 2119-2128.
PMID |
[21] |
Li Q, Song YT, Li GD, Yu PJ, Wang P, Zhou DW (2015). Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil, 394, 271-285.
DOI URL |
[22] |
Li QD, Liu MX, Xia SJ, Nan XN, Jiang XX (2019). Changes in species-abundance relationships of plant communities with slopes in alpine meadows of Gannan, China. Chinese Journal of Plant Ecology, 43, 418-426.
DOI URL |
[李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩 (2019). 甘南高寒草甸群落的物种-多度关系沿坡向的变化. 植物生态学报, 43, 418-426.]
DOI |
|
[23] |
Li YZ, Mayfield MM, Wang B, Xiao JL, Kral K, Janik D, Holik J, Chu CJ (2021). Beyond direct neighbourhood effects: higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 8, nwaa244. DOI: 10.1093/nsr/nwaa244.
DOI |
[24] |
Li YZ, Xiao JL, Liu HL, Wang YS, Chu CJ (2020). Advances in higher-order interactions between organisms. Biodiversity Science, 28, 1333-1344.
DOI URL |
[李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进 (2020). 生物间高阶相互作用研究进展. 生物多样性, 28, 1333-1344.] | |
[25] |
Lian TX, Mu YH, Jin J, Ma QB, Cheng YB, Cai ZD, Nian H (2019). Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ, 7, e6412. DOI: 10.7717/peerj.6412.
DOI |
[26] | Liu MX, Zhang YY, Li QD, Li BW, Sun RD, Song JY (2021). Species abundance distribution characteristics of alpine meadow plant community in Gannan. China Environmental Science, 41, 1405-1414. |
[刘旻霞, 张娅娅, 李全弟, 李博文, 孙瑞弟, 宋佳颖 (2021). 甘南高寒草甸植物群落物种多度分布特征. 中国环境科学, 41, 1405-1414.] | |
[27] |
Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
DOI URL |
[28] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Grime JP, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[29] |
Lv JX, Dong Y, Dong K, Zhao Q, Yang ZX, Chen L (2020). Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant and Soil, 448, 153-164.
DOI |
[30] |
Marquard E, Weigelt A, Roscher C, Gubsch M, Lipowsky A, Schmid B (2009). Positive biodiversity-productivity relationship due to increased plant density. Journal of Ecology, 97, 696-704.
DOI URL |
[31] |
Matsinos YG, Troumbis AY (2002). Modeling competition, dispersal and effects of disturbance in the dynamics of a grassland community using a cellular automaton model. Ecological Modelling, 149, 71-83.
DOI URL |
[32] |
Nuttle T, Royo AA, Adams MB, Carson WP (2013). Historic disturbance regimes promote tree diversity only under low browsing regimes in eastern deciduous forest. Ecological Monographs, 83, 3-17.
DOI URL |
[33] |
Pärtel M, Laanisto L, Zobel M (2007). Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary. Ecology, 88, 1091-1097.
DOI URL |
[34] |
Peng ZY, Liu HY, Jiang LB, Liu X, Dai JY, Xu CY, Chen ZT, Wu L, Liu F, Liang BY (2021). Effect paths of environmental factors and community attributes on aboveground net primary productivity of a temperate grassland. Land Degradation & Development, 32, 3823-3832.
DOI URL |
[35] |
Sonkoly J, Kelemen A, Valkó O, Deák B, Kiss R, Tóth K, Miglécz T, Tóthmérész B, Török P (2019). Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Scientific Reports, 9, 1848. DOI: 10.1038/s41598-018-37190-6.
DOI |
[36] |
Wang ZH, Chiarucci A, Arratia JF (2019). Integrative models explain the relationships between species richness and productivity in plant communities. Scientific Reports, 9, 13730. DOI: 10.1038/s41598-019-50016-3.
DOI |
[37] | Wang XY, Gao YZ (2019). Advances in the mechanism of cereal/legume inter-cropping promotion of symbiotic nitrogen fixation. Chinese Science Bulletin, 65, 142-149. |
[王新宇, 高英志 (2019). 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 65,142-149.] | |
[38] |
Xiao JX, Yin XH, Ren JB, Zhang MY, Tang L, Zheng Y (2018). Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crops Research, 221, 119-129.
DOI URL |
[39] |
Yuan ZQ, Wei PP, Gao BQ, Zhang R (2012). Effect of sampling scale on the relationship between species diversity and productivity in subalpine meadows. Chinese Journal of Plant Ecology, 36, 1248-1255.
DOI URL |
[袁自强, 魏盼盼, 高本强, 张荣 (2012). 取样尺度对亚高寒草甸物种多样性与生产力关系的影响. 植物生态学报, 36, 1248-1255.]
DOI |
|
[40] |
Zhang Q, Niu JM, Buyantuyev A, Zhang J, Ding Y, Dong JJ (2011). Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe. Ecological Research, 26, 649-658.
DOI URL |
[41] | Zhu Y, Wang DL, Zhong ZW (2017). Characteristics, causes, and consequences of trait-mediated indirect interactions in ecosystems. Acta Ecologica Sinica, 37, 7781-7790. |
[朱玉, 王德利, 钟志伟 (2017). 生态系统基于性状调节的物种间接作用: 特征、成因及后果. 生态学报, 37, 7781-7790.] |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | RAN Song-Song, YU Zai-Peng, WAN Xiao-Hua, FU Yan-Rong, ZOU Bing-Zhang, WANG Si-Rong, HUANG Zhi-Qun. Effects of neighborhood tree species diversity on foliar nitrogen-phosphorus stoichiometry of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2023, 47(7): 932-942. |
[3] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[4] | ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons [J]. Chin J Plant Ecol, 2023, 47(4): 491-505. |
[5] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[6] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[7] | ZONG Ning, SHI Pei-Li, ZHAO Guang-Shuai, ZHENG Li-Li, NIU Ben, ZHOU Tian-Cai, HOU Ge. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 444-455. |
[8] | LI Song-Song, WANG Ning-Xin, ZHENG Wei, ZHU Ya-Qiong, WANG Xiang, MA Jun, ZHU Jin-Zhong. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures [J]. Chin J Plant Ecol, 2021, 45(1): 23-37. |
[9] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[10] | FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575. |
[11] | MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565. |
[12] | Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15. |
[13] | LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland [J]. Chin J Plan Ecolo, 2018, 42(7): 713-722. |
[14] | Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(4): 430-441. |
[15] | YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn