Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 491-505.DOI: 10.17521/cjpe.2022.0268
• Research Articles • Previous Articles Next Articles
ZHONG Jiao1, JIANG Chao1,*(), LIU Shi-Rong2, LONG Wen-Xing3, SUN Osbert Jianxin1
Received:
2022-06-27
Accepted:
2022-11-04
Online:
2023-04-20
Published:
2022-11-04
Contact:
*(jiangchao@bjfu.edu.cn)
ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons[J]. Chin J Plant Ecol, 2023, 47(4): 491-505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0268
环境因子 Environmental factor | 缩写 Abbreviation | 年 Years | 分辨率 Resolution |
---|---|---|---|
海拔 Altitude | alt | 2000 | 90 m |
坡度 Slope | slope | 2000 | 90 m |
坡向 Aspect | aspect | 2000 | 90 m |
太阳辐射 Solar radiation | srad | 1970-2000 | 30″ |
1月最低气温 Minimum air temperature in January | tmn_01 | 1930-2017 | 30″ |
7月最高气温 Maximum air temperature in July | tmx_07 | 1930-2017 | 30″ |
年平均气温 Mean annual air temperature | tmp | 1930-2017 | 30″ |
旱季平均气温 Mean air temperature in dry season | tmp_dry | 1930-2017 | 30″ |
雨季平均气温 Mean air temperature in rainy season | tmp_rainy | 1930-2017 | 30″ |
气温年较差 Annual air temperature range | tar | 1930-2017 | 30″ |
年实际蒸散量 Annual actual evapotranspiration | aet | 1950-2000 | 30″ |
年降水量 Annual precipitation | pre | 1930-2017 | 30″ |
旱季降水量 Precipitation in dry season | pre_dry | 1930-2017 | 30″ |
雨季降水量 Precipitation in rainy season | pre_rainy | 1930-2017 | 30″ |
Table 1 Environmental factors used to create the MaxEnt model and their related information
环境因子 Environmental factor | 缩写 Abbreviation | 年 Years | 分辨率 Resolution |
---|---|---|---|
海拔 Altitude | alt | 2000 | 90 m |
坡度 Slope | slope | 2000 | 90 m |
坡向 Aspect | aspect | 2000 | 90 m |
太阳辐射 Solar radiation | srad | 1970-2000 | 30″ |
1月最低气温 Minimum air temperature in January | tmn_01 | 1930-2017 | 30″ |
7月最高气温 Maximum air temperature in July | tmx_07 | 1930-2017 | 30″ |
年平均气温 Mean annual air temperature | tmp | 1930-2017 | 30″ |
旱季平均气温 Mean air temperature in dry season | tmp_dry | 1930-2017 | 30″ |
雨季平均气温 Mean air temperature in rainy season | tmp_rainy | 1930-2017 | 30″ |
气温年较差 Annual air temperature range | tar | 1930-2017 | 30″ |
年实际蒸散量 Annual actual evapotranspiration | aet | 1950-2000 | 30″ |
年降水量 Annual precipitation | pre | 1930-2017 | 30″ |
旱季降水量 Precipitation in dry season | pre_dry | 1930-2017 | 30″ |
雨季降水量 Precipitation in rainy season | pre_rainy | 1930-2017 | 30″ |
Fig. 2 Correlation analysis results of environmental factors used to create the MaxEnt model. *, the absolute value of correlation coefficient ≥0.80. Code name see Table 1.
Fig. 3 Training area under the curve of receiver operator characteristic curve (AUC), test AUC and true skill statistic (TSS) values for simulated potential distribution results of 137 foraging plants for Hainan gibbons. See Supplement II for the corresponding species with numbers.
Fig. 4 Overlapping map between potential species richness of all foraging plants for Hainan gibbon and distribution points of Heptapleurum heptaphyllum, Polyalthia suberosa and Garcinia oblongifolia. Orange and red areas are potential species richness hotspots, grey area is the missing data area.
slope | alt | pre_dry | tmn_01 | tar | pre_rainy | aspect | aet | |
---|---|---|---|---|---|---|---|---|
全体 All | 22 | 47 | 4 | 4 | 39 | 7 | 10 | 4 |
果实 Fruit | 18 | 44 | 3 | 3 | 33 | 7 | 10 | 4 |
叶 Leaf | 5 | 5 | 1 | 0 | 4 | 1 | 0 | 0 |
花 Flower | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 |
旱季 Dry season | 13 | 32 | 3 | 0 | 26 | 4 | 7 | 3 |
雨季 Rainy season | 18 | 38 | 2 | 4 | 33 | 5 | 6 | 4 |
桑科 Moraceae | 2 | 4 | 2 | 1 | 6 | 2 | 1 | 1 |
樟科 Lauraceae | 0 | 4 | 0 | 0 | 6 | 1 | 2 | 0 |
番荔枝科 Annonaceae | 2 | 3 | 0 | 0 | 4 | 0 | 0 | 0 |
Table 2 Frequency of the most important controlling factor in different categories of foraging plants for Hainan gibbons
slope | alt | pre_dry | tmn_01 | tar | pre_rainy | aspect | aet | |
---|---|---|---|---|---|---|---|---|
全体 All | 22 | 47 | 4 | 4 | 39 | 7 | 10 | 4 |
果实 Fruit | 18 | 44 | 3 | 3 | 33 | 7 | 10 | 4 |
叶 Leaf | 5 | 5 | 1 | 0 | 4 | 1 | 0 | 0 |
花 Flower | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 |
旱季 Dry season | 13 | 32 | 3 | 0 | 26 | 4 | 7 | 3 |
雨季 Rainy season | 18 | 38 | 2 | 4 | 33 | 5 | 6 | 4 |
桑科 Moraceae | 2 | 4 | 2 | 1 | 6 | 2 | 1 | 1 |
樟科 Lauraceae | 0 | 4 | 0 | 0 | 6 | 1 | 2 | 0 |
番荔枝科 Annonaceae | 2 | 3 | 0 | 0 | 4 | 0 | 0 | 0 |
全体 All | 果实 Fruit | 叶 Leaf | 花 Flower | 旱季 Dry season | 雨季 Rainy season | 桑科 Moraceae | 樟科 Lauraceae | 番荔枝科 Annonaceae | |
---|---|---|---|---|---|---|---|---|---|
slope | 0.68* | 0.64* | 0.82* | 0.66* | 0.70* | 0.69* | 0.46* | 0.56* | 0.78* |
alt | 0.66* | 0.62* | 0.79* | 0.79* | 0.68* | 0.68* | 0.40* | 0.59* | 0.70* |
tar | -0.75* | -0.76* | -0.58* | -0.22* | -0.73* | -0.74* | -0.86* | -0.74* | -0.65* |
Table 3 Correlation coefficients between important environmental factors and potential species richness for different categories of foraging plants for Hainan gibbons
全体 All | 果实 Fruit | 叶 Leaf | 花 Flower | 旱季 Dry season | 雨季 Rainy season | 桑科 Moraceae | 樟科 Lauraceae | 番荔枝科 Annonaceae | |
---|---|---|---|---|---|---|---|---|---|
slope | 0.68* | 0.64* | 0.82* | 0.66* | 0.70* | 0.69* | 0.46* | 0.56* | 0.78* |
alt | 0.66* | 0.62* | 0.79* | 0.79* | 0.68* | 0.68* | 0.40* | 0.59* | 0.70* |
tar | -0.75* | -0.76* | -0.58* | -0.22* | -0.73* | -0.74* | -0.86* | -0.74* | -0.65* |
Fig. 5 Distribution patterns of potential species richness of different categories of foraging plants for Hainan gibbons. A, Fruit. B, Leaf. C, Flower. D, Dry season. E, Rainy season. F, Moraceae. G, Lauraceae. H, Annonaceae. Orange and red areas are potential species richness hotspots, grey area is the missing data area.
[1] | An SQ, Wang ZF, Zeng FJ, Zhang HD, Wang BS (1999). Biodiversity of tropical mountane rain forest on Diaoluo Mountain, Hainan. Acta Scientiarum Naturalium Universitatis Sunyatseni, 38(6), 78-83. |
[安树青, 王峥峰, 曾繁敬, 张宏达, 王伯荪 (1999). 海南吊罗山热带山地雨林植物种类多样性研究. 中山大学学报(自然科学版), 38(6), 78-83.] | |
[2] |
Booth TH, Nix HA, Busby JR, Hutchinson MF (2014). Bioclim: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, 20, 1-9.
DOI URL |
[3] |
Boral D, Moktan S (2021). Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecological Processes, 10, 26. DOI: 10.1186/s13717-021-00294-5.
DOI |
[4] | Dai SP, Luo HX, Hu YY, Zheng Q, Li HL, Li MF, Yu X (2021). Dynamic land use change of Hainan Island in recent 20 years based on GLC30 data. Agricultural Engineering, 11(9), 61-69. |
[戴声佩, 罗红霞, 胡盈盈, 郑倩, 李海亮, 李茂芬, 禹萱 (2021). 基于GLC30数据的近20年海南岛土地利用动态变化研究. 农业工程, 11(9), 61-69.] | |
[5] | Deng HQ, Zhang MX, Zhou J (2015). Recovery of the critically endangered Hainan gibbon Nomascus hainanus. Oryx, 51, 161-165. |
[6] | Deng HQ, Zhou J (2018). Thirteen years observation on diet composition of Hainan gibbons (Nomascus hainanus). North-Western Journal of Zoology, 14, 213-219. |
[7] |
Ding YX, Peng SZ (2020). Spatiotemporal trends and attribution of drought across China from 1901-2100. Sustainability, 12, 477. DOI: 10.3390/su12020477.
DOI |
[8] | Du RP, Wang J, Zhang ZD, Xu Y, Long WX, Feng G (2022). Prediction of suitable distribution of edible tree species for Hainan gibbons based on fruit types. Chinese Journal of Ecology, 41, 142-149. |
[杜瑞鹏, 王静, 张志东, 许玥, 龙文兴, 冯广 (2022). 基于果实类型的海南长臂猿食用树种适宜性分布预测. 生态学杂志, 41, 142-149.] | |
[9] |
Du YJ, Li DF, Yang XB, Peng DX, Tang XR, Liu H, Li DH, Hong XJ, Song XQ (2020). Reproductive phenology and its drivers in a tropical rainforest National Park in China: implications for Hainan gibbon (Nomascus hainanus) conservation. Global Ecology and Conservation, 24, e1317. DOI: 10.1016/j.gecco.2020.e01317.
DOI |
[10] |
Du ZK, Ren ZC, Yu BB, Zhu JX, Li JM (2022). Impacts of climate change on the global distribution of Cyclocarya paliurus. Biologia, 78, 41-53.
DOI |
[11] |
Edwards Jr TC, Cutler DR, Zimmermann NE, Geiser L, Moisen GG (2006). Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling, 199, 132-141.
DOI URL |
[12] |
Fan PF (2017). The past, present, and future of gibbons in China. Biological Conservation, 210, 29-39.
DOI URL |
[13] |
Fan PF, Jiang XL (2008). Effects of food and topography on ranging behavior of black crested gibbon (Nomascus concolor jingdongensis) in Wuliang Mountain, Yunnan, China. American Journal of Primatology, 70, 871-878.
DOI URL |
[14] |
Fang JY, Li YD, Zhu B, Liu GH, Zhou GY (2004). Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China. Biodiversity Science, 12, 29-43.
DOI URL |
[方精云, 李意德, 朱彪, 刘国华, 周光益 (2004). 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位. 生物多样性, 12, 29-43.]
DOI |
|
[15] |
Feng JM (2008). Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodiversity Science, 16, 470-476.
DOI URL |
[冯建孟 (2008). 中国种子植物物种多样性的大尺度分布格局及其气候解释. 生物多样性, 16, 470-476.]
DOI |
|
[16] | Geissmann T, Bleisch W (2020). Nomascus Hainanus. The IUCN Red List of threatened species 2020: e.T41643A17969392. [2022-05-13]. https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T41643A17969392.en. |
[17] |
Go M (2010). Seasonal changes in food resource distribution and feeding sites selected by Japanese macaques on Koshima Islet, Japan. Primates, 51, 149-158.
DOI PMID |
[18] |
Guisan A, Edwards Jr TC, Hastie T (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100.
DOI URL |
[19] |
Guo YL, Zhao ZF, Qiao HJ, Wang R, Wei HY, Wang LK, Gu W, Li X (2020). Challenges and development trend of species distribution model. Advances in Earth Science, 35, 1292-1305.
DOI |
[郭彦龙, 赵泽芳, 乔慧捷, 王然, 卫海燕, 王璐坤, 顾蔚, 李新 (2020). 物种分布模型面临的挑战与发展趋势. 地球科学进展, 35, 1292-1305.]
DOI |
|
[20] |
Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography-Earth and Environment, 30, 751-777.
DOI URL |
[21] | Huang RZ, Yu T, Zhao H, Zhang SK, Jing Y, Li JQ (2021). Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China. Journal of Beijing Forestry University, 43(5), 33-43. |
[黄睿智, 于涛, 赵辉, 张声凯, 景洋, 李俊清 (2021). 气候变化背景下濒危植物梓叶槭在中国适生分布区预测. 北京林业大学学报, 43(5), 33-43.] | |
[22] |
Klopfer PH (1959). Environmental determinants of faunal diversity. The American Naturalist, 93, 337-342.
DOI URL |
[23] | Kong WY, Li XH, Zou HF (2019). Optimizing MaxEnt model in the prediction of species distribution. Chinese Journal of Applied Ecology, 30, 2116-2128. |
[孔维尧, 李欣海, 邹红菲 (2019). 最大熵模型在物种分布预测中的优化. 应用生态学报, 30, 2116-2128.]
DOI |
|
[24] | Lai XL, Han NL, Huang PJ (2021). Population spatialization in Hainan Province based on NPP/VIIRS nighttime light remote sensing data. Bulletin of Science and Technology, 37(12), 24-29. |
[赖先龙, 韩念龙, 黄鹏锦 (2021). 基于NPP/ VIIRS夜间灯光数据海南省人口空间化研究. 科技通报, 37(12), 24-29.] | |
[25] | Li ZC, Chen YF, Hong XJ, Han WT, Li XC (2015). Age structure and point pattern analysis of Dacrydium pectinatum in Bawangling, Hainan Island. Chinese Journal of Ecology, 34, 1507-1515. |
[李肇晨, 陈永富, 洪小江, 韩文涛, 李小成 (2015). 海南霸王岭陆均松种群年龄结构与点格局分布特征. 生态学杂志, 34, 1507-1515.] | |
[26] | Liang BZ, Lu SY, Peng AH, Zeng GC, Huang ZH, Li YB (2022). Effect of various nutrient composition on feeding habit of francois’ langur Trachypithecus francoisis. Journal of Guangxi Normal University (Natural Science Edition), 40(4), 188-198. |
[梁卜之, 陆施毅, 彭爱惠, 曾桂传, 黄中豪, 李友邦 (2022). 食物营养组分对黑叶猴食物选择策略影响的研究. 广西师范大学学报(自然科学版), 40(4), 188-198.] | |
[27] | Lin JY, Mo LJ, Zhuang XY, Chen Q, Chen SH, Zhang JF (2006). Niche breadth and overlap of the feeding plants in the forest communities as habitats for Nomascus hainanus. Journal of South China Agricultural University, 27(4), 52-57. |
[林家怡, 莫罗坚, 庄雪影, 陈庆, 陈升华, 张剑锋 (2006). 海南黑冠长臂猿栖息地群落优势种及采食植物生态位特性. 华南农业大学学报, 27(4), 52-57.] | |
[28] | Liu BR (2021). Recent advances in altitudinal distribution patterns of biodiversity. Ecology and Environmental Sciences, 30, 438-444. |
[刘秉儒 (2021). 生物多样性的海拔分布格局研究及进展. 生态环境学报, 30, 438-444.]
DOI |
|
[29] | Long WX, Yang XB, Luo T, Huang YF, Li DH, Guo T (2007). Study on the flora of rare and endangered plants of Diaoluoshan Mountain in Hainan Island. Journal of Fujian Forestry Science and Technology, 34(4), 118-123. |
[龙文兴, 杨小波, 罗涛, 黄运峰, 李东海, 郭涛 (2007). 海南岛吊罗山地区珍稀濒危植物区系研究. 福建林业科技, 34(4), 118-123.] | |
[30] |
Long WX, Zang RG, Ding Y (2011). Community characteristics of tropical montane evergreen forest and tropical montane dwarf forest in Bawangling National Nature Reserve on Hainan Island, South China. Biodiversity Science, 19, 558-566.
DOI URL |
[龙文兴, 臧润国, 丁易 (2011). 海南岛霸王岭热带山地常绿林和热带山顶矮林群落特征. 生物多样性, 19, 558-566.]
DOI |
|
[31] |
Long WX, Zang RG, Ding Y, Huang YF (2013). Effects of competition and facilitation on species assemblage in two types of tropical cloud forest. PLoS ONE, 8, e60252. DOI: 10.1371/journal.pone.0060252.
DOI |
[32] |
Lu SF, Zhou SY, Yin XJ, Zhang C, Li RL, Chen JH, Ma DX, Wang Y, Yu ZX, Chen YH (2021). Patterns of tree species richness in Southwest China. Environmental Monitoring and Assessment, 193, 97. DOI: 10.1007/s10661-021-08872-y.
DOI |
[33] | Ma CY, Fei HL, Huang T, Cui LW, Fan PF (2014). Seasonal variation in diurnal diet and activity rhythm of cao vit gibbon (Nomascus nasutus) in Bangliang Nature Reserve, Guangxi, China. Acta Theriologica Sinica, 34(2), 105-114. |
[马长勇, 费汉榄, 黄涛, 崔亮伟, 范朋飞 (2014). 邦亮东黑冠长臂猿日食性与活动节律的季节性变化. 兽类学报, 34(2), 105-114.] | |
[34] |
Ma CY, Liao JC, Fan PF (2017). Food selection in relation to nutritional chemistry of Cao Vit gibbons in Jingxi, China. Primates, 58, 63-74.
DOI PMID |
[35] | National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs (2021). List of national key protected wild animals (revised on February 1, 2021). Chinese Journal of Wildlife, 42, 605-640. |
[国家林业和草原局, 农业农村部 (2021). 《国家重点保护野生动物名录》(2021年2月1日修订). 野生动物学报, 42, 605-640.] | |
[36] |
Ning Y, Lei JR, Song XQ, Han SM, Zhong YF (2018). Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chinese Journal of Plant Ecology, 42, 946-954.
DOI URL |
[宁瑶, 雷金睿, 宋希强, 韩淑梅, 钟云芳 (2018). 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟. 植物生态学报, 42, 946-954.]
DOI |
|
[37] | Ouyang ZY, Ouyang SL, Wu JY, Zhou ZC, Li ZH, Dong SC (2022). Progress of the application of prediction of potential suitable distribution of plants based on Maxent. Hunan Forestry Science & Technology, 49(1), 83-88. |
[欧阳泽怡, 欧阳硕龙, 吴际友, 周志春, 李志辉, 董帅昌 (2022). 最大熵模型在植物适生区预测应用中的研究进展. 湖南林业科技, 49(1), 83-88.] | |
[38] |
Pandey B, Khatiwada JR, Zhang L, Pan KW, Dakhil MA, Xiong QL, Yadav RKP, Siwakoti M, Tariq A, Olatunji OA, Justine MF, Wu XG, Sun XM, Liao ZY, Negesse ZT (2020). Energy-water and seasonal variations in climate underlie the spatial distribution patterns of gymnosperm species richness in China. Ecology and Evolution, 10, 9474-9485.
DOI PMID |
[39] | Peng HY, Zhang JF, Jiang HS, Hu JC (2008). Distribution change and cause of Hylobates hainanus in Hainan Island. Sichuan Journal of Zoology, 27, 671-675. |
[彭红元, 张剑锋, 江海声, 胡锦矗 (2008). 海南岛海南长臂猿分布的变迁及成因. 四川动物, 27, 671-675.] | |
[40] |
Peng SZ, Ding YX, Liu WZ, Li Z (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946.
DOI URL |
[41] |
Peng SZ, Ding YX, Wen ZM, Chen YM, Cao Y, Ren JY (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agricultural and Forest Meteorology, 233, 183-194.
DOI URL |
[42] |
Peng SZ, Gang CC, Cao Y, Chen, YM (2018). Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. International Journal of Climatology, 38, 2250-2264.
DOI URL |
[43] |
Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
DOI URL |
[44] |
Phillips SJ, Dudík M (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
DOI URL |
[45] | Shao Q (2018). Composition of Dietary Source Plants and Its Variation with Season and Altitude in Taihangshan Macaques (Macaca mulatta tcheliensis). Master degree dissertation, Zhengzhou University, Zhengzhou. |
[邵奇 (2018). 太行山猕猴食源植物组成及其随季节与海拔的变化. 硕士学位论文, 郑州大学, 郑州.] | |
[46] |
Soilhi Z, Sayari N, Benalouache N, Mekki M (2022). Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecological Informatics, 68, 101533. DOI: 10.1016/j.ecoinf.2021.101533.
DOI |
[47] | Tang WL, Bi Y, Jin K (2021). Composition of foraging plants of Hainan gibbon in Hainan Rainforest National Park, China. Chinese Journal of Wildlife, 42, 675-685. |
[唐玮璐, 毕玉, 金崑 (2021). 海南热带雨林国家公园海南长臂猿食源植物组成. 野生动物学报, 42, 675-685.] | |
[48] | Tang WL, Jin K (2021). Preliminary study on night lodging habitat selection of Nomascus hainanus in Hainan Tropical Rainforest National Park, Southern China. Journal of Beijing Forestry University, 43(2), 113-126. |
[唐玮璐, 金崑 (2021). 海南热带雨林国家公园海南长臂猿夜宿生境选择初步研究. 北京林业大学学报, 43(2), 113-126.] | |
[49] | Tang Y, Zhao RN, Ren G, Cao FL, Zhu ZL (2021). Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors. Journal of Beijing Forestry University, 43(6), 23-32. |
[唐燕, 赵儒楠, 任钢, 曹福亮, 祝遵凌 (2021). 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析. 北京林业大学学报, 43(6), 23-32.] | |
[50] |
Wang JM, Chen C, Li JW, Feng YM, Lu Q (2019). Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6, e6220. DOI: 10.7717/peerj.6220.
DOI |
[51] |
Wang XX, Long WX, Yang XB, Xiong MH, Kang Y, Huang J, Wang X, Hong XJ, Zhou ZL, Lu YQ, Fang J, Li SX (2016). Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island. Chinese Journal of Plant Ecology, 40, 469-479.
DOI |
[王茜茜, 龙文兴, 杨小波, 熊梦辉, 康勇, 黄瑾, 王旭, 洪小江, 周照骊, 陆雍泉, 方精, 李时兴 (2016). 海南岛3个林区热带云雾林植物多样性变化. 植物生态学报, 40, 469-479.]
DOI |
|
[52] |
Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
DOI URL |
[53] | Wu JP, Zhou W, Luo H, Deng ZJ, Li JH, Ai HS (2010). Feeding and food resource availability of Hoolock Gibbon (Hoolock hoolock) at Nankang, Mt. Gaoligong in spring and autumn. Journal of Yunnan University (Natural Sciences Edition), 32, 715-723. |
[吴建普, 周伟, 罗红, 邓忠坚, 李家鸿, 艾怀森 (2010). 高黎贡山赧亢白眉长臂猿(Hoolock hoolock)春秋季食物资源可利用性与取食. 云南大学学报(自然科学版), 32, 715-723.] | |
[54] | Wu YN, Tao JP, Zhao K, Hao JH (2010). Edge effects of a natural secondary forest on liana communities in Bawangling, Hainan Island. Scientia Silvae Sinicae, 46(5), 1-6. |
[乌玉娜, 陶建平, 赵科, 郝建辉 (2010). 海南霸王岭天然次生林边缘效应下木质藤本的变化. 林业科学, 46(5), 1-6.] | |
[55] |
Xu WM, Du QL, Yan S, Cao Y, Liu X, Guan DX, Ma LQ (2022). Geographical distribution of As-hyperaccumulator Pteris vittata in China: environmental factors and climate changes. Science of the Total Environment, 803, 149864. DOI: 10.1016/j.scitotenv.2021.149864.
DOI |
[56] | Xu ZL, Peng HH, Peng SZ (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35, 557-567. |
[许仲林, 彭焕华, 彭守璋 (2015). 物种分布模型的发展及评价方法. 生态学报, 35, 557-567.] | |
[57] | Yan XF, Li YC (2007). The survival and research status of Hainan black-crowned Gibbon. Bulletin of Biology, 42(12), 18-20. |
[晏学飞, 李玉春 (2007). 海南黑冠长臂猿的生存与研究现状. 生物学通报, 42(12), 18-20.] | |
[58] | Yang JY, Liu XC, Liao MY (2014). Food distribution for a group of Rhinopithecus roxellana in Shennongjia, China. Chinese Journal of Zoology, 49, 465-475. |
[杨敬元, 刘学聪, 廖明尧 (2014). 神农架一个川金丝猴群的食物分布. 动物学杂志, 49, 465-475.] | |
[59] | Yin XJ, Zhou GS, Sui XH, He QJ, Li RP (2013). Potential geographical distribution of Quercus wutaishanica forest and its dominant factors. Scientia Silvae Sinicae, 49(8), 10-14. |
[殷晓洁, 周广胜, 隋兴华, 何奇瑾, 李荣平 (2013). 辽东栎林潜在地理分布及其主导因子. 林业科学, 49(8), 10-14.] | |
[60] | Zang RG, Jiang YX, Yang YC (2001). Study on the regeneration niche of major tree species in gaps in a tropical montane rain forest in Bawangling, Hainan Island. Forest Research, 14(1), 17-22. |
[臧润国, 蒋有绪, 杨彦承 (2001). 海南岛霸王岭热带山地雨林林隙更新生态位的研究. 林业科学研究, 14(1), 17-22.] | |
[61] |
Zhang AA, Li Z, Zhang DX, Zang RG, Liu SR, Long WX, Chen YK, Liu S, Liu H, Qi XM, Feng YW, Zhang ZD, Chen Y, Zhang H, Feng G (2022). Food plant diversity in different-altitude habitats of Hainan gibbons (Nomascus hainanus): implications for conservation. Global Ecology and Conservation, 38, e02204. DOI: 10.1016/j.gecco.2022. e02204.
DOI |
[62] | Zhang C, Ma W, Chen C, Wang MY, Xu WX, Yang WK (2022). Changes of habitat pattern for goitered gazelle in the Xinjiang Kalamaili Mountain Ungulate Nature Reserve under the influence of major projects. Biodiversity Science, 30, 63-75. |
[张晨, 马伟, 陈晨, 汪沐阳, 徐文轩, 杨维康 (2022). 重大工程影响下新疆卡拉麦里山有蹄类野生动物自然保护区鹅喉羚的生境格局变化. 生物多样性, 30, 63-75.] | |
[63] | Zhang FY, Liao ZY, Pan KW, Zhang M, Zhao YL, Zhang L (2021). Species richness and endemism pattern of Fagaceae in Southwest China and their environmental interpretation. Chinese Journal of Applied Ecology, 32, 2290-2300. |
[张凤英, 廖梓延, 潘开文, 张萌, 赵玉林, 张林 (2021). 西南地区壳斗科物种丰富度和特有性分布格局模拟及其环境解释. 应用生态学报, 32, 2290-2300.]
DOI |
|
[64] | Zhang XQ (2018). Geographical Distribution and Climatic Suitability of Typical Eco-economical Tree Species in the Dryland of Northwest China. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[张晓芹 (2018). 西北旱区典型生态经济树种地理分布与气候适宜性研究. 博士学位论文, 中国科学院大学, 北京.] | |
[65] |
Zhang XY, Zhou W, Wu JP, Bai B, Li ZB, Li JH (2008). Food selection of Hoolock gibbon (Hoolock hoolock) at Nankang, Mt. Gaoligong in spring. Zoological Research, 29, 174-180.
DOI URL |
[张兴勇, 周伟, 吴建普, 白冰, 李正波, 李家鸿 (2008). 高黎贡山赧亢白眉长臂猿春季食物选择. 动物学研究, 29, 174-180.] | |
[66] |
Zhang ZD, Zang RG (2018). Diversity and distribution of food plants: implications for conservation of the critically endangered Hainan gibbon. Nature Conservation, 31, 17-33.
DOI URL |
[67] | Zhang ZG (2021). Flagship species in the Hainan Tropical Rainforest National Park. Green China, (20), 50-53. |
[张志国 (2021). 海南热带雨林国家公园旗舰物种. 绿色中国, (20), 50-53.] | |
[68] |
Zhou R, Ci XQ, Xiao JH, Cao GL, Li J (2021). Effects and conservation assessment of climate change on the dominant group—The genus Cinnamomum of subtropical evergreen broad-leaved forests. Biodiversity Science, 29, 697-711.
DOI URL |
[周润, 慈秀芹, 肖建华, 曹关龙, 李捷 (2021). 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估. 生物多样性, 29, 697-711.] | |
[69] |
Zhu GP, Qiao HJ (2016). Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24, 1189-1196.
DOI URL |
[朱耿平, 乔慧捷 (2016). Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24, 1189-1196.]
DOI |
|
[70] | Zhu GP, Fan JY, Wang ML, Chen M, Qiao HJ (2017). The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation—Case study of Hlyphantria cunea. Journal of Biosafety, 26, 184-190. |
[朱耿平, 范靖宇, 王梦琳, 陈敏, 乔慧捷 (2017). ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例. 生物安全学报, 26, 184-190.] | |
[71] | Zhu LL, Chen FF, Zhou W, Wu JP (2011). Nutritional comparison on main food of Hoolock gibbon (Hoolock hoolock) in spring and autumn at Nankang, gaoligong Mountain. Journal of Southwest Forestry University, 31(2), 62-65. |
[朱梨梨, 陈粉粉, 周伟, 吴建普 (2011). 高黎贡山赧亢白眉长臂猿春秋季主要食物营养成分比较. 西南林业大学学报, 31(2), 62-65.] | |
[72] | Zhu N (2019). Modelling the suitable habitat distribution of Magnolia officinalis using ensemble model. Journal of Sichuan Agricultural University, 37, 481-489. |
[朱妮 (2019). 基于组合物种分布模型(Ensemble Model)的厚朴适宜生境分布模拟. 四川农业大学学报, 37, 481-489.] | |
[73] | Zhuo SH, Hu N, Chen K, Li JL, Yin WZ, Huang LH, Long WX (2017). Species distribution pattern of tree plant communities on different slopes and altitudes in the Wuzhishan Nature Reserve. Journal of Tropical Biology, 8, 436-443. |
[卓书辉, 胡能, 陈康, 李佳灵, 尹为治, 黄良鸿, 龙文兴 (2017). 五指山自然保护区不同坡向和海拔的乔木群落物种分布格局. 热带生物学报, 8, 436-443.] | |
[74] |
Zhuo ZH, Xu DP, Pu B, Wang RL, Ye M (2020). Predicting distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecology, 20, 46. DOI: 10.1186/s12898-020-00314-6.
DOI |
[75] |
Zuo YL, Yang XB, Li DH, Wu EH, Yang N, Li L, Zhang PC, Chen L, Li CD (2021). Effects of environmental variables on the species composition and distribution patterns of wild orchids in Hainan Island. Chinese Journal of Plant Ecology, 45, 1341-1349.
DOI URL |
[左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛 (2021). 环境因子对海南岛野生兰科植物物种组成与分布格局的影响. 植物生态学报, 45, 1341-1349.]
DOI |
[1] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[2] | Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum [J]. Chin J Plant Ecol, 2016, 40(11): 1164-1178. |
[3] | GUO Yan-Long, WEI Hai-Yan, LU Chun-Yan, ZHANG Hai-Long, GU Wei. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change [J]. Chin J Plant Ecol, 2014, 38(3): 249-261. |
[4] | MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plant Ecol, 2014, 38(3): 262-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn