Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (2): 229-241.DOI: 10.17521/cjpe.2023.0148
Special Issue: 全球变化与生态系统; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
YAN Chen-Yi, GONG Ji-Rui*()(), ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen
Received:
2023-05-29
Accepted:
2023-10-09
Online:
2024-02-28
Published:
2023-10-12
Contact:
* (Supported by:
YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China[J]. Chin J Plant Ecol, 2024, 48(2): 229-241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0148
Fig. 1 Effects of different nitrogen addition treatments on aboveground and belowground biomass of vegetation in a temperate grassland of Nei Mongol (mean ± SE). Different lowercase letters indicate significant differences in belowground biomass between different treatments (p < 0.05), different uppercase letters indicate significant differences in aboveground biomass between different treatments (p < 0.05). N0, N2, N5, N10 and N25 indicate nitrogen addition amounts of 0, 2, 5, 10, 25 g·m-2·a-1, respectively.
处理 Treatment | 土层深度 SLD (cm) | 土壤pH Soil pH | 土壤密度 SD (g·cm-3) | 土壤含水量 SWC (%) | 土壤全碳含量 TC content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 微生物生物量氮含量 MBN content (mg·kg-1) |
---|---|---|---|---|---|---|---|
N0 | 0-10 | 8.22 ± 0.01Ca | 1.26 ± 0.02Aa | 18.27 ± 0.10Ab | 18.40 ± 0.17Cd | 1.39 ± 0.09Ab | 45.03 ± 3.55Aac |
10-20 | 8.29 ± 0.00Ba | 1.24 ± 0.02Aa | 17.62 ± 0.27Bc | 22.13 ± 0.29Ab | 1.37 ± 0.09ABa | 34.93 ± 0.35Bab | |
20-30 | 8.47 ± 0.00Aa | 1.13 ± 0.02Bb | 17.06 ± 0.10Bb | 19.63 ± 0.09Bd | 0.92 ± 0.11Ba | 14.36 ± 0.28Ca | |
N2 | 0-10 | 8.11 ± 0.00Cb | 1.31 ± 0.01Aa | 19.39 ± 0.19Ba | 21.26 ± 0.10Bb | 1.84 ± 0.22Aa | 53.74 ± 3.20Aa |
10-20 | 8.16 ± 0.01Bb | 1.09 ± 0.04Bb | 20.45 ± 0.31Ab | 24.77 ± 0.31Aa | 1.44 ± 0.07Aa | 19.13 ± 3.70Bc | |
20-30 | 8.29 ± 0.01Ac | 1.09 ± 0.01Bbc | 20.36 ± 0.31Aa | 23.60 ± 0.58Ab | 0.94 ± 0.15Ba | 15.00 ± 0.94Ba | |
N5 | 0-10 | 8.13 ± 0.01Bb | 1.18 ± 0.01Ab | 19.61 ± 0.30Ba | 21.98 ± 0.05Ba | 1.44 ± 0.03Aab | 31.63 ± 2.56Ab |
10-20 | 8.15 ± 0.01Bb | 1.19 ± 0.03Aab | 21.42 ± 0.21Aa | 25.25 ± 0.32Aa | 1.43 ± 0.04Aa | 26.17 ± 1.58Abc | |
20-30 | 8.37 ± 0.01Ab | 1.24 ± 0.04Aa | 19.53 ± 0.52Ba | 25.10 ± 0.16Aa | 1.16 ± 0.10Ba | 14.14 ± 0.24Ba | |
N10 | 0-10 | 7.97 ± 0.01Cc | 1.15 ± 0.03Ab | 19.26 ± 0.40Aa | 20.28 ± 0.08Bc | 1.65 ± 0.11Aab | 51.99 ± 2.01Aa |
10-20 | 8.01 ± 0.01Bc | 1.03 ± 0.04Bb | 18.25 ± 0.38Ac | 22.65 ± 0.23Ab | 1.47 ± 0.11Aa | 41.81 ± 8.46Aa | |
20-30 | 8.17 ± 0.01Ad | 1.16 ± 0.02Ab | 19.57 ± 0.41Aa | 22.18 ± 0.04Ac | 0.86 ± 0.08Ba | 14.93 ± 1.72Ba | |
N25 | 0-10 | 7.89 ± 0.01Cd | 1.17 ± 0.01Ab | 19.99 ± 0.12Aa | 21.36 ± 0.13Bb | 1.60 ± 0.16Aab | 38.19 ± 2.72Abc |
10-20 | 8.02 ± 0.00Bc | 1.10 ± 0.01Bb | 19.74 ± 0.12ABb | 24.45 ± 0.40Aa | 1.48 ± 0.05Ba | 21.11 ± 1.67Bc | |
20-30 | 8.12 ± 0.00Ae | 1.03 ± 0.01Cc | 19.33 ± 0.19Ba | 20.39 ± 0.11Cd | 1.07 ± 0.12Ca | 10.97 ± 2.16Ca |
Table 1 Effect of different nitrogen additions on soil physical and chemical properties in temperate grassland of Nei Mongol (mean ± SE)
处理 Treatment | 土层深度 SLD (cm) | 土壤pH Soil pH | 土壤密度 SD (g·cm-3) | 土壤含水量 SWC (%) | 土壤全碳含量 TC content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 微生物生物量氮含量 MBN content (mg·kg-1) |
---|---|---|---|---|---|---|---|
N0 | 0-10 | 8.22 ± 0.01Ca | 1.26 ± 0.02Aa | 18.27 ± 0.10Ab | 18.40 ± 0.17Cd | 1.39 ± 0.09Ab | 45.03 ± 3.55Aac |
10-20 | 8.29 ± 0.00Ba | 1.24 ± 0.02Aa | 17.62 ± 0.27Bc | 22.13 ± 0.29Ab | 1.37 ± 0.09ABa | 34.93 ± 0.35Bab | |
20-30 | 8.47 ± 0.00Aa | 1.13 ± 0.02Bb | 17.06 ± 0.10Bb | 19.63 ± 0.09Bd | 0.92 ± 0.11Ba | 14.36 ± 0.28Ca | |
N2 | 0-10 | 8.11 ± 0.00Cb | 1.31 ± 0.01Aa | 19.39 ± 0.19Ba | 21.26 ± 0.10Bb | 1.84 ± 0.22Aa | 53.74 ± 3.20Aa |
10-20 | 8.16 ± 0.01Bb | 1.09 ± 0.04Bb | 20.45 ± 0.31Ab | 24.77 ± 0.31Aa | 1.44 ± 0.07Aa | 19.13 ± 3.70Bc | |
20-30 | 8.29 ± 0.01Ac | 1.09 ± 0.01Bbc | 20.36 ± 0.31Aa | 23.60 ± 0.58Ab | 0.94 ± 0.15Ba | 15.00 ± 0.94Ba | |
N5 | 0-10 | 8.13 ± 0.01Bb | 1.18 ± 0.01Ab | 19.61 ± 0.30Ba | 21.98 ± 0.05Ba | 1.44 ± 0.03Aab | 31.63 ± 2.56Ab |
10-20 | 8.15 ± 0.01Bb | 1.19 ± 0.03Aab | 21.42 ± 0.21Aa | 25.25 ± 0.32Aa | 1.43 ± 0.04Aa | 26.17 ± 1.58Abc | |
20-30 | 8.37 ± 0.01Ab | 1.24 ± 0.04Aa | 19.53 ± 0.52Ba | 25.10 ± 0.16Aa | 1.16 ± 0.10Ba | 14.14 ± 0.24Ba | |
N10 | 0-10 | 7.97 ± 0.01Cc | 1.15 ± 0.03Ab | 19.26 ± 0.40Aa | 20.28 ± 0.08Bc | 1.65 ± 0.11Aab | 51.99 ± 2.01Aa |
10-20 | 8.01 ± 0.01Bc | 1.03 ± 0.04Bb | 18.25 ± 0.38Ac | 22.65 ± 0.23Ab | 1.47 ± 0.11Aa | 41.81 ± 8.46Aa | |
20-30 | 8.17 ± 0.01Ad | 1.16 ± 0.02Ab | 19.57 ± 0.41Aa | 22.18 ± 0.04Ac | 0.86 ± 0.08Ba | 14.93 ± 1.72Ba | |
N25 | 0-10 | 7.89 ± 0.01Cd | 1.17 ± 0.01Ab | 19.99 ± 0.12Aa | 21.36 ± 0.13Bb | 1.60 ± 0.16Aab | 38.19 ± 2.72Abc |
10-20 | 8.02 ± 0.00Bc | 1.10 ± 0.01Bb | 19.74 ± 0.12ABb | 24.45 ± 0.40Aa | 1.48 ± 0.05Ba | 21.11 ± 1.67Bc | |
20-30 | 8.12 ± 0.00Ae | 1.03 ± 0.01Cc | 19.33 ± 0.19Ba | 20.39 ± 0.11Cd | 1.07 ± 0.12Ca | 10.97 ± 2.16Ca |
Fig. 2 Effects of different nitrogen additions on soil aggregate composition in a temperate grassland of Nei Mongol. Different lowercase letters indicate significant differences between different addition treatments, different uppercase letters indicate significant differences between different soil layers (p < 0.05). N0, N2, N5, N10 and N25 indicate nitrogen addition amounts of 0, 2, 5, 10, 25 g·m-2·a-1, respectively.
处理 Treatment | MMD | D | ||||
---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 0-10 cm | 10-20 cm | 20-30 cm | |
N0 | 1.453 ± 0.009Cb | 1.631 ± 0.005Ae | 1.548 ± 0.005Bc | 2.690 ± 0.002Ab | 2.597 ± 0.003Ca | 2.662 ± 0.001Bb |
N2 | 1.334 ± 0.004Cd | 1.673 ± 0.003Ad | 1.541 ± 0.000Bc | 2.677 ± 0.003Ac | 2.586 ± 0.002Bb | 2.675 ± 0.001Aa |
N5 | 1.670 ± 0.002Ca | 1.764 ± 0.005Ab | 1.689 ± 0.014Bb | 2.595 ± 0.002Ad | 2.500 ± 0.000Be | 2.592 ± 0.002Ac |
N10 | 1.168 ± 0.007Ce | 1.814 ± 0.003Aa | 1.684 ± 0.002Bb | 2.741 ± 0.001Aa | 2.516 ± 0.002Cd | 2.578 ± 0.002Bd |
N25 | 1.430 ± 0.007Cc | 1.691 ± 0.009Bc | 1.913 ± 0.001Aa | 2.674 ± 0.004Ac | 2.528 ± 0.002Bc | 2.518 ± 0.001Ce |
Table 2 Effects of different nitrogen additions on mean mass diameter (MMD) and fractal dimension (D) of soil aggregates in a temperate grassland of Nei Mongol (mean ± SE)
处理 Treatment | MMD | D | ||||
---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 0-10 cm | 10-20 cm | 20-30 cm | |
N0 | 1.453 ± 0.009Cb | 1.631 ± 0.005Ae | 1.548 ± 0.005Bc | 2.690 ± 0.002Ab | 2.597 ± 0.003Ca | 2.662 ± 0.001Bb |
N2 | 1.334 ± 0.004Cd | 1.673 ± 0.003Ad | 1.541 ± 0.000Bc | 2.677 ± 0.003Ac | 2.586 ± 0.002Bb | 2.675 ± 0.001Aa |
N5 | 1.670 ± 0.002Ca | 1.764 ± 0.005Ab | 1.689 ± 0.014Bb | 2.595 ± 0.002Ad | 2.500 ± 0.000Be | 2.592 ± 0.002Ac |
N10 | 1.168 ± 0.007Ce | 1.814 ± 0.003Aa | 1.684 ± 0.002Bb | 2.741 ± 0.001Aa | 2.516 ± 0.002Cd | 2.578 ± 0.002Bd |
N25 | 1.430 ± 0.007Cc | 1.691 ± 0.009Bc | 1.913 ± 0.001Aa | 2.674 ± 0.004Ac | 2.528 ± 0.002Bc | 2.518 ± 0.001Ce |
Fig. 3 Effects of different nitrogen additions on the activities of β-glucosidase (A), cellulose hydrolase (B), peroxidase (C) and polyphenol oxidase (D) in a temperate grassland of Nei Mongol (mean ± SE). Different lowercase letters indicate significant differences between different addition treatments; different uppercase letters indicate significant differences between different soil layers (p < 0.05). N0, N2, N5, N10 and N25 indicate nitrogen addition amounts of 0, 2, 5, 10, 25 g·m-2·a-1, respectively.
Fig. 4 Effects of different nitrogen additions on dissolved organic carbon (A), easily oxidized organic carbon (B), microbial biomass carbon (C) contents and geometric mean of active organic carbon (GMC) (D) in a temperate grassland of Nei Mongol (mean ± SE). Different lowercase letters indicate significant differences between different addition treatments, different uppercase letters indicate significant differences between different soil layers (p < 0.05). N0, N2, N5, N10 and N25 indicate nitrogen addition amounts of 0, 2, 5, 10, 25 g·m-2·a-1, respectively.
Fig. 5 Pearson’s correlations between soil active organic carbon and soil physicochemical properties, aggregate structure, extracellular enzyme activity in a temperate grassland of Nei Mongol. AGB, aboveground biomass; BG, β-glucosidase activity; BGB, belowground biomass; CB, cellulose hydrolase activity; D, fractal dimension; DOC, dissolved organic carbon content; EOC, easily oxidized organic carbon content; GMC, geometric mean of active organic carbon content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; MMD, mean mass diameter; PER, peroxidase activity; POX, polyphenol oxidase activity; SD, soil density; SLD, soil layer depth; SWC, soil water content; TC, total carbon content; TN, total nitrogen content. *, p < 0.05.
Fig. 6 Structural equation model of soil active organic carbon fractions in a temperate grassland of Nei Mongol. The rectangular box indicates the variables contained in the model. The arrow indicates the direction of the assumed causal relationship. The number next to the arrow indicates the standardized path coefficient. The arrow width indicates the relationship strength. The solid arrow indicates a significant relationship (*, p < 0.05; **, p < 0.01). The dashed arrow indicates an insignificant relationship (p > 0.05), and R2 on the rectangular box indicates the variance ratio of the variable explained by its relationship with other variables. BGB, belowground biomass; DOC, dissolved organic carbon content; EOC, easily oxidized organic carbon content; HA, hydrolase activity; MBC, microbial biomass carbon content; MMD, mean mass diameter; NA, nitrogen addition; OA, oxidase activity; SD, soil density.
[1] | Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156-1168. |
[2] | Blair GJ, Lefroy R, Lisle L (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459. DOI: 10.1071/ar9951459. |
[3] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[4] |
Chen H, Li D, Gurmesa GA, Yu G, Li L, Zhang W, Fang H, Mo J (2015). Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis. Environmental Pollution, 206, 352-360.
DOI PMID |
[5] | Chen JG, Tian DL, Yan WD, Xiang WH, Fang X (2011). Progress on study of carbon sequestration in soil aggregates. Journal of Central South University of Forestry & Technology, 31(5), 74-80. |
[陈建国, 田大伦, 闫文德, 项文化, 方晰 (2011). 土壤团聚体固碳研究进展. 中南林业科技大学学报, 31(5), 74-80.] | |
[6] | Compton JE, Watrud LS, Arlene Porteous L, DeGrood S (2004). Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 196, 143-158. |
[7] | Fan MZ, Yin C, Fan FL, Song AL, Wang BR, Li DC, Liang YC (2015). Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil. Chinese Journal of Applied Ecology, 26, 833-838. |
[范淼珍, 尹昌, 范分良, 宋阿琳, 王伯仁, 李冬初, 梁永超 (2015). 长期不同施肥对红壤碳、氮、磷循环相关酶活性的影响. 应用生态学报, 26, 833-838.] | |
[8] |
Feng Z, Rütting T, Pleijel H, Wallin G, Reich PB, Kammann CI, Newton PCD, Kobayashi K, Luo Y, Uddling J (2015). Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology, 21, 3152-3168.
DOI PMID |
[9] | Giulia B, Else KB, Chidinma UO, Jennifer M, Gerrit G, Rob C, Paul M, Lijbert B, Ron DG (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38-50. |
[10] | Grandy AS, Neff JC, Weintraub MN (2007). Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biology & Biochemistry, 39, 2701-2711. |
[11] | Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo- enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896. |
[郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.]
DOI |
|
[12] | Haynes RJ (2005). Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 85, 221-268. |
[13] | He YL, Qi YC, Peng Q, Dong YS, Yan ZQ, Li ZL (2018). Effects of exogenous carbon and nitrogen addition on the key process of carbon cycle in grassland ecosystem: a review. China Environmental Science, 38, 1133-1141. |
[贺云龙, 齐玉春, 彭琴, 董云社, 闫钟清, 李兆林 (2018). 外源碳氮添加对草地碳循环关键过程的影响. 中国环境科学, 38, 1133-1141.] | |
[14] | Howard AL (2013). Handbook of structural equation modeling. Structural Equation Modeling. A Multidisciplinary Journal, 20, 354-360. |
[15] | Hu J, Lyu YH, Zhang K, Tao YZ, Li T, Ren YJ (2016). The differences of water conservation function under typical vegetation types in the Pailugou catchment, Qilian Mountain, northwest China. Acta Ecologica Sinica, 36, 3338-3349. |
[胡健, 吕一河, 张琨, 陶蕴之, 李婷, 任艳娇 (2016). 祁连山排露沟流域典型植被类型的水源涵养功能差异. 生态学报, 36, 3338-3349.] | |
[16] | Hungate AB, Jackson BR, Field BC, Chapin III FS (1995). Detecting changes in soil carbon in CO2 enrichment experiments. Plant and Soil, 187, 135-145. |
[17] | Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, Zuo Y, Zhang DY, Wang QF (2014). Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 4, 3763. DOI: 10.1038/srep03763. |
[18] | Jian JN, Liu WC, Zhu YF, Li JX, Wen YH, Liu FH, Ren CJ, Han XH (2022). Effects of short-term nitrogen addition on soil organic carbon components in Robinia pseudoacacia plantation. Environmental Science, 44, 2767-2774. |
[简俊楠, 刘伟超, 朱玉帆, 李佳欣, 温宇豪, 刘付和, 任成杰, 韩新辉 (2022). 短期氮添加对黄土高原人工刺槐林土壤有机碳组分的影响. 环境科学, 44, 2767-2774.] | |
[19] | Kurt SP, Donald RZ, Andrew JB, Jennifer AA, Neil WM (2004). Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, 68, 179-197. |
[20] | Li HR, Zhu Y, Tian JH, Wei K, Chen ZH, Chen LJ (2018). Effects of carbon and nitrogen additions on soil organic C, N, P contents and their catalyzed enzyme activities in a grassland. Chinese Journal of Applied Ecology, 29, 2470-2476. |
[李焕茹, 朱莹, 田纪辉, 魏锴, 陈振华, 陈利军 (2018). 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响. 应用生态学报, 29, 2470-2476.]
DOI |
|
[21] |
Li R, Chang RY (2015). Effects of external nitrogen additions on soil organic carbon dynamics and the mechanism. Chinese Journal of Plant Ecology, 39, 1012-1020.
DOI |
[李嵘, 常瑞英 (2015). 土壤有机碳对外源氮添加的响应及其机制. 植物生态学报, 39, 1012-1020.]
DOI |
|
[22] | Li T, Cui LZ, Liu LL, Wang H, Dong JF, Wang F, Song XF, Che RX, Li CJ, Tang L, Xu ZH, Wang YF, Du JQ, Hao YB, Cui XY (2022). Characteristics of nitrogen deposition research within grassland ecosystems globally and its insight from grassland microbial community changes in China. Frontiers in Plant Science, 13, 947279. DOI: 10.3389/FPLS.2022.947279. |
[23] | Ling XL, Shi BK, Cui HY, Song WZ, Sun W (2021). Effects of nitrogen and phosphorus addition on soil aggregates structure and carbon content in Songnen grassland. Chinese Journal of Grassland, 43(2), 54-63. |
[凌小莉, 史宝库, 崔海莹, 宋文政, 孙伟 (2021). 氮磷添加对松嫩草地土壤团聚体结构及其碳含量的影响. 中国草地学报, 43(2), 54-63.] | |
[24] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[25] |
Lu X, Hou E, Guo J, Gilliam FS, Li J, Tang S, Kuang Y (2021). Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta-analysis. Global Change Biology, 27, 2780-2792.
DOI PMID |
[26] | Luo QP, Gong JR, Xu S, Baoyin T, Wang YH, Zhai ZW, Pan Y, Liu M, Yang LL (2016). Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 480-492. |
[罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽 (2016). 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 40, 480-492.]
DOI |
|
[27] | Margit VL, Ingrid K, Klemens E, Heinz F, Georg G, Egbert M, Bernd M (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 39, 2183-2207. |
[28] | Martin JC, Mark BD (1996). Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biology & Biochemistry, 28, 1191-1199. |
[29] | Mohammat A (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China (Life Sciences), 53, 757-765. |
[30] | Moore TR, de Souza W, Koprivnjak JF (1992). Controls on the sorption of dissolved organic carbon by soils. Soil Science, 154, 120-129. |
[31] | Murphy DV, MacDonald AJ, Stockdale EA, Goulding KT, Fortune S, Gaunt JL, Poulton PR, Wakefield JA, Webster CP, Wilmer WS (2000). Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils, 30, 374-387. |
[32] | Nagamitsu M, Akira W, Makoto K (2004). Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil. Geoderma, 120, 309-323. |
[33] | Nahia G, Ander G, Agustín M, Inazio MDA (2009). Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biology & Biochemistry, 41, 1674-1683. |
[34] | Pirmoradian N, Sepaskhah AR, Hajabbasi MA (2005). Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engineering, 90, 227-234. |
[35] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[36] | Shen H, Cao ZH, Hu ZY (1999). Characteristics and ecological effects of the active organic carbon in soil. Chinese Journal of Ecology, 18, 32-38. |
[沈宏, 曹志洪, 胡正义 (1999). 土壤活性有机碳的表征及其生态效应. 生态学杂志, 18, 32-38.] | |
[37] | Song KC, Wang X, Xu DM, Li YK, Sa CN, Ma S (2022). Effects of short-term nitrogen addition on soil biological properties in desert steppe. Journal of Soil and Water Conservation, 36, 303-310. |
[宋珂辰, 王星, 许冬梅, 李永康, 撒春宁, 马霜 (2022). 短期氮添加对荒漠草原土壤微生物特征的影响. 水土保持学报, 36, 303-310.] | |
[38] | Su YJ (2018). Study on Soil Acidification Characteristics and Regulation Mechanism of Tea Gardens in Southern Anhui Province. Master degree dissertation, Zhejiang University, Hangzhou. 59. |
[苏有健 (2018). 皖南茶园土壤酸化特征及其调控机制的研究. 硕士学位论文, 浙江大学, 杭州. 59.] | |
[39] | Sun X, Zhang YM, Zhang LJ, Hu CS, Dong WX, Li XX, Wang YY, Liu XP, Xing L, Han J (2021). Effects of long-term exogenous organic material addition on the organic carbon composition of soil aggregates in farmlands of North China. Chinese Journal of Eco-Agriculture, 29, 1384-1396. |
[孙雪, 张玉铭, 张丽娟, 胡春胜, 董文旭, 李晓欣, 王玉英, 刘秀萍, 邢力, 韩建 (2021). 长期添加外源有机物料对华北农田土壤团聚体有机碳组分的影响. 中国生态农业学报(中英文), 29, 1384-1396.] | |
[40] | Suo WK, Yang JH, Hu CY, Feng SS, Tian XM (2023). Effect of nitrogen fertilizer and soil conditioner on soil carbon and nitrogen content, and oat yield. Chinese Journal of Eco-Agriculture, 31, 858-867. |
[索文康, 杨金翰, 胡晨阳, 冯莎莎, 田小明 (2023). 氮肥和调理剂对土壤碳氮含量及莜麦产量的影响. 中国生态农业学报(中英文), 31, 858-867.] | |
[41] | Tian L, Shi W (2014). Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biology and Fertility of Soils, 50, 785-794. |
[42] | Wang GL, Liu F (2014). Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient. Forest Ecology and Management, 334, 114-121. |
[43] | Wang JY, Song CC, Wang XW, Song YY (2012). Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, 96, 83-89. |
[44] | Wang W, Yang YS, Chen GS, Guo JF, Qian W (2008). Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China. Chinese Journal of Ecology, 27, 924-928. |
[汪伟, 杨玉盛, 陈光水, 郭剑芬, 钱伟 (2008). 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志, 27, 924-928.] | |
[45] | Wu NN, Filley TR, Bai E, Han SJ, Jiang P (2015). Incipient changes of lignin and substituted fatty acids under N addition in a Chinese forest soil. Organic Geochemistry, 79, 14-20. |
[46] | Xi D, Weng HD, Hu YL, Wu JP (2021). Effects of canopy nitrogen addition and understory removal on soil organic carbon fractions in a Chinese fir plantation. Acta Ecologica Sinica, 41, 8525-8534. |
[习丹, 翁浩东, 胡亚林, 吴建平 (2021). 林冠氮添加和林下植被去除对杉木林土壤有机碳组分的影响. 生态学报, 41, 8525-8534.] | |
[47] | Xiao Y, Huang ZG, Wu HT, Lyu XG (2015). Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China. Acta Ecologica Sinica, 35, 7625-7633. |
[肖烨, 黄志刚, 武海涛, 吕宪国 (2015). 三江平原不同湿地类型土壤活性有机碳组分及含量差异. 生态学报, 35, 7625-7633.] | |
[48] | Xu MG, Lou YL, Sun XL, Wang W, Baniyamuddin M, Zhao K (2011). Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils, 47, 745-752. |
[49] | Yang PL, Luo YP, Shi YC (1993). Soil fractal characteristics characterized by weight distribution of particle size. Chinese Science Bulletin, 20, 1896-1899. |
[杨培岭, 罗远培, 石元春 (1993). 用粒径的重量分布表征的土壤分形特征. 科学通报, 20, 1896-1899.] | |
[50] | Yang X, Wang D, Lan Y, Meng J, Jiang LL, Sun Q, Cao DY, Sun YY, Chen WF (2018). Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. Journal of Soils and Sediments, 18, 1569-1578. |
[51] | Yang YH, Zhang DY, Wei B, Liu Y, Feng XH, Mao C, Xu WJ, He M, Wang L, Zheng ZH, Wang YY, Chen LY, Peng YF (2023). Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 47, 1-24. |
[杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰 (2023). 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47, 1-24.] | |
[52] | Zhang J, Zhou J, Lambers H, Li Y, Li Y, Qin G, Wang M, Wang J, Li Z, Wang F (2022). Nitrogen and phosphorus addition exerted different influences on litter and soil carbon release in a tropical forest. Science of the Total Environment, 832, 155049. DOI: 10.1016/j.scitotenv.2022.155049. |
[53] | Zhang X, Ren HY, Kang J, Zhu Y, Li DH, Han GD (2021). Effects of warming and nitrogen addition on soil physical and chemical properties in desert steppe of Inner Mongolia. Chinese Journal of Grassland, 43(6), 17-24. |
[张欣, 任海燕, 康静, 朱毅, 李冬慧, 韩国栋 (2021). 增温和施氮对内蒙古荒漠草原土壤理化性质的影响. 中国草地学报, 43(6), 17-24.] | |
[54] | Zhang X, Wang Q, Gilliam FS, Bai W, Han X, Li L (2012). Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass and Forage Science, 67, 219-230. |
[55] | Zhang XL, Wang FC, Fang XM, He P, Zhang YF, Chen FS, Wang HM (2017). Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China. Chinese Journal of Applied Ecology, 28, 449-455. |
[张秀兰, 王方超, 方向民, 何平, 张宇飞, 陈伏生, 王辉民 (2017). 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应. 应用生态学报, 28, 449-455.]
DOI |
|
[56] |
Zhang YR, An H, Liu BR, Wen ZL, Wu XZ, Li QL, Du ZY (2019). Effects of short-term nitrogen and phosphorus addition on soil labile organic carbon in desert grassland. Acta Prataculturae Sinica, 28, 12-24.
DOI |
[张雅柔, 安慧, 刘秉儒, 文志林, 吴秀芝, 李巧玲, 杜忠毓 (2019). 短期氮磷添加对荒漠草原土壤活性有机碳的影响. 草业学报, 28, 12-24.]
DOI |
|
[57] |
Zhao X, Yu WT, Li JD, Jiang ZS (2006). Research advances in soil organic carbon and its fractions under different management patterns. Chinese Journal of Applied Ecology, 17, 2203-2209.
PMID |
[赵鑫, 宇万太, 李建东, 姜子绍 (2006). 不同经营管理条件下土壤有机碳及其组分研究进展. 应用生态学报, 17, 2203-2209.] | |
[58] | Zheng BZ (2013). Guidelines for Soil Analysis Techniques. China Agricultural Publishing House, Beijing. |
[郑必昭 (2013). 土壤分析技术指南. 中国农业出版社, 北京.] | |
[59] | Zhong X, Li J, Li X, Ye Y, Liu S, Hallett PD, Ogden MR, Naveed M (2017). Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma, 285, 323-332. |
[60] | Zhou GY, Wu YY (2016). Meta-analysis of effects of grazing on carbon pools in grassland ecosystems in different climatic regions. Acta Prataculturae Sinica, 25(10), 1-10. |
[周贵尧, 吴沿友 (2016). 放牧对草原生态系统不同气候区碳库影响的meta分析. 草业学报, 25(10), 1-10.]
DOI |
|
[61] | Zhou ZH, Wang CK, Jin Y (2017). Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biology and Fertility of Soils, 53, 397-406. |
[62] |
Zhu KH, Duan LX, Li YC, Li ZW (2021). Research progress of organic carbon in soil aggregates. Chinese Agricultural Science Bulletin, 37(21), 86-90.
DOI |
[朱锟恒, 段良霞, 李元辰, 李振炜 (2021). 土壤团聚体有机碳研究进展. 中国农学通报, 37(21), 86-90.]
DOI |
|
[63] | Zou XM, Ruan HH, Fu Y, Yang XD, Sha LQ (2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biology & Biochemistry, 37, 1923-1928. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[4] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[5] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[6] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[7] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[8] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[9] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[10] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[11] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[12] | XIA Ti-Ze, LI Lu-Shuang, YANG Han-Qi. Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense [J]. Chin J Plant Ecol, 2022, 46(7): 823-833. |
[13] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[14] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[15] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn