Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 790-798.DOI: 10.17521/cjpe.2021.0044
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
WU Yun-Tao1,2, YANG Sen1,2, WANG Xin1, HUANG Jun-Sheng1, WANG Bin1,2, LIU Wei-Xing1, LIU Ling-Li1,2,*()
Received:
2021-02-03
Accepted:
2021-03-30
Online:
2021-07-20
Published:
2021-10-22
Contact:
LIU Ling-Li ORCID:0000-0002-5696-3151
Supported by:
WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland[J]. Chin J Plant Ecol, 2021, 45(7): 790-798.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0044
Fig. 1 Effects of nitrogen (N) addition on aboveground biomass (AGB)(A), dissolved inorganic nitrogen (DIN) content (B), soil pH (C) and microbial biomass carbon (MBC) content (D)(mean ± SE). F and p are the results of one-way ANOVA. Different lowercase letters indicate significant difference among N addition levels (p < 0.05).
Fig. 2 Effects of nitrogen (N) addition on soil clay and silt (A) and sand (B) content (mean ± SE). F and p are the results of one-way ANOVA. Different lowercase letters indicate significant difference (p < 0.05) among different N addition levels.
Fig. 3 Effects of nitrogen (N) addition on soil carbon (C) content (A), soil N content (B) and soil C:N (C)(mean ± SE). F and p are the results of one-way ANOVA. Different lowercase letters indicate significant difference (p < 0.05) among different N addition levels.
Fig. 4 Effect of nitrogen (N) addition on the relative mass (A), carbon (C) content (B) and N content (C) of particulate organic matter (POM) and mineral associated organic matter (MAOM)(mean ± SE). F and p are the results of one-way ANOVA. Different lowercase letters indicate significant difference (p < 0.05) among different N addition levels.
Fig. 5 Relationships between the soil carbon (C) in different SOM fractions and nitrogen (N) addition rates (A), and soil clay and silt content (B); and relationships between the soil N in different SOM fractions and N addition rates (C), and soil clay and silt content (D). Solid and dashed lines represent significant (p < 0.05) and insignificant (p > 0.05) relationships, respectively. □, mineral associated organic matter (MAOM); △, particulate organic matter (POM).
响应变量 Response variable | 变量 Variable | 相关系数 Correlation coefficient | 标准误 Standard error | t | p |
---|---|---|---|---|---|
POM碳含量 C content in POM | 氮添加水平 N addition (g·m-2·a-1) | 0.022 | 0.028 | 0.793 | 0.446 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.013 | 0.187 | -0.068 | 0.947 | |
MAOM碳含量 C content in MAOM | 氮添加水平 N addition (g·m-2·a-1) | -0.043 | 0.019 | -2.287 | 0.045 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.396 | 0.126 | 3.145 | 0.010 | |
POM氮含量 N content in POM | 氮添加水平 N addition (g·m-2·a-1) | 0.014 | 0.003 | 4.045 | 0.002 |
黏粒与粉粒含量 Silt and sand clay content (%) | -0.030 | 0.021 | -2.086 | 0.182 | |
MAOM氮含量 N content in MAOM | 氮添加水平 N addition (g·m-2·a-1) | -0.002 | 0.001 | -1.408 | 0.162 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.035 | 0.010 | 3.586 | 0.005 |
Table 1 Summary of the generalized linear mixed model (GLMM) for the effects of nitrogen (N) addition and silt and clay content on the carbon (C) and N content in particulate organic matter (POM) and mineral associated organic matter (MAOM)
响应变量 Response variable | 变量 Variable | 相关系数 Correlation coefficient | 标准误 Standard error | t | p |
---|---|---|---|---|---|
POM碳含量 C content in POM | 氮添加水平 N addition (g·m-2·a-1) | 0.022 | 0.028 | 0.793 | 0.446 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.013 | 0.187 | -0.068 | 0.947 | |
MAOM碳含量 C content in MAOM | 氮添加水平 N addition (g·m-2·a-1) | -0.043 | 0.019 | -2.287 | 0.045 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.396 | 0.126 | 3.145 | 0.010 | |
POM氮含量 N content in POM | 氮添加水平 N addition (g·m-2·a-1) | 0.014 | 0.003 | 4.045 | 0.002 |
黏粒与粉粒含量 Silt and sand clay content (%) | -0.030 | 0.021 | -2.086 | 0.182 | |
MAOM氮含量 N content in MAOM | 氮添加水平 N addition (g·m-2·a-1) | -0.002 | 0.001 | -1.408 | 0.162 |
黏粒与粉粒含量 Silt and sand clay content (%) | 0.035 | 0.010 | 3.586 | 0.005 |
响应变量 Response variable | 因子 Factor | 模型Model | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
POM氮含量 N content in POM | 常数项 Constant term | 1.770 | 1.697 | 0.090 | - |
地上生物量 Aboveground biomass | 0.003 | 0.002 | 0.003 | - | |
微生物生物量碳含量 Microbial biomass carbon content | 0.002 | - | - | - | |
C:N | -1.111 | -0.067 | - | - | |
赤池信息准则 Akaike information criterion | 24.90 | 21.95 | 17.66 | - | |
MAOM氮含量 N content in MAOM | 常数项 Constant term | 1.202 | 1.451 | 0.762 | 0.702 |
黏粒与粉粒含量 Silt and clay content | 0.031 | 0.029 | 0.036 | 0.030 | |
微生物生物量碳含量 Microbial biomass carbon content | -0.002 | -0.001 | - | - | |
异养呼吸速率 Heterotrophic respiration rate | 0.375 | - | - | - | |
地上生物量 Aboveground biomass | -0.002 | -0.002 | -0.001 | - | |
赤池信息准则 Akaike information criterion | 5.92 | 5.17 | 3.01 | 2.30 |
Table 2 Summary of the best corrected Akaike Information Criterion (AICc)-selected models for the nitrogen (N) content in particulate organic matter (POM) and mineral associated organic matter (MAOM)
响应变量 Response variable | 因子 Factor | 模型Model | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
POM氮含量 N content in POM | 常数项 Constant term | 1.770 | 1.697 | 0.090 | - |
地上生物量 Aboveground biomass | 0.003 | 0.002 | 0.003 | - | |
微生物生物量碳含量 Microbial biomass carbon content | 0.002 | - | - | - | |
C:N | -1.111 | -0.067 | - | - | |
赤池信息准则 Akaike information criterion | 24.90 | 21.95 | 17.66 | - | |
MAOM氮含量 N content in MAOM | 常数项 Constant term | 1.202 | 1.451 | 0.762 | 0.702 |
黏粒与粉粒含量 Silt and clay content | 0.031 | 0.029 | 0.036 | 0.030 | |
微生物生物量碳含量 Microbial biomass carbon content | -0.002 | -0.001 | - | - | |
异养呼吸速率 Heterotrophic respiration rate | 0.375 | - | - | - | |
地上生物量 Aboveground biomass | -0.002 | -0.002 | -0.001 | - | |
赤池信息准则 Akaike information criterion | 5.92 | 5.17 | 3.01 | 2.30 |
Fig. 6 A schematic representation of the structural equation modeling (SEM) analysis used to identify the controls of soil nitrogen (N) content in particulate organic matter (POM)(A) and mineral associated organic matter (MAOM)(B) under N addition. Results of the model fitting were: POMN, X2 = 0.480, p = 0.787, comparative fit index (CFI) = 1.000, root-mean-square (RMSEA) < 0.001; MAOMN, X2 = 2.856, p = 0.414, CFI = 1.000, RMSEA < 0.001. Solid and dashed arrows represent significant effect (p < 0.05) and insignificant effect (p > 0.05), respectively. Number adjacent to the arrows refer to the standardized path coefficients. AGB, aboveground biomass; DIN, dissolved inorganic nitrogen; MBC, microbial biomass carbon.
[1] |
Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997). An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology & Biochemistry, 29, 1023-1032.
DOI URL |
[2] |
Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil-nitrogen-A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[3] |
Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21, 3200-3209.
DOI PMID |
[4] |
Christensen BT (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52, 345-353.
DOI URL |
[5] |
Diao LW, Li P, Liu WX, Xu S, Qiao CL, Zeng H, Liu LL (2018). Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland. Chinese Journal of Plant Ecology, 42, 818-830.
DOI |
[ 刁励玮, 李平, 刘卫星, 徐姗, 乔春连, 曾辉, 刘玲莉 (2018). 草地生态系统生物量在不同气候及多时间尺度上对氮添加和增雨处理的响应. 植物生态学报, 42, 818-830.]
DOI |
|
[6] |
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796.
DOI URL |
[7] |
Forthofer RN, Lee ES (1996). Introduction to biostatistics: a guide to design, analysis, and discovery. Biometrics, 52, 378. DOI: 10.2307/2533181.
DOI |
[8] |
Francesca Cotrufo M, Ranalli MG, Haddix ML, Six J, Lugato E (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994.
DOI |
[9] |
Francesca Cotrufo M, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI |
[10] |
Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry, 121, 305-316.
DOI URL |
[11] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[12] |
Hassink J (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191, 77-87.
DOI URL |
[13] | Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015). Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1-140. |
[14] |
Kuzyakov Y, Xu XL (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656-669.
DOI PMID |
[15] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[16] |
Liu LL, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.
DOI URL |
[17] | Liu MQ, Hu F, Chen XY (2007). A review on mechanisms of soil organic carbon stabilization. Acta Ecologica Sinica, 27, 2642-2650. |
[ 刘满强, 胡锋, 陈小云 (2007). 土壤有机碳稳定机制研究进展. 生态学报, 27, 2642-2650.] | |
[18] |
Liu WX, Qiao CL, Yang S, Bai WM, Liu LL (2018). Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma, 332, 37-44.
DOI URL |
[19] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI URL |
[20] |
Meyer S, Leifeld J, Bahn M, Fuhrer J (2012). Free and protected soil organic carbon dynamics respond differently to abandonment of mountain grassland. Biogeosciences, 9, 853-865.
DOI URL |
[21] |
Mikutta R, Kaiser K (2011). Organic matter bound to mineral surfaces: resistance to chemical and biological oxidation. Soil Biology & Biochemistry, 43, 1738-1741.
DOI URL |
[22] |
Mikutta R, Turner S, Schippers A, Gentsch N, Meyer-Stüve S, Condron LM, Peltzer DA, Richardson SJ, Eger A, Hempel G, Kaiser K, Klotzbücher T, Guggenberger G (2019). Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. Scientific Reports, 9, 10294. DOI: 10.1038/s41598-019-46501-4.
DOI PMID |
[23] |
Näsholm T, Kielland K, Ganeteg U (2009). Uptake of organic nitrogen by plants. New Phytologist, 182, 31-48.
DOI PMID |
[24] |
Niu SL, Classen AT, Dukes JS, Kardol P, Liu LL, Luo YQ, Rustad L, Sun J, Tang JW, Templer PH, Thomas RQ, Tian DS, Vicca S, Wang YP, Xia JY, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709.
DOI URL |
[25] |
Pribyl DW (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75-83.
DOI URL |
[26] |
Riggs CE, Hobbie SE, Bach EM, Hofmockel KS, Kazanski CE (2015). Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry, 125, 203-219.
DOI URL |
[27] |
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
DOI URL |
[28] |
Six J, Callewaert P, Lenders S, de Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66, 1981-1987.
DOI URL |
[29] |
Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231.
DOI URL |
[30] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[31] |
von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 39, 2183-2207.
DOI URL |
[32] |
Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X (2013). Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19, 3688-3697.
DOI URL |
[33] |
Wiesmeier M, Munro S, Barthold F, Steffens M, Schad P, Kögel-Knabner I (2015). Carbon storage capacity of semi-arid grassland soils and sequestration potentials in Northern China. Global Change Biology, 21, 3836-3845.
DOI PMID |
[34] |
Yang S, Liu WX, Qiao CL, Wang J, Deng MF, Zhang BB, Liu LL (2019). The decline in plant biodiversity slows down soil carbon turnover under increasing nitrogen deposition in a temperate steppe. Functional Ecology, 33, 1362-1372.
DOI |
[35] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI URL |
[36] |
Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI URL |
[37] |
Zhang Y, Zheng LX, Liu XJ, Jickells T, Neil Cape J, Goulding K, Fangmeier A, Zhang FS (2008). Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 42, 1035-1041.
DOI URL |
[1] | Lai-Cong LUO Xiao-Qin LAI Jian BAI Ai-Xin LI Hai-Fu FANG Ming TANG dong-nan hu Liang ZHANG. Effects of soil bacteria and fungi on the growth characteristics of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[3] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[4] | Yuan-Lin LUO Wenhong Ma ZHANG XinYu Chuang SU Ya-Bo SHI Li-Qing ZHAO. Variation of functional traits of alternative distributed Caragana species along environmental gradients in Nei Mongol [J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375. |
[5] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[6] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[7] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[8] | XU Xiao-Hui, DIAO Hua-Jie, QIN Chu-Yi, HAO Jie, SHEN Yan, DONG Kuan-Hu, WANG Chang-Hui. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(1): 85-95. |
[9] | YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis [J]. Chin J Plant Ecol, 2020, 44(9): 939-950. |
[10] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[11] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[12] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[13] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[14] | LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184. |
[15] | FENG Hui-Fang, LIU Luo-Yu, XUE Li. Effects of nitrogen and phosphorus additions and stand density on soil chemical property in Acacia auriculiformis stands [J]. Chin J Plant Ecol, 2019, 43(11): 1010-1020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn