Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (8): 828-841.DOI: 10.17521/cjpe.2019.0146
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
LIU Run-Hong1, BAI Jin-Lian2, BAO Han1,3, NONG Juan-Li1,3, ZHAO Jia-Jia1,3, JIANG Yong1,3,*(), LIANG Shi-Chu1,3, LI Yue-Juan1,3
Received:
2019-06-13
Accepted:
2020-04-13
Online:
2020-08-20
Published:
2020-07-09
Contact:
JIANG Yong
Supported by:
LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China[J]. Chin J Plant Ecol, 2020, 44(8): 828-841.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0146
物种 Species | 生长型 Growth form | 生活型 Life form | 样本量 Sample size | 叶片质地 Leaf texture |
---|---|---|---|---|
青冈 Cyclobalanopsis glauca | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
扁片海桐 Pittosporum planilobum | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
千里香 Murraya paniculata | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
岩樟 Cinnamomum saxatile | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
子凌蒲桃 Syzygium championii | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
粗糠柴 Mallotus philippensis | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
白皮乌口树 Tarenna depauperata | 灌木 Shrub | 常绿 Evergreen | 40 | 纸质或革质 Papery or leathery |
网脉山龙眼 Helicia reticulata | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
老虎刺 Pterolobium punctatum | 木质藤本 Woody liana | 常绿 Evergreen | 40 | 纸质 Papery |
齿叶黄皮 Clausena dunniana | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
紫弹树 Celtis biondii | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
菜豆树 Radermachera sinica | 乔木 Tree | 落叶 Deciduous | 40 | 纸质 Papery |
干花豆 Fordia cauliflora | 灌木 Shrub | 落叶 Deciduous | 40 | 厚纸质 Thickly papery |
红背山麻杆 Alchornea trewioides | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
一叶萩 Flueggea suffruticosa | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
山麻杆 Alchornea davidii | 灌木 Shrub | 落叶 Deciduous | 40 | 薄纸质 Thinly papery |
龙须藤 Bauhinia championii | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
藤金合欢 Acacia concinna | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
Table 1 Information about 18 main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China
物种 Species | 生长型 Growth form | 生活型 Life form | 样本量 Sample size | 叶片质地 Leaf texture |
---|---|---|---|---|
青冈 Cyclobalanopsis glauca | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
扁片海桐 Pittosporum planilobum | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
千里香 Murraya paniculata | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
岩樟 Cinnamomum saxatile | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
子凌蒲桃 Syzygium championii | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
粗糠柴 Mallotus philippensis | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
白皮乌口树 Tarenna depauperata | 灌木 Shrub | 常绿 Evergreen | 40 | 纸质或革质 Papery or leathery |
网脉山龙眼 Helicia reticulata | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
老虎刺 Pterolobium punctatum | 木质藤本 Woody liana | 常绿 Evergreen | 40 | 纸质 Papery |
齿叶黄皮 Clausena dunniana | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
紫弹树 Celtis biondii | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
菜豆树 Radermachera sinica | 乔木 Tree | 落叶 Deciduous | 40 | 纸质 Papery |
干花豆 Fordia cauliflora | 灌木 Shrub | 落叶 Deciduous | 40 | 厚纸质 Thickly papery |
红背山麻杆 Alchornea trewioides | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
一叶萩 Flueggea suffruticosa | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
山麻杆 Alchornea davidii | 灌木 Shrub | 落叶 Deciduous | 40 | 薄纸质 Thinly papery |
龙须藤 Bauhinia championii | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
藤金合欢 Acacia concinna | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
Table 2 Characteristics of plant functional traits of main woody plant species of the Cyclobalanopsis glauca community in the karst hlls of Guilin, southwest China
Table 3 The mean (mean ± SD) and the variation coefficient (intraspecific/interspecific for plant functional traits on different growth forms and life forms
CHL | LTH | LA | LDM | SLA | LDMC | LTD | TDMC | TTD | |
---|---|---|---|---|---|---|---|---|---|
种间 Interspecific | 78.98 | 66.40 | 78.41 | 76.85 | 92.08 | 58.36 | 56.05 | 55.83 | 70.82 |
种内 Intraspecific | 13.37 | 30.15 | 17.92 | 23.04 | 4.21 | 32.28 | 36.01 | 28.36 | 23.72 |
随机误差 Random error | 7.65 | 3.45 | 3.67 | 0.11 | 3.71 | 9.36 | 7.94 | 15.81 | 5.46 |
Table 4 Contributions of intraspecific and interspecific variations to the overall variation of different plant functional traits (%)
CHL | LTH | LA | LDM | SLA | LDMC | LTD | TDMC | TTD | |
---|---|---|---|---|---|---|---|---|---|
种间 Interspecific | 78.98 | 66.40 | 78.41 | 76.85 | 92.08 | 58.36 | 56.05 | 55.83 | 70.82 |
种内 Intraspecific | 13.37 | 30.15 | 17.92 | 23.04 | 4.21 | 32.28 | 36.01 | 28.36 | 23.72 |
随机误差 Random error | 7.65 | 3.45 | 3.67 | 0.11 | 3.71 | 9.36 | 7.94 | 15.81 | 5.46 |
Fig. 1 Boxplot of plant functional traits value for the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. CHL, leaf chlorophyll content; LA, leaf area; LDM, leaf dry mass; LDMC, leaf dry matter content; LTD, leaf tissue density; LTH, leaf thickness; SLA, specific leaf area; TDMC, twig dry matter content; TTD, twig tissue density. The solid dots in the boxplot indicate the abnormal value; the percentage in the figure is the variation coefficient at the intraspecific level. The ordinate represents the name of the species, from the bottom to the top, the species number: 1, Cyclobalanopsis glauca; 2, Pittosporum planilobum; 3, Murraya paniculata; 4, Cinnamomum saxatile; 5, Syzygium championii; 6, Mallotus philippensis; 7, Tarenna depauperata; 8, Helicia reticulata; 9, Pterolobium punctatum; 10, Clausena dunniana; 11, Celtis biondii; 12, Radermachera sinica; 13, Fordia cauliflora; 14, Fordia cauliflora; 15, Flueggea suffruticosa; 16, Alchornea davidii; 17, Bauhinia championii; 18, Acacia concinna. 1 to 9 are evergreen species, and 10 to 18 are deciduous species.
Fig. 2 Pearson correlation coefficients at the individual (A) and species (B) levels between plant functional traits of the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. The abbreviations of plant functional traits are shown in Table 3.
Fig. 3 Principal component analysis (PCA) at the individual level (A) and species level (B) between plant functional traits of the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. The abbreviations of plant functional traits are shown in Table 1. The radius of the equilibrium contribution circle (black circle in the figure) represents the average contribution rate of the variable’s vector length to the sorting space. The variables that have vectors longer than the radius of the equilibrium contribution circle are shown by red solid line, indicating that its contribution to the sorting space is greater than the average contribution of all variables.
[1] |
Ackerly DD, Reich PB (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 86, 1272-1281.
URL PMID |
[2] | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201. |
[3] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[4] | Anderegg WRL (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist, 205, 1008-1014. |
[5] | Auger S, Shipley B (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old- growth temperate forest. Journal of Vegetation Science, 24, 419-428. |
[6] |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL PMID |
[7] | Bolmgren K, Cowan PD (2008). Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos, 117, 424-429. |
[8] |
Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004). Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology, 24, 891-899.
DOI URL PMID |
[9] |
Cadotte MW, Arnillas CA, Livingstone SW, Yasui SLE (2015). Predicting communities from functional traits. Trends in Ecology & Evolution, 30, 510-511.
DOI URL PMID |
[10] | Castro-Díe P, Montserrat-Martí G, Cornelissen JHC (2003). Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species. Plant Ecology, 166, 117-129. |
[11] | Chalmandrier L, Münkemüller T, Colace MP, Renaud J, Aubert S, Carlson BZ, Clément JC, Legay N, Pellet G, Saillard A, Lavergne S, Thuiller W (2017). Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. Journal of Ecology, 105, 277-287. |
[12] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL PMID |
[13] | Cheng W, Yu YH, Xiong KN, Zhang Y, Xu M, Tan DJ (2019). Leaf functional traits of dominant species in karst plateau- canyon areas. Guihaia, 39, 1039-1049. |
[ 程雯, 喻阳华, 熊康宁, 张俞, 许敏, 谭代军 (2019). 喀斯特高原峡谷优势种叶片功能性状分析. 广西植物, 39, 1039-1049.] | |
[14] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[15] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
[16] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremetʼev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[17] |
Funk JL, Standish RJ, Stock WD, Valladares F (2016). Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology, 97, 75-83.
DOI URL PMID |
[18] | Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001). Consistency of species ranking based on functional leaf traits. New phytologist, 152, 69-83. |
[19] | Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[20] | He D (2016). Plant Functional Trait Variation and Community Assembly: A Case Study in A Subtropical Evergreen Forest. PhD dissertation, Sun Yat-Sen University, Guangzhou. |
[ 何东 (2016). 植物功能性状变异与群落构建: 以黑石顶常绿阔叶林为例. 博士学位论文, 中山大学, 广州.] | |
[21] | Jackson BG, Peltzer DA, Wardle DA (2013). The within- species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 101, 1409-1419. |
[22] | Jiang Y, Chen XB, Ma JM, Liang SC, Huang J, Liu RH, Pan YF (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China. Tropical Conservation Science, 9, 194008291668021. DOI: 10.1177/1940082916680211. |
[23] | Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140. |
[24] | Kang M, Chang SX, Yan ER, Wang XH (2014). Trait variability differs between leaf and wood tissues across ecological scales in subtropical forests. Journal of Vegetation Science, 25, 703-714. |
[25] | Li DX, Li G, Shen ZH, Xu SD, Han QY, Wang GF, Tian FL (2017). Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China. Chinese Journal of Plant Ecology, 41, 539-548. |
[ 李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷 (2017). 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局. 植物生态学报, 41, 539-548.] | |
[26] | Liu HW, Wang W, Zuo J, Tao JP (2014). Leaf traits of main plants on limestone area in Zhongliang Mountain. Journal of Southwest China Normal University (Natural Science Edition), 39, 50-55. |
[ 刘宏伟, 王微, 左娟, 陶建平 (2014). 中梁山石灰岩山地30种主要植物叶片性状研究. 西南师范大学学报(自然科学版), 39, 50-55.] | |
[27] | Liu RH (2018). Variation in Functional Traits of Woody Plants in Aquatic-terrestrial Ecotone, Lijiang River. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi. |
[ 刘润红 (2018). 漓江水陆交错带木本植物功能性状变异研究. 硕士学位论文, 广西师范大学, 广西桂林.] | |
[28] | Liu RH, Liang SC, Huang DL, Huang CY, Li JF, Chang B, Jiang Y (2019). Variation in functional traits of woody species across organizational scales in a riparian zone of Lijiang River, Southwest China. Acta Ecologica Sinica, 39, 8038-8047. |
[ 刘润红, 梁士楚, 黄冬柳, 黄昶吟, 李娇凤, 常斌, 姜勇 (2019). 漓江河岸带木本植物功能性状跨尺度变异研究. 生态学报, 39, 8038-8047.] | |
[29] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[30] |
Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397-2406.
DOI URL PMID |
[31] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[32] | Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697. |
[33] |
Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
DOI URL PMID |
[34] | Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177. |
[35] | Niu CJ, Lou AR, Sun RY, Li QF (2015). Basic Ecology. 3rd ed. Higher Education Press, Beijing. 157-158. |
[ 牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2015). 基础生态学. 3版. 高等教育出版社, 北京.] | |
[36] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI URL PMID |
[37] | Pang ZQ, Lu WL, Jiang LS, Jin K, Qi Z (2019). Leaf traits of different growing plants in karst area of Shilin, China. Guihaia, 39, 1126-1138. |
[ 庞志强, 卢炜丽, 姜丽莎, 靳珂, 亓峥 (2019). 滇中喀斯特41种不同生长型植物叶性状研究. 广西植物, 39, 1126-1138.] | |
[38] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[39] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríouez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI URL PMID |
[40] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[41] | Rowe N, Speck T (2005). Plant growth forms: an ecological and evolutionary perspective. New Phytologist, 166, 61-72. |
[42] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[43] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI URL PMID |
[44] | Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[45] | Spasojevic MJ, Turner BL, Myers JA (2016). When does intraspecific trait variation contribute to functional beta- diversity? Journal of Ecology, 104, 487-496. |
[46] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[ 唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.] | |
[47] |
Tomlinson KW, Poorter L, Bongers F, Borghetti F, Jacobs L, van Langevelde F (2014). Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 114, 315-324.
DOI URL PMID |
[48] |
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
DOI URL PMID |
[49] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!. Oikos, 116, 882-892. |
[50] | Wang KL, Chen HS, Zeng FP, Yue YM, Zhang W, Fu ZY (2018). Ecological research supports eco-environmental management and poverty alleviation in karst region of southwest China. Bulletin of the Chinese Academy of Sciences, 33, 213-222. |
[ 王克林, 陈洪松, 曾馥平, 岳跃民, 张伟, 付智勇 (2018). 生态学研究支撑喀斯特区域生态环境治理与科技扶贫. 中国科学院院刊, 33, 213-222. ] | |
[51] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36, 2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36, 2175-2184.] | |
[52] | Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169. |
[53] | Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. |
[54] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[55] | Wright IJ, Falster DS, Pickup M, Westoby M (2006). Cross- species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiologia Plantarum, 127, 445-456. |
[56] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[57] | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, Southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. |
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.] |
[1] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[2] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[3] | XIANG Xiang, HUANG Yong-Mei, YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang. Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin, China [J]. Chin J Plant Ecol, 2021, 45(5): 456-466. |
[4] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[5] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[6] | FENG Ji-Guang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems [J]. Chin J Plant Ecol, 2020, 44(6): 583-597. |
[7] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
[8] | GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plant Ecol, 2018, 42(9): 917-925. |
[9] | Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plant Ecol, 2017, 41(1): 31-42. |
[10] | Bin-Bin KONG, Xin-Hua WEI, Jia-Li DU, Ying-Nian LI, Zhi-Hong ZHU. Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(3): 187-199. |
[11] | Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 991-1002. |
[12] | ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plant Ecol, 2016, 40(1): 36-47. |
[13] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[14] | CHEN Hui-Ying, ZHANG Jing-Hui, HUANG Yong-Mei, GONG Ji-Rui. Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses [J]. Chin J Plant Ecol, 2014, 38(8): 821-832. |
[15] | DU Hu, PENG Wan-Xia, SONG Tong-Qing, WANG Ke-Lin, ZENG Fu-Ping, LU Shi-Yang, SHI Wei-Wei, TANG Cheng, TAN Qiu-Jin. Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China [J]. Chin J Plant Ecol, 2013, 37(3): 197-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn