Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (4): 430-441.DOI: 10.17521/cjpe.2017.0135
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
Qian YANG1,2,Wei WANG2*(),Hui ZENG1,2*()
Online:
2018-04-20
Published:
2018-03-21
Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China[J]. Chin J Plant Ecol, 2018, 42(4): 430-441.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0135
Fig. 1 Study area and the spatial distribution of study sites. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland.
名称 Term | 极度退化草地 EDG | 重度退化草地 SDG | 中度退化草地 MDG |
---|---|---|---|
物种组成 Species composition | 羊草、黄囊薹草、马唐、狗尾草、沙蓬藜等 Leymus chinensis; Carex korshinskyi; Digitaria sanguinalis; Setaria viridis; Agriophyllum squarrosum; Chenopodium acuminatum et al. | 拂子茅、贝加尔针茅、硬质早熟禾、黄囊薹草、腺毛委陵菜、星毛委陵菜、冷蒿、紫羊茅、冰草、狼毒、糙隐子草、阿尔泰狗娃花等 Calamagrostis epigeios; Stipa baicalensis; Poa sphondylodes; Carex korshinskyi; Potentilla longifolia; Potentilla acaulis; Artemisia frigida; Festuca rubra; Agropyron cristatum; Stellera chamaejasme; Cleistogenes squarrosa; Heteropappus altaicus et al. | 拂子茅、贝加尔针茅、羊草、硬质早熟禾、腺毛委陵菜、黄囊薹草、冷蒿、紫羊茅、冰草、糙隐子草、阴山胡枝子、阿尔泰狗娃花等 Calamagrostis epigeios; Stipa baicalensis; Leymus chinensis; Poa sphondylodes; Potentilla longifolia; Carex korshinskyi; Artemisia frigida; Festuca rubra; Agropyron cristatum; Cleistogenes squarrosa; Lespedeza inschanica; Heteropappus altaicus et al. |
顶极种相对盖度 Relative coverage of climax species (%) | 34.48 | 39.53 | 54.05 |
退化指示种相对盖度 Relative coverage of degradation indicators (%) | 34.48 | 32.56 | 29.73 |
一年生植物相对盖度 Relative coverage of annuals (%) | 31.04 | 27.91 | 16.22 |
土壤全碳 Soil total carbon (%) | 0.83 | 1.67 | 2.06 |
土壤全氮 Soil total nitrogen (%) | 0.06 | 0.14 | 0.17 |
砂粒含量 Sand content (%) | 66.10 | 57.30 | 58.40 |
草地退化指数 Grassland degradation index | 0.379 | 0.543 | 0.642 |
Table 1 Plant and soil characteristics at the experimental sites
名称 Term | 极度退化草地 EDG | 重度退化草地 SDG | 中度退化草地 MDG |
---|---|---|---|
物种组成 Species composition | 羊草、黄囊薹草、马唐、狗尾草、沙蓬藜等 Leymus chinensis; Carex korshinskyi; Digitaria sanguinalis; Setaria viridis; Agriophyllum squarrosum; Chenopodium acuminatum et al. | 拂子茅、贝加尔针茅、硬质早熟禾、黄囊薹草、腺毛委陵菜、星毛委陵菜、冷蒿、紫羊茅、冰草、狼毒、糙隐子草、阿尔泰狗娃花等 Calamagrostis epigeios; Stipa baicalensis; Poa sphondylodes; Carex korshinskyi; Potentilla longifolia; Potentilla acaulis; Artemisia frigida; Festuca rubra; Agropyron cristatum; Stellera chamaejasme; Cleistogenes squarrosa; Heteropappus altaicus et al. | 拂子茅、贝加尔针茅、羊草、硬质早熟禾、腺毛委陵菜、黄囊薹草、冷蒿、紫羊茅、冰草、糙隐子草、阴山胡枝子、阿尔泰狗娃花等 Calamagrostis epigeios; Stipa baicalensis; Leymus chinensis; Poa sphondylodes; Potentilla longifolia; Carex korshinskyi; Artemisia frigida; Festuca rubra; Agropyron cristatum; Cleistogenes squarrosa; Lespedeza inschanica; Heteropappus altaicus et al. |
顶极种相对盖度 Relative coverage of climax species (%) | 34.48 | 39.53 | 54.05 |
退化指示种相对盖度 Relative coverage of degradation indicators (%) | 34.48 | 32.56 | 29.73 |
一年生植物相对盖度 Relative coverage of annuals (%) | 31.04 | 27.91 | 16.22 |
土壤全碳 Soil total carbon (%) | 0.83 | 1.67 | 2.06 |
土壤全氮 Soil total nitrogen (%) | 0.06 | 0.14 | 0.17 |
砂粒含量 Sand content (%) | 66.10 | 57.30 | 58.40 |
草地退化指数 Grassland degradation index | 0.379 | 0.543 | 0.642 |
响应 Response | 名称 Term | df | F | p |
---|---|---|---|---|
物种丰富度 Species richness | DT | 2 | 40.64 | <0.001 |
N | 5 | 8.50 | <0.001 | |
DT × N | 10 | 2.27 | 0.035 | |
Shannon-Wiener指数 Shannon-Wiener index | DT | 2 | 12.84 | <0.001 |
N | 5 | 5.06 | 0.001 | |
DT × N | 10 | 1.50 | 0.179 | |
地上生物量 Aboveground biomass | DT | 2 | 42.08 | <0.001 |
N | 5 | 9.53 | <0.001 | |
DT×N | 10 | 1.30 | 0.264 |
Table 2 Results of two-way ANOVA on the effects of nitrogen (N) on plant species richness, species diversity and aboveground biomass under different levels of degradations
响应 Response | 名称 Term | df | F | p |
---|---|---|---|---|
物种丰富度 Species richness | DT | 2 | 40.64 | <0.001 |
N | 5 | 8.50 | <0.001 | |
DT × N | 10 | 2.27 | 0.035 | |
Shannon-Wiener指数 Shannon-Wiener index | DT | 2 | 12.84 | <0.001 |
N | 5 | 5.06 | 0.001 | |
DT × N | 10 | 1.50 | 0.179 | |
地上生物量 Aboveground biomass | DT | 2 | 42.08 | <0.001 |
N | 5 | 9.53 | <0.001 | |
DT×N | 10 | 1.30 | 0.264 |
Fig. 2 Effects of nitrogen addition on plant species richness (A) and species diversity (B) at different degraded grasslands (mean ± SE). The letters indicted significant differences in Duncan’s multiple (p < 0.05) range tests based on one-way ANOVA; NS indicates non-significant (p > 0.05). For each site, regression confidents were estimated based on linear models with nitrogen treatment as the independent variables (species richness = Intercept + slope × nitrogen addition amount). NS, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland.
Fig. 3 Effects of nitrogen addition on aboveground biomass (A) and aboveground biomass response ratio (B) at different degraded communities (mean ± SE). The letters indicate significantly different in Duncan’s multiple (p < 0.05) range tests from one-way ANOVA. For each site, regression coefficients were estimated by using a linear model with N treatment as the independent variable (aboveground biomass = intercept + slope × nitrogen addition amount). *, p < 0.05; **, p < 0.01; ***, p < 0.001. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland.
响应 Response | 名称 Term | df | F | p |
---|---|---|---|---|
禾草生物量 Grass biomass | DT | 2 | 11.70 | <0.001 |
N | 5 | 11.76 | <0.001 | |
DT × N | 10 | 0.72 | 0.696 | |
禾草百分比 Grass percentage (%) | DT | 2 | 12.70 | <0.001 |
N | 5 | 7.34 | <0.001 | |
DT × N | 10 | 0.81 | 0.616 | |
杂类草生物量 Forb biomass | DT | 2 | 28.28 | <0.001 |
N | 5 | 1.13 | 0.358 | |
DT × N | 10 | 1.35 | 0.238 | |
杂类草百分比 Forb percentage (%) | DT | 2 | 12.35 | <0.001 |
N | 5 | 7.01 | <0.001 | |
DT × N | 10 | 0.80 | 0.738 |
Table 3 Results of two-way ANOVA on the effects of nitrogen (N)-treatment and degradation type on aboveground biomass of plant functional groups and their proportions of the community aboveground biomass
响应 Response | 名称 Term | df | F | p |
---|---|---|---|---|
禾草生物量 Grass biomass | DT | 2 | 11.70 | <0.001 |
N | 5 | 11.76 | <0.001 | |
DT × N | 10 | 0.72 | 0.696 | |
禾草百分比 Grass percentage (%) | DT | 2 | 12.70 | <0.001 |
N | 5 | 7.34 | <0.001 | |
DT × N | 10 | 0.81 | 0.616 | |
杂类草生物量 Forb biomass | DT | 2 | 28.28 | <0.001 |
N | 5 | 1.13 | 0.358 | |
DT × N | 10 | 1.35 | 0.238 | |
杂类草百分比 Forb percentage (%) | DT | 2 | 12.35 | <0.001 |
N | 5 | 7.01 | <0.001 | |
DT × N | 10 | 0.80 | 0.738 |
Fig. 4 Change in aboveground biomass (mean ± SE) with nitrogen addition on aboveground biomass by plant function groups under three levels of degraded grassland. The different letters indicate significant differences in Duncan’s multiple (p < 0.05) range tests from one-way ANOVA, NS indicates non-significant (p > 0.05). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG; severely degraded grassland.
Fig. 5 Proportion of aboveground biomass in the total biomass varied with nitrogen addition, plant functional groups (grass vs forb), and degradation level (mean ± SE). The different letters indicate the significant difference from the Duncan’s multiple (p < 0.05) range tests (one-way ANOVA). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland.
Fig. 6 Change in Gini coefficiesed on the asymmetry of plant functional groups height with nitrogen addition rate at grasslands under three different levels of degradations (mean ± SE). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland.
1 |
Asner GP , Elmore AJ , Olander LP , Martin RE , Harris AT ( 2004). Grazing systems, ecosystem response, and global change. Annual Review of Environment and Resources, 29, 261- 299.
DOI URL |
2 |
Bai YF , Wu JG , Clark CM , Naeem S , Pan QM , Huang JH , Zhang LX , Han XG ( 2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358- 372.
DOI URL |
3 |
Bai YF , Wu JG , Xing Q , Pan QM , Huang JH , Yang DL , Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140- 2153.
DOI URL PMID |
4 |
Clark CM , Tilman D ( 2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712- 715.
DOI URL |
5 | Fang Y , Xun F , Bai WM , Zhang WH , Li LH ( 2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLOS ONE, 7, e4736. DOI: 10.1371/journal.pone.0047369. |
6 |
Harpole WS , Sullivan LL , Lind EM , Firn J , Adler PB , Borer ET , Chase J , Fay PA , Hautier Y , Hillebrand H , MacDougallm AS , Seabloom EW , Williams R , Bakker JD , Cadotte MW , Chaneton EJ , Chu CJ , Cleland EE , D’Antonio C , Davies KF , Gruner DS , Hagenah N , Kirkman K , Knops JMH , La Pierre KJ , McCulley RL , Moore JL , Morgan JW , Prober SM , Risch AC , Schuetz M , Stevens CJ , Wragg PD ( 2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93- 96.
DOI URL PMID |
7 |
Hautier Y , Niklaus PA , Hector A ( 2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636- 638.
DOI URL |
8 |
He KJ , Qi Y , Huang YM , Chen HY , Sheng ZL , Xu X , Duan L ( 2016). Response of aboveground biomass and diversity to nitrogen addition a five-year experiment in semi-arid grassland of Inner Mongolia, China. Scientific Reports, 6, 31919. DOI: 10.1038/srep31919.
DOI URL PMID |
9 | Hooper DU , Johnson L ( 1999). Nitrogen limitation in dry land ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247- 293. |
10 |
Isbell F , Reich PB , Tilman D , Hobbie SE , Polasky S , Binder S ( 2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911- 11916.
DOI URL |
11 |
Kang L , Han XG , Zhang ZB , Sun OJ ( 2007). Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, 362, 997- 1008.
DOI URL |
12 | Li CL , Li Q , Zhao L , Zhao XQ ( 2016). Responses of plant community biomass to nitrogen and phosphorus additions in natural and restored grasslands around Qinghai Lake Basin. Chinese Journal of Plant Ecology, 40, 1015- 1027. |
[ 李春丽, 李奇, 赵亮, 赵新全 ( 2016). 环青海湖地区天然草地和退耕恢复草地植物群落生物量对氮、磷添加的响应. 植物生态学报, 40, 1015- 1027.] | |
13 | Li LJ , Yu ZY , Zeng DH , Ai GY , Li JS ( 2010). Effects of fertilizations on species composition and diversity of grassland in Keerqin Sandy Lands. Acta Prataculturae Sinica, 19( 2), 109- 115. |
[ 李禄军, 于占源, 曾德慧, 艾桂艳, 李晶石 ( 2010). 施肥对科尔沁沙质草地群落物种组成和多样性的影响. 草业学报, 19( 2), 109- 115.] | |
14 |
Liu BR , Wang CH , Zhang LH , Dong KH ( 2015). Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 35, 6335- 6343.
DOI URL |
[ 刘碧荣, 王常慧, 张丽华, 董宽虎 ( 2015). 氮添加和刈割对内蒙古弃耕草地土壤氮矿化的影响. 生态学报, 35, 6335- 6343.]
DOI URL |
|
15 |
Liu HY , Yin Y , Tian YH , Ren J , Wang HY ( 2008). Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophysical Research Letters, 35( 4), L04401. DOI: 10.1029/2007GL032980.
DOI URL |
16 |
Lü XT , Dijkstra FA , Kong DL , Wang ZW , Han XG ( 2014). Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 4, 4817. DOI: 10.1038/srep04817.
DOI URL PMID |
17 |
Mountford JO , Lakhani KH , Kirkham FW ( 1993). Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor. Journal of Applied Ecology, 30, 321- 332.
DOI URL |
18 | Mu SJ , Zhu C , Zhou KX , Li JL ( 2017). The preventive strategies of degradation and the approaches to enhance carbon sequestration ability in Inner Mongolia Grassland. Acta Agrestia Sinica, 25( 2), 217- 225. |
[ 穆少杰, 朱超, 周可新, 李建龙 ( 2017). 内蒙古草地退化防治对策及碳增汇途径研究. 草地学报, 25( 2), 217- 225.] | |
19 |
Niu DC , Yuan XB , Cease AJ , Wen HY , Zhang CP , Fu H , Elser JJ ( 2017). The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of the Total Environment, 9, 318. DOI: 10.1016/j.scitotenv.2017.09.318.
DOI URL PMID |
20 |
Quan Q , He NP , Zhang Z , Zhang YH , Gao Y ( 2015). Nitrogen enrichment and grazing accelerate vegetation restoration in degraded grassland patches. Ecological Engineering, 72, 172- 177.
DOI URL |
21 |
Rajaniemi TK , Allison VJ , Goldberg DE ( 2003). Root competition can cause a decline in diversity with increased productivity. Journal of Ecology, 91, 407- 416.
DOI URL |
22 |
Ren ZW , Li Q , Chu CJ , Zhao LQ , Zhang JQ , Ai DXC , Yang YB , Wang G ( 2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25- 31.
DOI URL |
23 |
Scurlock JMO , Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229- 233.
DOI URL |
24 | Shen HH , Zhu YK , Zhao X , Geng XQ , Gao SQ , Fang JY ( 2016). Grassland area, biomass and productivity in China: A literature survey and model evaluation. Chinese Science Bulletin, 61, 139- 154. |
[ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 ( 2016). 中国草地资源的现状分析. 科学通报, 61, 139- 154.] | |
25 |
Song L , Bao X , Liu X , Zhang Y , Christie P , Fangmeier A , Zhang F ( 2011). Nitrogen enrichment enhances the dominance of grasses. Biogeosciences, 8, 2341- 2350.
DOI URL |
26 |
Song MH , Yu FH ( 2015). Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytologist, 207, 70- 77.
DOI URL PMID |
27 |
Stevens CJ ( 2016). How long do ecosystems take to recover from atmospheric nitrogen deposition? Biological Conservation, 200, 160- 167.
DOI URL |
28 |
Stevens CJ , Dise NB , Mountford JO , Gowing DJ ( 2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876- 1879.
DOI URL PMID |
29 |
Stevens CJ , Lind EM , Hautier Y , Harpole WS , Borer ET , Hobbie S , Seabloom EW , Ladwig L , Bakker JD , Chu CJ , Collins S , Davies KF , Firn J , Hillebrand H , La Pierre KJ , MacDougall A , Melbourne B , McCulley RL , Morgan J , Orrock JL , Prober SM , Risch AC , Schuetz M , Wragg PD ( 2015). Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 96, 1459- 1465.
DOI URL |
30 |
Su YZ , Li YL , Cui JY , Zhao WZ ( 2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 59, 267- 278.
DOI URL |
31 |
Tian QY , Liu NN , Bai WM , Li LH , Chen JQ , Reich PB , Yu Q , Guo DL , Smith MD , Knapp AK , Cheng WX , Lu P , Gao Y , Yang A , Wang TZ , Li X , Wang ZW , Ma YB , Han XG , Zhang WH ( 2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65- 74.
DOI URL PMID |
32 |
Tian QY , Liu NN , Bai WM , Li LH , Zhang WH ( 2015). Disruption of metal ion homeostasis in soils is associated with nitrogen deposition-induced species loss in an Inner Mongolia steppe. Biogeosciences, 12, 3499- 3512.
DOI URL |
33 |
Tilman D , Wedin D , Knops J ( 1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718- 720.
DOI URL |
34 |
van de Koppel J , Rietkerk M , Weissing FJ ( 1997). Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecology & Evolution, 12, 352- 356.
DOI URL PMID |
35 | Wang J , Wang SS , Qiao XG , Li A , Xue JG , Hasi M , Zhang XY , Huang JH ( 2016). Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland. Chinese Journal of Plant Ecology, 40, 980- 990. |
[ 王晶, 王珊珊, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉 ( 2016). 氮添加对内蒙古退化草原生产力的短期影响. 植物生态学报, 40, 980- 990.] | |
36 |
Xu X , Niu SL , Sherry RA , Zhou XH , Zhou JH , Luo YQ ( 2012). Inter-annual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biology, 17, 927- 942.
DOI URL |
37 | Xu XT ( 2015). Growth and Restoration of Degraded Grasslands Under Control of Nitrogen and Water in Inner Mongolia, China. PhD dissertation, Peking University, Beijing. |
[ 徐晓天 ( 2015). 养分和水分调控下内蒙古退化草原的生长与恢复. 博士学位论文, 北京大学, 北京.] | |
38 |
Xu XT , Liu HY , Song ZL , Wang W , Hu GZ , Qi ZH ( 2015). Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5, 10284. DOI: 10.1038/srep10284.
DOI URL PMID |
39 |
Yang HJ , Jiang L , Li LH , Li A , Wu MY , Wan SQ ( 2012). Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment. Ecology Letters, 15, 619- 626.
DOI URL PMID |
40 |
Yang XX , Ren F , Zhou HK , He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159- 166.
DOI URL |
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159- 166.]
DOI URL |
|
41 | Zhang TH , Zhao HL , Li YL , Cui JY , Han TB , Zhang H ( 2008). Effect of irrigation and fertilizer on grassland productivity in Horqin Sandy Land. Acta Prataculturae Sinica, 17( 1), 36- 42. |
[ 张铜会, 赵哈林, 李玉霖, 崔建垣, 韩天宝, 张华 ( 2008). 科尔沁沙地灌溉与施肥对退化草地生产力的影响. 草业学报, 17( 1), 36- 42.] | |
42 |
Zhang YH , Feng JC , Isbell F , Lü XT , Han XG ( 2015). Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 5, 12558. DOI: 10.1038/srep12558.
DOI URL |
43 |
Zhang YH , Lü XT , Isbell F , Stevens C , Han X , He NP , Zhang GM , Yu Q , Huang JH , Han XG ( 2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520- 3529.
DOI URL PMID |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[3] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[4] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[7] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea [J]. Chin J Plant Ecol, 2023, 47(8): 1105-1115. |
[10] | YU Xiao, JI Ruo-Xuan, REN Tian-Meng, XIA Xin-Li, YIN Wei-Lun, LIU Chao. Distribution, characteristics and classification of Caryopteris mongholica communities in northern China [J]. Chin J Plant Ecol, 2023, 47(8): 1182-1192. |
[11] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[12] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[13] | RAN Song-Song, YU Zai-Peng, WAN Xiao-Hua, FU Yan-Rong, ZOU Bing-Zhang, WANG Si-Rong, HUANG Zhi-Qun. Effects of neighborhood tree species diversity on foliar nitrogen-phosphorus stoichiometry of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2023, 47(7): 932-942. |
[14] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[15] | ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons [J]. Chin J Plant Ecol, 2023, 47(4): 491-505. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn