Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (11): 1364-1375.DOI: 10.17521/cjpe.2021.0491
• Research Articles • Previous Articles Next Articles
LUO Yuan-Lin1, MA Wen-Hong1,2,*(), ZHANG Xin-Yu1, SU Chuang1, SHI Ya-Bo1, ZHAO Li-Qing1,2
Received:
2021-12-27
Accepted:
2022-06-23
Online:
2022-11-20
Published:
2022-07-06
Contact:
*MA Wen-Hong(whma@imu.edu.cn)
Supported by:
LUO Yuan-Lin, MA Wen-Hong, ZHANG Xin-Yu, SU Chuang, SHI Ya-Bo, ZHAO Li-Qing. Variation of functional traits of alternative distribution of Caragana species along environmental gradients in Nei Mongol, China[J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0491
Fig. 1 Distribution map of observation sites (A) and geographical range of observation sites (B) of Caragana species in Nei Mongol. Black solid points in B represent the average latitude and longitude of the site locations of different species of Caragana species. Cb, C. brachypoda; Ci, C. intermedia; Cj, C. jubata; Ck, C. korshinskii; Cm, C. microphylla; Cp, C. pygmaea; Cr, C. roborovskyi; Cs, C. stenophylla; Ct, C. tibetica.
物种 Species | 干燥度指数范围 Aridity index range | 土壤氮含量范围 Soil nitrogen content range (mg·g-1) | 土壤pH范围 Soil pH range | 样点数 Sample number |
---|---|---|---|---|
矮脚锦鸡儿 C. brachypoda | 0.17-0.33 | 0.2-0.5 | 8.49-8.90 | 5 |
毛刺锦鸡儿 C. tibetica | 0.25-0.43 | 0.3-3.2 | 8.55-8.86 | 4 |
荒漠锦鸡儿 C. roborovskyi | 0.31-0.45 | 0.7-3.7 | 8.07-8.78 | 2 |
矮锦鸡儿 C. pygmaea | 0.30-0.49 | 0.3-0.3 | 8.69-8.87 | 3 |
柠条锦鸡儿 C. korshinskii | 0.15-0.75 | 0.2-1.3 | 8.01-9.12 | 12 |
狭叶锦鸡儿 C. stenophylla | 0.22-0.69 | 0.5-1.2 | 8.54-8.57 | 4 |
中间锦鸡儿 C. intermedia | 0.30-0.59 | 0.3-3.0 | 8.62-8.87 | 5 |
小叶锦鸡儿 C. microphylla | 0.52-0.75 | 0.3-4.4 | 6.39-8.57 | 10 |
鬼箭锦鸡儿 C. jubata | 0.88 | 6.3 | 7.17 | 1 |
Table 1 Caragana species in Nei Mongol, China
物种 Species | 干燥度指数范围 Aridity index range | 土壤氮含量范围 Soil nitrogen content range (mg·g-1) | 土壤pH范围 Soil pH range | 样点数 Sample number |
---|---|---|---|---|
矮脚锦鸡儿 C. brachypoda | 0.17-0.33 | 0.2-0.5 | 8.49-8.90 | 5 |
毛刺锦鸡儿 C. tibetica | 0.25-0.43 | 0.3-3.2 | 8.55-8.86 | 4 |
荒漠锦鸡儿 C. roborovskyi | 0.31-0.45 | 0.7-3.7 | 8.07-8.78 | 2 |
矮锦鸡儿 C. pygmaea | 0.30-0.49 | 0.3-0.3 | 8.69-8.87 | 3 |
柠条锦鸡儿 C. korshinskii | 0.15-0.75 | 0.2-1.3 | 8.01-9.12 | 12 |
狭叶锦鸡儿 C. stenophylla | 0.22-0.69 | 0.5-1.2 | 8.54-8.57 | 4 |
中间锦鸡儿 C. intermedia | 0.30-0.59 | 0.3-3.0 | 8.62-8.87 | 5 |
小叶锦鸡儿 C. microphylla | 0.52-0.75 | 0.3-4.4 | 6.39-8.57 | 10 |
鬼箭锦鸡儿 C. jubata | 0.88 | 6.3 | 7.17 | 1 |
变异来源 Source of variation | h | LDMC | SLA | STD | LA | LNC | LPC | N:P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | |
AI | 24.70 | 31.06*** | 32.72 | 40.80*** | 21.57 | 33.68*** | 16.61 | 29.76*** | 87.13 | 67.39*** | 20.45 | 31.80*** | 16.69 | 34.89*** | 2.77 | 8.42 |
SN | 15.70 | 19.74*** | 6.99 | 8.71* | 5.61 | 8.76* | 8.41 | 15.07** | 0.26 | 0.20 | 14.93 | 23.21*** | 0.82 | 1.72 | 1.17 | 3.54 |
SpH | 0.00 | 0.00 | 2.26 | 2.81 | 0.26 | 0.40 | 0.87 | 1.56 | 0.20 | 0.15 | 0.32 | 0.50 | 0.24 | 0.51 | 0.00 | 0.00 |
AI × SN | 1.10 | 1.38 | 2.21 | 2.76 | 0.38 | 0.60 | 0.32 | 0.57 | 7.74 | 5.99** | 2.49 | 3.87 | 0.63 | 1.32 | 0.03 | 0.08 |
AI × SpH | 1.17 | 1.47 | 1.38 | 1.72 | 2.52 | 3.94 | 0.04 | 0.07 | 0.79 | 0.61 | 0.07 | 0.11 | 1.18 | 2.48 | 3.25 | 9.85 |
SN × SpH | 0.28 | 0.35 | 0.01 | 0.02 | 0.18 | 0.28 | 0.39 | 0.70 | 0.60 | 0.46 | 0.25 | 0.39 | 0.17 | 0.35 | 0.01 | 0.03 |
AI × SN × SpH | 4.59 | 5.77* | 2.62 | 3.27 | 1.54 | 2.40 | 0.18 | 0.32 | 0.58 | 0.45 | 0.81 | 1.25 | 0.09 | 0.20 | 0.73 | 2.20 |
Table 2 Source of variation in plant function traits for Caragana species in Nei Mongol, China
变异来源 Source of variation | h | LDMC | SLA | STD | LA | LNC | LPC | N:P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | |
AI | 24.70 | 31.06*** | 32.72 | 40.80*** | 21.57 | 33.68*** | 16.61 | 29.76*** | 87.13 | 67.39*** | 20.45 | 31.80*** | 16.69 | 34.89*** | 2.77 | 8.42 |
SN | 15.70 | 19.74*** | 6.99 | 8.71* | 5.61 | 8.76* | 8.41 | 15.07** | 0.26 | 0.20 | 14.93 | 23.21*** | 0.82 | 1.72 | 1.17 | 3.54 |
SpH | 0.00 | 0.00 | 2.26 | 2.81 | 0.26 | 0.40 | 0.87 | 1.56 | 0.20 | 0.15 | 0.32 | 0.50 | 0.24 | 0.51 | 0.00 | 0.00 |
AI × SN | 1.10 | 1.38 | 2.21 | 2.76 | 0.38 | 0.60 | 0.32 | 0.57 | 7.74 | 5.99** | 2.49 | 3.87 | 0.63 | 1.32 | 0.03 | 0.08 |
AI × SpH | 1.17 | 1.47 | 1.38 | 1.72 | 2.52 | 3.94 | 0.04 | 0.07 | 0.79 | 0.61 | 0.07 | 0.11 | 1.18 | 2.48 | 3.25 | 9.85 |
SN × SpH | 0.28 | 0.35 | 0.01 | 0.02 | 0.18 | 0.28 | 0.39 | 0.70 | 0.60 | 0.46 | 0.25 | 0.39 | 0.17 | 0.35 | 0.01 | 0.03 |
AI × SN × SpH | 4.59 | 5.77* | 2.62 | 3.27 | 1.54 | 2.40 | 0.18 | 0.32 | 0.58 | 0.45 | 0.81 | 1.25 | 0.09 | 0.20 | 0.73 | 2.20 |
Fig. 2 Relationships between functional traits of Caragana species and aridity index in Nei Mongol, China. h, height; LA, leaf area; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area; STD, stem tissue density.
Fig. 3 Relationships between functional traits of Caragana species and soil nitrogen content in Nei Mongol. h, height; LA, leaf area; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area; STD, stem tissue density.
x | y | 锦鸡儿属 C. species | 矮锦鸡儿 C. pygmaea | 矮脚锦鸡儿 C. brachypoda | 鬼箭锦鸡儿 C. jubata | 荒漠锦鸡儿 C. roborovskyi | 毛刺锦鸡儿 C. tibetica | 柠条锦鸡儿 C. korshinskii | 狭叶锦鸡儿 C. stenophylla | 小叶锦鸡儿 C. microphylla | 中间锦鸡儿 C. intermedia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | ||
h | LDMC | -0.31*** | 0.21 | 0.61 | -1.40 | 0.50* | -1.03 | -0.39 | 0.29 | -0.15** | -0.04 | -0.39 | 0.16 | -0.56*** | 0.80 | 0.86 | -1.66 | -0.45*** | 0.52 | -0.26 | 0.19 |
SLA | 0.33*** | 1.45 | 0.75 | 0.70 | -0.47 | 2.69 | 0.70 | 0.81 | -0.18* | 2.27 | -0.51 | 2.43 | 0.69*** | 0.62 | -0.79 | 3.24 | 0.54*** | 1.00 | 0.23** | 1.56 | |
STD | -0.43*** | 0.52 | -1.40 | 2.33 | 0.43 | -0.76 | -0.49 | 0.69 | 0.21 | -0.55 | -0.23 | -0.02 | -0.75** | 1.29 | 0.95 | -1.74 | -0.65*** | 0.97 | -0.83 | 1.16 | |
LA | 0.64*** | -1.83 | 1.02 | -2.71 | 0.51 | -1.75 | -0.89 | 1.60 | 0.24* | -1.10 | 0.64* | -1.53 | 0.98*** | -2.64 | 0.42 | -1.66 | 0.38** | -1.21 | 0.47 | -1.36 | |
LNC | 0.25*** | 1.06 | 0.68 | 0.37 | 0.19 | 1.15 | 0.38 | 0.77 | -0.10** | 1.49 | 0.17 | 1.16 | 0.42* | 0.65 | -0.54 | 2.41 | 0.26*** | 1.04 | 0.20 | 1.12 | |
LPC | 0.37*** | -0.55 | 1.14 | -1.76 | -0.46 | 0.72 | 0.79 | -1.27 | 0.51 | -0.65 | 0.41** | -0.44 | 0.88*** | -1.74 | -0.80 | 1.45 | 0.36*** | -0.55 | 0.44 | -0.71 | |
N:P | -0.26 | 1.82 | -0.75 | 2.65 | 0.45 | 0.72 | -0.60 | 2.44 | -0.55 | 2.06 | -0.33** | 1.69 | -0.58*** | 2.64 | 0.31 | 0.87 | -0.23 | 1.84 | 0.38 | 0.74 | |
LDMC | SLA | -1.07*** | 1.67 | -1.24 | 1.58 | -0.95*** | 1.71 | -1.79 | 1.33 | 1.21 | 2.32 | -1.28 | 1.67 | -1.23*** | 1.60 | -0.92 | 1.71 | -1.20*** | 1.62 | -0.87 | 1.72 |
STD | 1.32*** | 0.20 | 2.23 | 0.64 | -0.85 | -0.41 | -1.26 | -0.90 | -0.75 | -0.41 | -0.49 | -0.31 | 1.33*** | 0.22 | 1.11 | 0.11 | 1.35*** | 0.20 | 3.19 | 0.55 | |
LA | -2.07*** | -1.39 | 1.69 | -0.34 | -1.03 | -1.32 | -2.27 | -1.26 | -1.61* | -1.16 | -1.51 | -1.24 | -1.74*** | -1.26 | 0.49 | -0.85 | -0.83* | -0.78 | 1.79 | -0.06 | |
LNC | -0.86*** | 1.21 | -1.13 | 1.18 | -0.37 | 1.31 | -0.98 | 1.05 | 0.66** | 1.51 | -0.43 | 1.24 | -0.74*** | 1.23 | -0.64*** | 1.35 | -0.75*** | 1.27 | -0.77 | 1.27 | |
LPC | -1.32*** | -0.33 | -1.88** | -0.43 | -0.91* | -0.22 | -2.01 | -0.69 | -3.36 | -0.78 | -1.04 | -0.27 | -1.69*** | -0.55 | -0.94*** | -0.11 | -1.06** | -0.22 | 1.69 | 0.52 | |
N:P | 0.88*** | 1.67 | 1.23** | 1.77 | 0.90 | 1.64 | 1.54 | 2.00 | 3.66 | 2.21 | 0.83 | 1.56 | 1.04*** | 1.83 | 0.37*** | 1.48 | 0.68 | 1.63 | -1.46 | 1.02 | |
SLA | STD | -1.21*** | 2.22 | -1.84 | 3.57 | 0.90 | -1.94 | -0.70 | 1.26 | -0.28 | 0.36 | 0.34 | -0.89 | -1.08*** | 1.96 | 1.21 | -2.57 | -1.13** | 2.03 | -3.66 | 6.85 |
LNC | 0.82*** | -0.18 | 0.91 | -0.26 | 0.39 | 0.64 | 0.55 | 0.33 | 0.55 | 0.24 | -0.34 | 1.99 | 0.59*** | 0.30 | -0.70 | 2.91 | 0.69* | 0.11 | 0.89* | -0.26 | |
LPC | 1.25*** | -2.42 | 1.51 | -2.81 | 0.96 | -1.87 | 1.12 | -2.18 | 2.79 | -5.58 | -0.81 | 1.53 | 1.31*** | -2.62 | -1.03 | 2.19 | 0.99* | -1.87 | 1.95* | -3.74 | |
N:P | -0.85*** | 3.09 | -1.00 | 3.34 | -0.94 | 3.25 | 0.86 | -0.64 | -3.04 | 7.44 | 0.64 | 0.13 | -0.83*** | 3.14 | -0.40 | 2.16 | -0.63 | 2.68 | -1.67 | 4.68 | |
STD | LA | -1.62*** | -1.11 | 0.75 | -0.84 | 1.20 | -0.83 | 1.80 | 0.36 | 2.33 | -0.25 | -1.46 | -1.32 | -1.31** | -0.96 | 0.44 | -0.90 | -0.63 | -0.67 | 0.56 | -0.37 |
LNC | -0.57** | 1.35 | 0.49 | 1.62 | -0.44 | 1.36 | -0.78 | 1.31 | -0.58 | 1.21 | 0.64 | 1.46 | -0.54* | 1.36 | -0.57 | 1.42 | -0.37 | 1.43 | 0.24 | 1.55 | |
LPC | -0.92* | -0.12 | 0.85 | 0.33 | 1.07 | 0.22 | -1.60 | -0.17 | -12.72 | -2.28 | 1.85 | 0.31 | -1.16** | -0.25 | -0.85 | 0 | -0.56 | -0.01 | 0.53 | 0.23 | |
N:P | 0.62 | 1.54 | 0.55 | 1.41 | -1.05 | 1.21 | 1.23 | 1.60 | 12.63 | 3.58 | -1.54 | 1.08 | 0.75* | 1.65 | -0.33 | 1.31 | 0.36 | 1.50 | -0.46 | 1.27 | |
LA | LNC | 0.38*** | 1.76 | 0.67 | 2.19 | 0.36 | 1.78 | 0.43 | 1.60 | -0.41* | 1.03 | 0.27 | 1.58 | 0.44*** | 1.78 | 1.29 | 2.81 | 0.74* | 1.88 | 0.43 | 1.71 |
LPC | 0.57*** | 0.51 | 1.11 | 1.26 | 0.89 | 0.96 | -0.89 | 0.14 | 2.09 | 1.65 | 0.65* | 0.55 | 0.87*** | 0.59 | 1.91 | 2.04 | 1.05 | 0.65 | 0.94* | 0.57 | |
N:P | -0.39* | 1.10 | 0.73 | 2.02 | 0.87 | 2.24 | 0.68 | 1.36 | -2.28 | -0.44 | -0.51 | 0.91 | -0.61*** | 1.06 | -0.74 | 0.64 | -0.67 | 1.08 | -0.81* | 0.97 | |
LNC | LPC | 1.56*** | -2.21 | 1.66** | -2.38 | 2.46 | -3.44 | 2.05 | -2.86 | -5.05 | 6.87 | 2.40** | -3.24 | 2.24*** | -3.31 | 1.48*** | -2.11 | 1.42*** | -2.03 | 2.19* | -3.17 |
Table 3 Correlations of traits for Caragana species in Nei Mongol, China
x | y | 锦鸡儿属 C. species | 矮锦鸡儿 C. pygmaea | 矮脚锦鸡儿 C. brachypoda | 鬼箭锦鸡儿 C. jubata | 荒漠锦鸡儿 C. roborovskyi | 毛刺锦鸡儿 C. tibetica | 柠条锦鸡儿 C. korshinskii | 狭叶锦鸡儿 C. stenophylla | 小叶锦鸡儿 C. microphylla | 中间锦鸡儿 C. intermedia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | 斜率 Slope | 截距 Intercept | ||
h | LDMC | -0.31*** | 0.21 | 0.61 | -1.40 | 0.50* | -1.03 | -0.39 | 0.29 | -0.15** | -0.04 | -0.39 | 0.16 | -0.56*** | 0.80 | 0.86 | -1.66 | -0.45*** | 0.52 | -0.26 | 0.19 |
SLA | 0.33*** | 1.45 | 0.75 | 0.70 | -0.47 | 2.69 | 0.70 | 0.81 | -0.18* | 2.27 | -0.51 | 2.43 | 0.69*** | 0.62 | -0.79 | 3.24 | 0.54*** | 1.00 | 0.23** | 1.56 | |
STD | -0.43*** | 0.52 | -1.40 | 2.33 | 0.43 | -0.76 | -0.49 | 0.69 | 0.21 | -0.55 | -0.23 | -0.02 | -0.75** | 1.29 | 0.95 | -1.74 | -0.65*** | 0.97 | -0.83 | 1.16 | |
LA | 0.64*** | -1.83 | 1.02 | -2.71 | 0.51 | -1.75 | -0.89 | 1.60 | 0.24* | -1.10 | 0.64* | -1.53 | 0.98*** | -2.64 | 0.42 | -1.66 | 0.38** | -1.21 | 0.47 | -1.36 | |
LNC | 0.25*** | 1.06 | 0.68 | 0.37 | 0.19 | 1.15 | 0.38 | 0.77 | -0.10** | 1.49 | 0.17 | 1.16 | 0.42* | 0.65 | -0.54 | 2.41 | 0.26*** | 1.04 | 0.20 | 1.12 | |
LPC | 0.37*** | -0.55 | 1.14 | -1.76 | -0.46 | 0.72 | 0.79 | -1.27 | 0.51 | -0.65 | 0.41** | -0.44 | 0.88*** | -1.74 | -0.80 | 1.45 | 0.36*** | -0.55 | 0.44 | -0.71 | |
N:P | -0.26 | 1.82 | -0.75 | 2.65 | 0.45 | 0.72 | -0.60 | 2.44 | -0.55 | 2.06 | -0.33** | 1.69 | -0.58*** | 2.64 | 0.31 | 0.87 | -0.23 | 1.84 | 0.38 | 0.74 | |
LDMC | SLA | -1.07*** | 1.67 | -1.24 | 1.58 | -0.95*** | 1.71 | -1.79 | 1.33 | 1.21 | 2.32 | -1.28 | 1.67 | -1.23*** | 1.60 | -0.92 | 1.71 | -1.20*** | 1.62 | -0.87 | 1.72 |
STD | 1.32*** | 0.20 | 2.23 | 0.64 | -0.85 | -0.41 | -1.26 | -0.90 | -0.75 | -0.41 | -0.49 | -0.31 | 1.33*** | 0.22 | 1.11 | 0.11 | 1.35*** | 0.20 | 3.19 | 0.55 | |
LA | -2.07*** | -1.39 | 1.69 | -0.34 | -1.03 | -1.32 | -2.27 | -1.26 | -1.61* | -1.16 | -1.51 | -1.24 | -1.74*** | -1.26 | 0.49 | -0.85 | -0.83* | -0.78 | 1.79 | -0.06 | |
LNC | -0.86*** | 1.21 | -1.13 | 1.18 | -0.37 | 1.31 | -0.98 | 1.05 | 0.66** | 1.51 | -0.43 | 1.24 | -0.74*** | 1.23 | -0.64*** | 1.35 | -0.75*** | 1.27 | -0.77 | 1.27 | |
LPC | -1.32*** | -0.33 | -1.88** | -0.43 | -0.91* | -0.22 | -2.01 | -0.69 | -3.36 | -0.78 | -1.04 | -0.27 | -1.69*** | -0.55 | -0.94*** | -0.11 | -1.06** | -0.22 | 1.69 | 0.52 | |
N:P | 0.88*** | 1.67 | 1.23** | 1.77 | 0.90 | 1.64 | 1.54 | 2.00 | 3.66 | 2.21 | 0.83 | 1.56 | 1.04*** | 1.83 | 0.37*** | 1.48 | 0.68 | 1.63 | -1.46 | 1.02 | |
SLA | STD | -1.21*** | 2.22 | -1.84 | 3.57 | 0.90 | -1.94 | -0.70 | 1.26 | -0.28 | 0.36 | 0.34 | -0.89 | -1.08*** | 1.96 | 1.21 | -2.57 | -1.13** | 2.03 | -3.66 | 6.85 |
LNC | 0.82*** | -0.18 | 0.91 | -0.26 | 0.39 | 0.64 | 0.55 | 0.33 | 0.55 | 0.24 | -0.34 | 1.99 | 0.59*** | 0.30 | -0.70 | 2.91 | 0.69* | 0.11 | 0.89* | -0.26 | |
LPC | 1.25*** | -2.42 | 1.51 | -2.81 | 0.96 | -1.87 | 1.12 | -2.18 | 2.79 | -5.58 | -0.81 | 1.53 | 1.31*** | -2.62 | -1.03 | 2.19 | 0.99* | -1.87 | 1.95* | -3.74 | |
N:P | -0.85*** | 3.09 | -1.00 | 3.34 | -0.94 | 3.25 | 0.86 | -0.64 | -3.04 | 7.44 | 0.64 | 0.13 | -0.83*** | 3.14 | -0.40 | 2.16 | -0.63 | 2.68 | -1.67 | 4.68 | |
STD | LA | -1.62*** | -1.11 | 0.75 | -0.84 | 1.20 | -0.83 | 1.80 | 0.36 | 2.33 | -0.25 | -1.46 | -1.32 | -1.31** | -0.96 | 0.44 | -0.90 | -0.63 | -0.67 | 0.56 | -0.37 |
LNC | -0.57** | 1.35 | 0.49 | 1.62 | -0.44 | 1.36 | -0.78 | 1.31 | -0.58 | 1.21 | 0.64 | 1.46 | -0.54* | 1.36 | -0.57 | 1.42 | -0.37 | 1.43 | 0.24 | 1.55 | |
LPC | -0.92* | -0.12 | 0.85 | 0.33 | 1.07 | 0.22 | -1.60 | -0.17 | -12.72 | -2.28 | 1.85 | 0.31 | -1.16** | -0.25 | -0.85 | 0 | -0.56 | -0.01 | 0.53 | 0.23 | |
N:P | 0.62 | 1.54 | 0.55 | 1.41 | -1.05 | 1.21 | 1.23 | 1.60 | 12.63 | 3.58 | -1.54 | 1.08 | 0.75* | 1.65 | -0.33 | 1.31 | 0.36 | 1.50 | -0.46 | 1.27 | |
LA | LNC | 0.38*** | 1.76 | 0.67 | 2.19 | 0.36 | 1.78 | 0.43 | 1.60 | -0.41* | 1.03 | 0.27 | 1.58 | 0.44*** | 1.78 | 1.29 | 2.81 | 0.74* | 1.88 | 0.43 | 1.71 |
LPC | 0.57*** | 0.51 | 1.11 | 1.26 | 0.89 | 0.96 | -0.89 | 0.14 | 2.09 | 1.65 | 0.65* | 0.55 | 0.87*** | 0.59 | 1.91 | 2.04 | 1.05 | 0.65 | 0.94* | 0.57 | |
N:P | -0.39* | 1.10 | 0.73 | 2.02 | 0.87 | 2.24 | 0.68 | 1.36 | -2.28 | -0.44 | -0.51 | 0.91 | -0.61*** | 1.06 | -0.74 | 0.64 | -0.67 | 1.08 | -0.81* | 0.97 | |
LNC | LPC | 1.56*** | -2.21 | 1.66** | -2.38 | 2.46 | -3.44 | 2.05 | -2.86 | -5.05 | 6.87 | 2.40** | -3.24 | 2.24*** | -3.31 | 1.48*** | -2.11 | 1.42*** | -2.03 | 2.19* | -3.17 |
h | LDMC | SLA | STD | LA | LNC | LPC | N:P | |
---|---|---|---|---|---|---|---|---|
种内变异 Intraspecies variation | 46.11% | 20.42% | 25.91% | 26.05% | 26.49% | 14.26% | 29.82% | 21.19% |
种间变异 Interspecies variation | 70.54% | 20.55% | 21.36% | 19.66% | 75.46% | 19.59% | 22.89% | 12.72% |
Table 4 Intra- and interspecies variation coefficient for Caragana species functional traits in Nei Mongol, China
h | LDMC | SLA | STD | LA | LNC | LPC | N:P | |
---|---|---|---|---|---|---|---|---|
种内变异 Intraspecies variation | 46.11% | 20.42% | 25.91% | 26.05% | 26.49% | 14.26% | 29.82% | 21.19% |
种间变异 Interspecies variation | 70.54% | 20.55% | 21.36% | 19.66% | 75.46% | 19.59% | 22.89% | 12.72% |
Fig. 4 Relationships between traits of Caragana species in Nei Mongol, China. Solid line represents p < 0.05, and dashed line represents p ≥ 0.05. h, height; LA, leaf area; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area; STD, stem tissue density.
[1] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
DOI URL |
[2] |
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734-744.
DOI PMID |
[3] |
Blumenthal DM, Mueller KE, Kray JA, Ocheltree TW, Augustine DJ, Wilcox KR (2020). Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology, 108, 2336-2351.
DOI URL |
[4] |
Bowsher AW, Mason CM, Goolsby EW, Donovan LA (2016). Fine root tradeoffs between nitrogen concentration and xylem vessel traits preclude unified whole-plant resource strategies in Helianthus. Ecology and Evolution, 6, 1016-1031.
DOI PMID |
[5] | Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F, Kattge J, Pillar VD, Schrodt F, Mahecha MD, Peet RK, et al. (2018). Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2, 1906-1917. |
[6] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[7] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Maranon T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 271, 87-199. |
[8] |
Di Biase L, Fattorini S, Cutini M, Bricca A (2021). The role of inter-and intraspecific variations in grassland plant functional traits along an elevational gradient in a Mediterranean Mountain area. Plants, 10, 359. DOI: 10.3390/plants10020359.
DOI |
[9] |
England JR, Attiwill PM (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Trees, 20, 79-90.
DOI URL |
[10] |
Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
DOI URL |
[11] |
Freschet GT, Cornelissen JHC, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373.
DOI URL |
[12] |
Fyllas NM, Michelaki C, Galanidis A, Evangelou E, Zaragoza- Castells J, Dimitrakopoulos PG, Tsadilas C, Arianoutsou M, Lloyd J (2020). Functional trait variation among and within species and plant functional types in mountainous Mediterranean forests. Frontiers in Plant Science, 11, 212. DOI: 10.3389/fpls.2020.00212.
DOI |
[13] |
Garnier E, Shipley B, Roumet C, Laurent G (2001). A standar- dized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688-695.
DOI URL |
[14] |
Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194.
DOI URL |
[15] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[16] |
Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237, 173-195.
DOI URL |
[17] |
Jardine EC, Thomas GH, Forrestel EJ, Lehmann CER, Osborne CP (2020). The global distribution of grass functional traits within grassy biomes. Journal of Biogeography, 47, 553-565.
DOI URL |
[18] |
Jin DM, Cao XC, Ma KP (2014). Leaf functional traits vary with the adult height of plant species in forest communities. Journal of Plant Ecology, 7, 68-76.
DOI URL |
[19] | Kemppinen J, Niittynen P le Roux PC, Momberg M, Happonen K, Aalto J, Rautakoski H, Enquist BJ, Vandvik V, Halbritter AH, Maitner B, Luoto M (2021). Consistent trait-environment relationships within and across tundra plant communities. Nature Ecology & Evolution, 5, 458-467. |
[20] |
Korall P, Pryer KM (2014). Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal. Journal of Biogeography, 41, 402-413.
PMID |
[21] | Lambers H, Chapin III FS, Pons TL (1998). Plant Physiological Ecology. Spinger-Verlag, New York. |
[22] |
Laughlin DC, Lusk CH, Bellingham PJ, Burslem DFRP, Simpson AH, Kramer-Walter KR (2017). Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 7, 8936-8949.
DOI PMID |
[23] |
Liao JX, Chen J, Jiang MX, Huang HD (2012). Leaf traits and persistence of relict and endangered tree species in a rare plant community. Functional Plant Biology, 39, 512-518.
DOI PMID |
[24] |
Liu MZ, Wang ZW,Li SS Lü X, Wang XB, Han XG (2017). Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in Northern China. Scientific Reports, 7, 10780. DOI: 10.1038/s41598- 017-11133-z.
DOI |
[25] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[26] |
Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J (2008). Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23, 299-303.
DOI URL |
[27] |
Meng H, Wei X, Franklin SB, Wu H, Jiang M (2017). Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biology, 19, 552-561.
DOI PMID |
[28] |
Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697.
DOI URL |
[29] |
Niinemets Ü (2015). Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96.
PMID |
[30] |
Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
DOI URL |
[31] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[32] |
Pietsch KA, Ogle K, Cornelissen JHC, Cornwell WK, Bönisch G, Craine JM, Jackson BG, Kattge J, Peltzer DA, Penuelas J, Reich PB, Wardle DA, Weedon JT, Wright IJ, Zanne AE, Wirth C (2014). Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 23, 1046-1057.
DOI URL |
[33] |
Preston KA, Cornwell WK, DeNoyer JL (2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170, 807-818.
PMID |
[34] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[35] |
Reich PB, Wright IJ, Lusk CH (2007). Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications, 17, 1982-1988.
DOI URL |
[36] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[37] |
Stearns SC (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259-268.
DOI URL |
[38] |
Sultan SE (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
DOI PMID |
[39] |
Turtureanu PD, Barros C, Bec S, Hurdu BI, Saillard A, Šibík J, Balázs ZR, Novikov A, Renaud J, Podar D, Thuiller W, Pușcaș MH, Choler P (2020). Biogeography of intraspecific trait variability in matgrass (Nardus stricta): high phenotypic variation at the local scale exceeds large scale variability patterns. Perspectives in Plant Ecology, Evolution and Systematics, 46, 125555. DOI: 10.1016/j.ppees. 2020.125555
DOI |
[40] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[41] |
Wei H, Wu B, Yang W, Luo T (2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Plant Biology, 13, 85-92.
DOI PMID |
[42] |
Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
DOI URL |
[43] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[44] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[45] |
Xie LN, Ma CC, Guo HY, Li QF, Gao YB (2014). Distribution pattern of Caragana species under the influence of climate gradient in the Inner Mongolia region, China. Journal of Arid Land, 6, 311-323.
DOI URL |
[46] | Yang SS, Wen ZM, Miao LP, Qi DH, Hua DW (2014). Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China. Chinese Journal of Applied Ecology, 25, 3413-3419. |
[ 杨士梭, 温仲明, 苗连朋, 戚德辉, 花东文 (2014). 黄土丘陵区植物功能性状对微地形变化的响应. 应用生态学报, 25, 3413-3419.] | |
[47] |
Yang YZ, Wang H, Harrison SP, Prentice IC, Wright IJ, Peng CH, Lin GH (2019). Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytologist, 221, 155-168.
DOI PMID |
[48] | Zhou DW (1996). Study on distribution of the genus Caragana Fabr. Bulletin of Botanical Research, 16, 428-435. |
[1] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[2] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[3] | QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[4] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[5] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[6] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[7] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[8] | SHI Jiao-Xing, XU Ming-Shan, FANG Xiao-Chen, ZHENG Li-Ting, ZHANG Yu, BAO Di-Feng, YANG An-Na, YAN En-Rong. Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 163-173. |
[9] | PAN Quan, ZHENG Hua, WANG Zhi-Heng, WEN Zhi, YANG Yan-Zheng. Effects of plant functional traits on ecosystem services: a review [J]. Chin J Plant Ecol, 2021, 45(10): 1140-1153. |
[10] | LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 2020, 44(8): 828-841. |
[11] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[12] | FENG Ji-Guang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems [J]. Chin J Plant Ecol, 2020, 44(6): 583-597. |
[13] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[14] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[15] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn