Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (8): 818-833.DOI: 10.17521/cjpe.2020.0373
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
ZHANG Jing-Hui1,2,3*, WANG Zheng1*, HUANG Yong-Mei4,**(), CHEN Hui-Ying5, LI Zhi-Yong1,2,3, LIANG Cun-Zhu1,2,3
Received:
2020-11-12
Revised:
2021-04-02
Online:
2021-08-20
Published:
2021-04-28
Contact:
HUANG Yong-Mei
Supported by:
ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe[J]. Chin J Plant Ecol, 2021, 45(8): 818-833.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0373
Fig. 1 Variations of mean monthly air temperature and monthly precipitation of the study site area in temperate typical grasslands of Nei Mongol in 2011-2014.
物种 Species | 相对生物量 Relative biomass | p | |||
---|---|---|---|---|---|
长期自由放牧 Long-term free grazing | 割草 Mowing | 短期围封 Short-term enclosed | 长期无干扰 Long-term reservation | ||
大针茅 Stipa grandis | 9.89 ± 2.58b | 7.20 ± 2.70b | 5.84 ± 1.99b | 77.80 ± 4.77a | <0.001 |
羊草 Leymus chinensis | 36.00 ± 6.88a | 12.27 ± 2.63ab | 29.21 ± 15.40a | 2.56 ± 1.93b | 0.004 |
糙隐子草 Cleistogenes squarrosa | 32.55 ± 6.65a | 35.13 ± 2.26a | 21.39 ± 5.26a | 3.53 ± 1.95b | <0.001 |
冷蒿 Artemisia frigida | 0.31 ± 0.31b | 24.94 ± 8.24a | 32.98 ± 11.02a | 3.32 ± 1.65b | 0.002 |
Table 1 Relative biomass of dominant species in each sites before measuring plant functional traits (mean ± SE)
物种 Species | 相对生物量 Relative biomass | p | |||
---|---|---|---|---|---|
长期自由放牧 Long-term free grazing | 割草 Mowing | 短期围封 Short-term enclosed | 长期无干扰 Long-term reservation | ||
大针茅 Stipa grandis | 9.89 ± 2.58b | 7.20 ± 2.70b | 5.84 ± 1.99b | 77.80 ± 4.77a | <0.001 |
羊草 Leymus chinensis | 36.00 ± 6.88a | 12.27 ± 2.63ab | 29.21 ± 15.40a | 2.56 ± 1.93b | 0.004 |
糙隐子草 Cleistogenes squarrosa | 32.55 ± 6.65a | 35.13 ± 2.26a | 21.39 ± 5.26a | 3.53 ± 1.95b | <0.001 |
冷蒿 Artemisia frigida | 0.31 ± 0.31b | 24.94 ± 8.24a | 32.98 ± 11.02a | 3.32 ± 1.65b | 0.002 |
Fig. 2 Comparisons of morphological traits of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 3 Comparisons of carbon and nitrogen concentration of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 4 Comparisons of cellulose and lignin concentration of different species under different grassland uses (mean ± SE). E, short-term enclosed; G, long-term free grazing; M, mowing; R, long-term reservation. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 5 Changes in the plasticity index (PI) of functional traits of Stipa grandis, Leymus chinensis, Cleistogenes squarrosa and Artemisia frigida under long-term free grazing (G), mowing (M) and short-term enclosure (E) treatments. LCC, leaf carbon concentration; LCE, leaf cellulose concentration; LDMC, leaf dry matter concentration; LLI, leaf lignin concentration; LNC, leaf nitrogen concentration; RCC, root carbon concentration; RCE, root cellulose concentration; RL, root length concentration; RLI, root lignin concentration; RNC, root nitrogen concentration; R/S, root:shoot ratio; SCC, stem carbon concentration; SCE, stem cellulose concentration; S/L, stem:leaf ratio; SLA, specific leaf area; SLI, stem lignin concentration; SNC, stem nitrogen concentration; VH, vegetation height.
Fig. 6 Principal component analysis (PCA) of functional traits of Stipa grandis, Leymus chinensis, Cleistogenes squarrosa and Artemisia frigida. LCC, leaf carbon concentration; LCE, leaf cellulose concentration; LDMC, leaf dry matter concentration; LLI, leaf lignin concentration; LNC, leaf nitrogen concentration; RCC, root carbon concentration; RCE, root cellulose concentration; RL, root length; RLI, root lignin concentration; RNC, root nitrogen concentration; R/S, root:shoot ratio; SCC, stem carbon concentration; SCE, stem cellulose concentration; S/L, stem:leaf ratio; SLA, specific leaf area; SLI, stem lignin concentration; SNC, stem nitrogen concentration; VH, vegetation height.
植物功能性状 Plant functional trait | 大针茅 Stipa grandis | 羊草 Leymus chinensis | 糙隐子草 Cleistogenes squarrosa | 冷蒿 Artemisia frigida | F | p |
---|---|---|---|---|---|---|
比叶面积 SLA (m2·kg-1) | 8.04 ± 0.23c | 9.14 ± 0.41c | 15.80 ± 0.83a | 14.02 ± 0.40b | 42.85 | <0.001 |
叶片干物质含量 LDMC (mg·g-1) | 498.11 ± 4.79a | 437.91 ± 7.55b | 446.91 ± 5.61b | 337.67 ± 6.70c | 115.03 | <0.001 |
植株高度 VH (cm) | 90.69 ± 6.57a | 32.74 ± 3.08b | 15.63 ± 0.83c | 29.27 ± 2.59b | 73.51 | <0.001 |
根长 RL (cm) | 15.36 ± 0.92ab | 13.50 ± 1.47b | 17.44 ± 1.00a | 11.62 ± 1.85b | 3.35 | 0.031 |
根冠比 R/S | 1.74 ± 0.37b | 0.72 ± 0.13b | 3.40 ± 0.63a | 0.98 ± 0.12b | 10.32 | <0.001 |
茎叶比 S/L | 0.69 ± 0.41b | 0.34 ± 0.06c | 0.97 ± 0.16a | 0.94 ± 0.16a | 2.32 | 0.094 |
根碳含量 RCC (mg·g-1) | 213.91 ± 18.41d | 327.48 ± 15.84b | 285.26 ± 10.01c | 382.30 ± 9.58a | 25.81 | <0.001 |
茎碳含量 SCC (mg·g-1) | 430.74 ± 6.61b | 420.99 ± 4.37bc | 409.31 ± 4.90c | 452.30 ± 2.01a | 14.63 | <0.001 |
叶碳含量 LCC (mg·g-1) | 443.07 ± 1.81ab | 433.98 ± 3.34b | 415.68 ± 8.34c | 449.56 ± 2.72a | 9.48 | <0.001 |
根氮含量 RNC (mg·g-1) | 5.43 ± 0.56b | 5.95 ± 0.52ab | 6.11 ± 0.29ab | 6.95 ± 0.51a | 1.70 | 0.190 |
茎氮含量 SNC (mg·g-1) | 5.28 ± 0.45c | 6.75 ± 0.51bc | 10.87 ± 0.71a | 6.99 ± 0.45b | 19.50 | <0.001 |
叶氮含量 LNC (mg·g-1) | 14.21 ± 0.62c | 17.61 ± 0.91b | 16.05 ± 0.99bc | 23.02 ± 0.88a | 19.32 | <0.001 |
根纤维素含量 RCE (%) | 12.43 ± 1.20c | 25.17 ± 0.96a | 16.75 ± 1.22b | 24.70 ± 2.01a | 19.67 | <0.001 |
茎纤维素含量 SCE (%) | 34.17 ± 1.61a | 31.25 ± 0.69ab | 27.86 ± 0.52b | 29.93 ± 2.30ab | 2.30 | 0.096 |
叶纤维素含量 LCE (%) | 25.31 ± 0.29a | 25.76 ± 0.62a | 25.94 ± 0.51a | 19.74 ± 1.05b | 18.41 | <0.001 |
根木质素含量 RLI (%) | 11.47 ± 1.38b | 11.64 ± 0.64b | 14.00 ± 1.38b | 21.42 ± 1.62a | 12.71 | <0.001 |
茎木质素含量 SLI (%) | 8.24 ± 0.45b | 5.06 ± 0.58c | 5.38 ± 0.70c | 21.59 ± 2.54a | 29.43 | <0.001 |
叶木质素含量 LLI (%) | 5.47 ± 0.28b | 4.27 ± 0.29c | 3.01 ± 0.26d | 10.64 ± 1.17a | 35.53 | <0.001 |
Table 2 Values of different functional traits of four dominant species (mean ± SE)
植物功能性状 Plant functional trait | 大针茅 Stipa grandis | 羊草 Leymus chinensis | 糙隐子草 Cleistogenes squarrosa | 冷蒿 Artemisia frigida | F | p |
---|---|---|---|---|---|---|
比叶面积 SLA (m2·kg-1) | 8.04 ± 0.23c | 9.14 ± 0.41c | 15.80 ± 0.83a | 14.02 ± 0.40b | 42.85 | <0.001 |
叶片干物质含量 LDMC (mg·g-1) | 498.11 ± 4.79a | 437.91 ± 7.55b | 446.91 ± 5.61b | 337.67 ± 6.70c | 115.03 | <0.001 |
植株高度 VH (cm) | 90.69 ± 6.57a | 32.74 ± 3.08b | 15.63 ± 0.83c | 29.27 ± 2.59b | 73.51 | <0.001 |
根长 RL (cm) | 15.36 ± 0.92ab | 13.50 ± 1.47b | 17.44 ± 1.00a | 11.62 ± 1.85b | 3.35 | 0.031 |
根冠比 R/S | 1.74 ± 0.37b | 0.72 ± 0.13b | 3.40 ± 0.63a | 0.98 ± 0.12b | 10.32 | <0.001 |
茎叶比 S/L | 0.69 ± 0.41b | 0.34 ± 0.06c | 0.97 ± 0.16a | 0.94 ± 0.16a | 2.32 | 0.094 |
根碳含量 RCC (mg·g-1) | 213.91 ± 18.41d | 327.48 ± 15.84b | 285.26 ± 10.01c | 382.30 ± 9.58a | 25.81 | <0.001 |
茎碳含量 SCC (mg·g-1) | 430.74 ± 6.61b | 420.99 ± 4.37bc | 409.31 ± 4.90c | 452.30 ± 2.01a | 14.63 | <0.001 |
叶碳含量 LCC (mg·g-1) | 443.07 ± 1.81ab | 433.98 ± 3.34b | 415.68 ± 8.34c | 449.56 ± 2.72a | 9.48 | <0.001 |
根氮含量 RNC (mg·g-1) | 5.43 ± 0.56b | 5.95 ± 0.52ab | 6.11 ± 0.29ab | 6.95 ± 0.51a | 1.70 | 0.190 |
茎氮含量 SNC (mg·g-1) | 5.28 ± 0.45c | 6.75 ± 0.51bc | 10.87 ± 0.71a | 6.99 ± 0.45b | 19.50 | <0.001 |
叶氮含量 LNC (mg·g-1) | 14.21 ± 0.62c | 17.61 ± 0.91b | 16.05 ± 0.99bc | 23.02 ± 0.88a | 19.32 | <0.001 |
根纤维素含量 RCE (%) | 12.43 ± 1.20c | 25.17 ± 0.96a | 16.75 ± 1.22b | 24.70 ± 2.01a | 19.67 | <0.001 |
茎纤维素含量 SCE (%) | 34.17 ± 1.61a | 31.25 ± 0.69ab | 27.86 ± 0.52b | 29.93 ± 2.30ab | 2.30 | 0.096 |
叶纤维素含量 LCE (%) | 25.31 ± 0.29a | 25.76 ± 0.62a | 25.94 ± 0.51a | 19.74 ± 1.05b | 18.41 | <0.001 |
根木质素含量 RLI (%) | 11.47 ± 1.38b | 11.64 ± 0.64b | 14.00 ± 1.38b | 21.42 ± 1.62a | 12.71 | <0.001 |
茎木质素含量 SLI (%) | 8.24 ± 0.45b | 5.06 ± 0.58c | 5.38 ± 0.70c | 21.59 ± 2.54a | 29.43 | <0.001 |
叶木质素含量 LLI (%) | 5.47 ± 0.28b | 4.27 ± 0.29c | 3.01 ± 0.26d | 10.64 ± 1.17a | 35.53 | <0.001 |
[1] | Ansquer P, Duru M, Theau JP, Cruz P (2009). Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands. Annals of Botany, 103, 117-126. |
[2] | AOAC (2000). AOAC official method 973.18 fiber (acid detergent) and lignin (H2SO4) in animal feed//Horwitz, Wed. Official Methods of Analysis of AOAC International. 17th ed. Association of Official Analytical Chemists, Gaithersburg, USA. |
[3] | Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622. |
[4] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007). Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[5] | Bao YJ, Cao M, Li ZH, Guo P, Zhang J, Qin J (2019). A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecologica Sinica, 39, 1063-1070. |
[ 鲍雅静, 曹明, 李政海, 郭鹏, 张靖, 秦洁 (2019). 羊草与大针茅根系构型对水分梯度响应的比较研究. 生态学报, 39, 1063-1070.] | |
[6] | Chen DM, Zheng SX, Shan YM, Taube F, Bai YF (2013). Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology, 27, 273-281. |
[7] | Chen HY, Zhang JH, Huang YM, Gong JR (2014). Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses. Chinese Journal of Plant Ecology, 38, 821-832. |
[ 陈慧颖, 张景慧, 黄永梅, 龚吉蕊 (2014). 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 38, 821-832.] | |
[8] | Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology, 42, 4250-4259. |
[9] | Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280, 745-747. |
[10] | Cornelissen JHC, Diez PC, Hunt R (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755-765. |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAVD, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] | Daorina, Song YT, Wu yunna, Huo GW, Wang XM, Xu ZC (2016). Response of plant leaf traits to grazing intensity in Stipa krylovii steppe. Chinese Journal of Applied Ecology, 27, 2231-2238. |
[ 道日娜, 宋彦涛, 乌云娜, 霍光伟, 王晓朦, 徐志超 (2016). 克氏针茅草原植物叶片性状对放牧强度的响应. 应用生态学报, 27, 2231-2238.] | |
[13] | Díaz S, Cabido M (1997). Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8, 463-474. |
[14] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
[15] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[16] | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[17] | Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology, 38, 497-508. |
[18] | Fan YJ (2013). Effects of Fencing and Grazing on Plant Morphology, Community Characteristics and Carbon Balance of Kobresia pygmaea Meadow in the Three Headwater Resource Regions. PhD dissertation, Gansu Agricultural University, Lanzhou. |
[ 范月君 (2013). 围栏与放牧对三江源区高山嵩草草甸植物形态、群落特征及碳平衡的影响. 博士学位论文, 甘肃农业大学, 兰州.] | |
[19] | Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, et al. (2010). Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic and Applied Ecology, 11, 473-485. |
[20] | Frenette-Dussault C, Shipley B, Léger JF, Meziane D, Hingrat Y (2012). Functional structure of an arid steppe plant community reveals similarities with Grimeʼs C-S-R theory. Journal of Vegetation Science, 23, 208-222. |
[21] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[22] | Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas M-L (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83. |
[23] | Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99, 967-985. |
[24] | Grime JP (1974). Vegetation classification by reference to strategies. Nature, 250, 26-31. |
[25] | Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[26] | He NP, Liu CC, Tian M, Li ML, Yang H, Yu GR, Guo DL, Smith MD, Yu Q, Hou JH (2018). Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. Functional Ecology, 32, 10-19. |
[27] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[28] | Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999). Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. |
[29] | Hou DJ, Lu SZ, Wang J, Guo K (2020). Response of aboveground plant functional traits of Leymus chinensis to litter accumulation in fenced grasslands. Acta Ecologica Sinica, 40, 6522-6531. |
[ 侯东杰, 陆帅志, 王静, 郭柯 (2020). 典型草原围封后羊草地上功能性状对枯落物累积的响应. 生态学报, 40, 6522-6531.] | |
[30] | Hou LL, Yan RR, Zhang Y, Xin XP (2020). Effects of grazing intensity on functional traits of Leymus chinensis in meadow steppe. Scientia Agricultura Sinica, 53, 2562-2572. |
[ 侯路路, 闫瑞瑞, 张宇, 辛晓平 (2020). 放牧强度对草甸草原羊草功能性状的影响. 中国农业科学, 53, 2562-2572.] | |
[31] | Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009). Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restoration Ecology, 17, 78-88. |
[32] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032. |
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] | |
[33] | Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Boenisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[34] | Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147. |
[35] | Li JH, Li ZQ, Wang G (2003). Effect of different grazing intensities on the nutrient contents of Artemisia frigida and Potentilla acaulis. Acta Prataculturae Sinica, 12, 30-35. |
[ 李金花, 李镇清, 王刚 (2003). 不同放牧强度对冷蒿和星毛委陵菜养分含量的影响. 草业学报, 12, 30-35.] | |
[36] | Li XL, Hou XY, Wu XH, Sarula, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451. |
[ 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.] | |
[37] | Li YH (1994). Research on the grazing degradation model of the main steppe rangelands in Inner Mongolia and some considerations for the establishment of a comput-erized rangeland monitoring system. Acta Phytoecologica Sinica, 18, 68-79. |
[ 李永宏 (1994). 内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议. 植物生态学报, 18, 68-79.] | |
[38] | Liu WT, Wei ZJ, Lv SJ, Wang TL, Zhang S, Hai S (2017). Effect of grazing on Stipa breviflora age dynamics and leaf traits. Acta Prataculturae Sinica, 26, 63-71. |
[ 刘文亭, 卫智军, 吕世杰, 王天乐, 张爽, 海松 (2017). 放牧调控对短花针茅种群年龄及叶性状的影响. 草业学报, 26, 63-71.] | |
[39] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[40] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. |
[ 刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[41] | Ma JJ, Yao H, Feng ZY, Zhang SL (2012). Changes in plant functional groups and species diversity under three grassland using modes in typical grassland area of Inner Mongolia, China. Chinese Journal of Plant Ecology, 36, 1-9. |
[ 马建军, 姚虹, 冯朝阳, 张树礼 (2012). 内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化. 植物生态学报, 36, 1-9.] | |
[42] | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. |
[43] | Meziane D, Shipley B (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment, 22, 447-459. |
[44] | Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644. |
[45] | Odum EP (1969). The strategy of ecosystem development. Science, 164, 262-270. |
[46] | Pérez-Harguindeguy N, Díaz S, Garnier E, Jaureguiberry P, Poorter L, ter Steege H, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[47] | Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology, 28, 642-650. |
[48] | Poorter H, Garnier E (2007). Ecological significance of inherent variation in relative growth rate and its components//Pugnatre FI, Valladares F. Functional Plant Ecology. 2nd ed. CRC Press, London. |
[49] | Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969. |
[50] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[51] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[52] | Ryser P, Urbas P (2000). Ecological significance of leaf life span among Central European grass species. Oikos, 91, 41-50. |
[53] | Sabaté S, Sala A, Gracia CA (1995). Nutrient content in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant and Soil, 168, 297-304. |
[54] | Sage RF, Wedin DA, Li M (1999). The biogeography of C4 photosynthesis: patterns and controlling factors//Sage RF, Monson RK. C4 Plant Biology. Academic Press, San Diego, USA. 313-373. |
[55] | Saugier B (2001). Plant strategies, vegetation processes, and ecosystem properties. Plant Science, 161, 813. |
[56] | Saura-Mas S, Lloret F (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Annals of Botany, 99, 545-554. |
[57] | Shi SB, Li HM, Wang XY, Yue XG, Xu WH, Chen GC (2006). Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau. Journal of Plant Ecology (Chinese Version), 30, 40-46. |
[ 师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛 (2006). 青藏高原几种典型高山植物的光合特性比较. 植物生态学报, 30, 40-46.] | |
[58] | Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöening I, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2013). Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 14, 126-136. |
[59] | Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT (2017). Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 35, 940-949. |
[ 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛 (2017). 植物叶片功能性状及其环境适应研究. 植物科学学报, 35, 940-949.] | |
[60] | Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354. |
[61] | Taylor BR, Parsons WFJ, Parkinson D (1989). Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnuscrispa litter. Canadian Journal of Forest Research, 19, 674-679. |
[62] | Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscape- scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[63] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[64] | van Soest PJ (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. |
[65] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[66] | Wan H, Bai Y, Schönbach P, Gierus M, Taube F (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community. Plant and Soil, 340, 215-226. |
[67] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the palnt individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 24, 268-274. |
[ 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 24, 268-274.] | |
[68] | Wang W, Liu ZL, Hao DY, Liang CZ (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia—I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 20, 449-459. |
[ 王炜, 刘钟龄, 郝敦元, 梁存柱 (1996). 内蒙古草原退化群落恢复演替的研究——I. 退化草原的基本特征与恢复演替动力. 植物生态学报, 20, 449-459.] | |
[69] | Westoby M (1999). The LHS strategy scheme in relation to grazing and fire//Eldridge D, Freudenberger D. People and Rangelands Building the Future. VI International Rangeland Congress, Townsville, Australia. |
[70] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[71] | Wright IA, Jones JR, Parsons AJ (2001). Effects of grazing by sheep or cattle on sward structure and subsequent performance of weaned lambs. Grass and Forage Science, 56, 138-150. |
[72] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[73] | Wu GL, Du GZ, Liu ZH, Thirgood S (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126. |
[74] | Xing XQ, Hao BT, Qi LX, Zhang L, Baoyin TGT (2019). Effect of grazing on functional traits of Stipa krylovii. Ecology and Environmental Sciences, 28, 57-64. |
[ 邢小青, 郝匕台, 齐丽雪, 张璐, 宝音陶格涛 (2019). 放牧对克氏针茅功能性状的影响. 生态环境学报, 28, 57-64.] | |
[75] | Xu XY, Cao JJ, Yang L, Yang SR, Gong YF, Li MT (2018). Effects of grazing and enclosure on foliar and soil stoichiometry of grassland on the Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 37, 1349-1355. |
[ 许雪贇, 曹建军, 杨淋, 杨书荣, 龚毅帆, 李梦天 (2018). 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响. 生态学杂志, 37, 1349-1355.] | |
[76] | Zhang F, Yang Y, Qiao JR, Jia LX, Zhao TQ, Wang X, Wang YT, Zhao ML (2018). Effect of utilization on community functional diversity in Stipa grandis steppe. Grassland and Prataculture, 30, 36-43. |
[ 张峰, 杨阳, 乔荠瑢, 贾丽欣, 赵天启, 王玺, 王亚婷, 赵萌莉 (2018). 利用方式对大针茅草原群落功能多样性的影响. 草原与草业, 30, 36-43.] | |
[77] | Zhang JH, Huang YM, Chen HY, Gong JR, Qi Y, Li EG, Wu XC (2018). Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. Rangeland Journal, 40, 179-189. |
[78] | Zhang JH, Huang YM, Chen HY, Yang HY (2016). Effect of disturbance removal on leaf functional traits of plants in the Inner Mongolia steppe. Acta Ecologica Sinica, 36, 5902-5911. |
[ 张景慧, 黄永梅, 陈慧颖, 杨涵越 (2016). 去除干扰对内蒙古典型草原植物叶片功能属性的影响. 生态学报, 36, 5902-5911.] | |
[79] | Zhao N, Zhao XQ, Zhao L, Xu SX, Zou XY (2016). Progress in researches of the response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 35, 1916-1926. |
[ 赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳 (2016). 植物功能性状对放牧干扰的响应. 生态学杂志, 35, 1916-1926.] | |
[80] | Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24, 99-108. |
[81] | Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155. |
[82] | Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF (2010). Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 7, 1117-1132. |
[83] | Zhu JT, Zhang YJ, Wang WF, Yang X, Chen N, Shen RN, Wang L, Jiang L (2020). Species turnover drives grassland community to phylogenetic clustering over long-term grazing disturbance. Journal of Plant Ecology, 13, 157-164. |
[84] | Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079. |
[1] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[2] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[3] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[4] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[5] | LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 2020, 44(8): 828-841. |
[6] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[7] | FENG Ji-Guang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems [J]. Chin J Plant Ecol, 2020, 44(6): 583-597. |
[8] | LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(6): 642-653. |
[9] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
[10] | GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plant Ecol, 2018, 42(9): 917-925. |
[11] | Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plant Ecol, 2017, 41(1): 31-42. |
[12] | Bin-Bin KONG, Xin-Hua WEI, Jia-Li DU, Ying-Nian LI, Zhi-Hong ZHU. Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(3): 187-199. |
[13] | Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 991-1002. |
[14] | ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plant Ecol, 2016, 40(1): 36-47. |
[15] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn