Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (6): 642-653.DOI: 10.17521/cjpe.2019.0329
• Research Articles • Previous Articles Next Articles
LI Ying1, GONG Ji-Rui1,*(), LIU Min1, HOU Xiang-Yang2, DING Yong2, YANG Bo1, ZHANG Zi-He1, WANG Biao1, ZHU Chen-Chen1
Received:
2019-11-30
Accepted:
2020-03-25
Online:
2020-06-20
Published:
2020-04-03
Contact:
GONG Ji-Rui: ORCID:0000-0003-2012-2606, jrgong@bnu.edu.cn
Supported by:
LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China[J]. Chin J Plant Ecol, 2020, 44(6): 642-653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0329
Fig. 2 Lignin content of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 3 Tannins content of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 4 Total flavonoids contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 5 Total phenols contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 6 Alkaloid contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June and August under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 7 The C:N in leafs of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
大针茅 S. grandis | 羊草 L. chinensis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | 单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | ||
大针茅 S. grandis | 单宁 Tannins | 0.800 | 0.900* | -0.400 | 0.051 | -0.300 | 0.400 | 0.400 | -0.800 | 0.600 | 0.000 | ||
总黄酮 Flavonoids | 0.900* | 0.100 | 0.154 | 0.200 | 1.000** | -0.200 | -0.400 | 0.800 | |||||
总酚 Phenols | -0.300 | 0.051 | -0.100 | -0.200 | -0.400 | 0.800 | |||||||
木质素 Lignin | -0.154 | 0.500 | -0.800 | 0.400 | |||||||||
总生物碱 Alkaloid | 0.718 | -0.800 | |||||||||||
碳氮比 C:N | |||||||||||||
羊草 L. chinensis | 单宁 Tannins | 0.900* | 0.300 | -0.200 | 0.600 | 0.500 | 0.000 | 0.600 | -1.000** | 0.400 | -0.600 | ||
总黄酮 Flavonoids | 0.600 | -0.100 | 0.700 | 0.700 | 0.800 | 0.000 | -0.800 | -0.800 | |||||
总酚 Phenols | 0.300 | 0.500 | 0.900* | -0.600 | -0.400 | -1.000** | |||||||
木质素 Lignin | 0.600 | -0.100 | -0.400 | 0.600 | |||||||||
总生物碱 Alkaloid | 0.300 | 0.400 | |||||||||||
碳氮比 C:N |
Table 1 Correlation analysis of defense metabolites and C:N in leaves of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June and August
大针茅 S. grandis | 羊草 L. chinensis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | 单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | ||
大针茅 S. grandis | 单宁 Tannins | 0.800 | 0.900* | -0.400 | 0.051 | -0.300 | 0.400 | 0.400 | -0.800 | 0.600 | 0.000 | ||
总黄酮 Flavonoids | 0.900* | 0.100 | 0.154 | 0.200 | 1.000** | -0.200 | -0.400 | 0.800 | |||||
总酚 Phenols | -0.300 | 0.051 | -0.100 | -0.200 | -0.400 | 0.800 | |||||||
木质素 Lignin | -0.154 | 0.500 | -0.800 | 0.400 | |||||||||
总生物碱 Alkaloid | 0.718 | -0.800 | |||||||||||
碳氮比 C:N | |||||||||||||
羊草 L. chinensis | 单宁 Tannins | 0.900* | 0.300 | -0.200 | 0.600 | 0.500 | 0.000 | 0.600 | -1.000** | 0.400 | -0.600 | ||
总黄酮 Flavonoids | 0.600 | -0.100 | 0.700 | 0.700 | 0.800 | 0.000 | -0.800 | -0.800 | |||||
总酚 Phenols | 0.300 | 0.500 | 0.900* | -0.600 | -0.400 | -1.000** | |||||||
木质素 Lignin | 0.600 | -0.100 | -0.400 | 0.600 | |||||||||
总生物碱 Alkaloid | 0.300 | 0.400 | |||||||||||
碳氮比 C:N |
[1] |
Al-Saeedi AH, Hossain MA (2015). Total phenols, total flavonoids contents and free radical scavenging activity of seeds crude extracts of pigeon pea traditionally used in Oman for the treatment of several chronic diseases. Asian Pacific Journal of Tropical Disease, 5, 316-321.
DOI URL |
[2] |
Appel HM, Arnold TM, Schultz JC (2012). Effects of jasmonic acid, branching and girdling on carbon and nitrogen transport in poplar. New Phytologist, 195, 419-426.
DOI URL |
[3] |
Brandolini A, Castoldi P, Plizzari L, Hidalgo A (2013). Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation. Journal of Cereal Science, 58, 123-131.
DOI URL |
[4] |
Brock AK, Berger B, Schreiner M, Ruppel S, Mewis I (2018). Plant growth-promoting bacteria Kosakonia radicincitans mediate anti-herbivore defense in Arabidopsis thaliana. Planta, 248, 1383-1392.
DOI URL |
[5] |
Bryant JP, Chapin FS, Klein DR (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357-368.
DOI URL |
[6] |
Chen HY, Zhang JH, Huang YM, Gong JR (2014). Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land- uses. Chinese Journal of Plant Ecology, 38, 821-832.
DOI URL |
[ 陈慧颖, 张景慧, 黄永梅, 龚吉蕊 (2014). 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 38, 821-832.] | |
[7] |
Dong BC, Fu T, Luo FL, Yu FH (2017). Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides. Science of the Total Environment, 605-606, 114-123.
DOI URL |
[8] |
Erb M (2018). Volatiles as inducers and suppressors of plant defense and immunity—Origins, specificity, perception and signaling. Current Opinion in Plant Biology, 44, 117-121.
DOI URL PMID |
[9] |
Fuchs B, Krischke M, Mueller MJ, Krauss J (2017a). Herbivore- specific induction of defence metabolites in a grass-endophyte association. Functional Ecology, 31, 318-324.
DOI URL |
[10] |
Fuchs B, Krischke M, Mueller MJ, Krauss J (2017b). Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology, 29, 52-58.
DOI URL |
[11] | Garland Jr T (2014). Trade-offs. Current Biology, 24, 60-61. |
[12] |
Guo Q, Major IT, Howe GA (2018). Resolution of growth- defense conflict: mechanistic insights from jasmonate signaling. Current Opinion in Plant Biology, 44, 72-81.
DOI URL PMID |
[13] |
Herms DA, Mattson WJ (1992). The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67, 283-335.
DOI URL |
[14] |
Herrero-Jáuregui C, Oesterheld M (2018). Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos, 127, 757-766.
DOI URL |
[15] | Hu J, Hou XY, Sa RL, Li XL, Wang Z, Ding Y (2016). Regulatory effects of stip grandis on above-ground biomass of plant community in grazing ecosystem. Acta Agrestia Sinica, 24, 1-11. |
[ 胡静, 侯向阳, 萨茹拉, 李西良, 王珍, 丁勇 (2016). 大针茅对放牧生态系统植物群落地上生物量的调控作用. 草地学报, 24, 1-11.] | |
[16] |
Isah T (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52, 39. DOI: 10.1186/s40659-019-0246-3.
DOI URL PMID |
[17] | Kabir MSH, Ahmad S, Mahamoud MS, Masum MAA, Kamal ATMM, Hoque MA, Chakrabarty N, Hasanat A, Adnan M (2015). Evaluation of Total condensed tannin content and anthelmintic activities of organic extracts of four Bangladeshi plants on Tubifex tubifex worm using in vitro method. International Journal of Pharmacy, 5, 903-910. |
[18] | Li JM, Jin ZX, Zhou Y (2007). Endangered species long Ye Torreya jackii secondary metabolic content analysis. Journal of Fujian Forestry Science and Technology, 34, 29-32. |
[ 李钧敏, 金则新, 周杨 (2007). 长叶榧不同营养器官次生代谢产物含量分析. 福建林业科技, 34, 29-32.] | |
[19] | Li LY, Song B, Chen J, Sun BD, Zhang GS, Deng H, Ding G (2018). Advance on secondary metabolites of grassland and desert plants endophytic fungi. Microbiology China, 45, 1146-1160. |
[ 李露莹, 宋波, 陈娟, 孙炳达, 张桂山, 邓晖, 丁刚 (2018). 草原与荒漠植物内生真菌次生代谢产物研究进展. 微生物学通报, 45, 1146-1160.] | |
[20] | Li SY (2013). Study on Determination of Fifteen Alkaloids and Their Distribution in Grass and Derived Products by Liquid Chromatography Tandem Mass Spectrometry. Chinese Academy of Agricultural Sciences, Beijing. |
[ 李爽跃 (2013). 牧草及草产品中有害生物碱LC-MS/MS检测方法及分布特点研究. 中国农业科学院, 北京.] | |
[21] |
Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: a review. Chinese Bulletin of Botany, 50, 159-170.
DOI URL |
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.] | |
[22] | Lin KM, Ye FM, Lin Y, Li QS (2010). Research advances of phenolic functional mechanisms in soils and plants. Chinese Journal of Eco-Agriculture, 18, 1130-1137. |
[ 林开敏, 叶发茂, 林艳, 李卿叁 (2010). 酚类物质对土壤和植物的作用机制研究进展. 中国生态农业学报, 18, 1130-1137.] | |
[23] |
Liu M, Gong JR, Li Y, Li XB, Yang B, Zhang ZH, Yang LL, Hou XY (2019a). Growth-defense trade-off regulated by hormones in grass plants growing under different grazing intensities. Physiologia Plantarum, 166, 553-569.
DOI URL PMID |
[24] | Liu MM, Jia L, Zhang HQ, Zang XL, Zhang RM, Gao Y (2015). Mechanical damage on secondary metabolites from Artemisia frigida leaves. Journal of Zhejiang A & F University, 32, 845-852. |
[ 刘盟盟, 贾丽, 张洪芹, 臧晓琳, 张汝民, 高岩 (2015). 机械损伤对冷蒿叶片次生代谢产物的影响. 浙江农林大学学报, 32, 845-852.] | |
[25] |
Liu YY, Wang Q, Zhang ZY, Tong LJ, Wang ZQ, Li JL (2019b). Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690, 27-39.
DOI URL |
[26] |
Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16, 151-160.
DOI URL |
[27] |
Lu H, McKnight TD (1999). Tissue-specific expression of the β-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid-producing plant. Plant Physiology, 120, 43-52.
DOI URL |
[28] |
Mathesius U (2018). Flavonoid functions in plants and their interactions with other organisms. Plants, 7, 30. DOI: 10.3390/plants7020030.
DOI URL |
[29] |
Mundim FM, Pringle EG (2018). Whole-plant metabolic allocation under water stress. Frontiers in Plant Science, 9, 852. DOI: 10.3389/fpls.2018.00852.
DOI URL PMID |
[30] |
Olmo-García L, Kessler N, Neuweger H, Wendt K, Olmo- Peinado J, Fernández-Gutiérrez A, Baessmann C, Carrasco- Pancorbo A (2018). Unravelling the distribution of secondary metabolites in Olea europaea L.: exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules, 23, 2419. DOI: 10.3390/molecules23102419.
DOI URL |
[31] | Pu JS (2016). Determination, Extraction and Concentration Analysis of Alkaloid in Mulberry Leaves. Master degree dissertation, Southwest University, Chongqing. |
[ 蒲俊松(2016). 桑叶生物碱的检测提取及含量分析. 硕士学位论文, 西南大学, 重庆.] | |
[32] | Qin HY, Li W, Dai LY (2015). Research progress of plant metabolites function on resistant response. Chinese Agricultural Science Bulletin, 31, 256-259. |
[ 覃瀚仪, 李魏, 戴良英 (2015). 植物代谢产物在抗病反应中的功能研究进展. 中国农学通报, 31, 256-259.] | |
[33] | Qin J, Han GD, Qiao J, Wu Q, Jin YX (2016). Response of Leymus chinensis above-ground biomass to grazing intensity in different grasslands of Inner Mongolia. Chinese Journal of Grassland, 38, 76-82. |
[ 秦洁, 韩国栋, 乔江, 武倩, 靳宇曦 (2016). 内蒙古不同草地类型中羊草地上生物量对放牧强度的响应. 中国草地学报, 38, 76-82.] | |
[34] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI URL |
[35] |
Smith MD, Knapp AK (2003). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509-517.
DOI URL |
[36] |
Srinivasa YB (2018). Breaching plant defence theories: growth rates of plants directly impact the evolution of consumption rates of herbivorous insects. Current Science, 114, 258-260.
DOI URL |
[37] |
Swemmer AM, Knapp AK (2008). Defoliation synchronizes aboveground growth of co-occurring C4 grass species. Ecology, 89, 2860-2867.
DOI URL PMID |
[38] |
van Soest PJ (1967). Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 26, 119-128.
DOI URL |
[39] | Xu R, Nan ZB, Zhou YF, Li CJ (2012). Distribution and seasonal dynamics of ergot alkaloids in Elymus dahuricus- endophytic fungus symbiont. Acta Prataculturae Sinica, 21, 84-92. |
[ 徐瑞, 南志标, 周雁飞, 李春杰 (2012). 披碱草内生真菌共生体中麦角生物碱的组织分布与季节动态. 草业学报, 21, 84-92.] | |
[40] |
Xu S, Gong JR, Zhang ZY, Liu M, Wang YH, Luo QP (2014). The ecological stoichiometry of dominant species in different land uses type of grassland. Acta Prataculturae Sinica, 23, 45-53.
DOI URL |
[ 徐沙, 龚吉蕊, 张梓榆, 刘敏, 王忆慧, 罗亲普 (2014). 不同利用方式下草地优势植物的生态化学计量特征. 草业学报, 23, 45-53.] | |
[41] | Yan XF, Wang Y, Li YM (2007). Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. |
[ 阎秀峰, 王洋, 李一蒙 (2007). 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[42] |
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23, 762. DOI: 10.3390/molecules 23040762.
DOI URL |
[43] |
Zhai ZW, Gong JR, Luo QP, Pan Y, Bao Y, Xu S, Liu M, Yang LL (2017). Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China. Chinese Journal of Plant Ecology, 41, 196-208.
DOI URL |
[ 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽 (2017). 氮添加对内蒙古温带草原羊草光合特性的影响. 植物生态学报, 41, 196-208.] | |
[44] | Zhao G, Cui ZR (1999). Selective grazing of animals and the response of plants. Grassland of China, 21, 62-67. |
[ 赵钢, 崔泽仁 (1999). 家畜的选择性采食对草地植物的反应. 中国草地, 21, 62-67.] | |
[45] |
Zhao Q, Dixon RA (2011). Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science, 16, 227-233.
DOI URL |
[46] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL PMID |
[47] |
Zhou SQ, Lou YR, Tzin V, Jander G (2015). Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 169, 1488-1498.
DOI URL PMID |
[1] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[2] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[3] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[4] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[5] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[6] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, YAN Rui-Rui. Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis [J]. Chin J Plant Ecol, 2021, 45(12): 1292-1302. |
[7] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[8] | TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417. |
[9] | ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plant Ecol, 2018, 42(3): 317-326. |
[10] | Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis [J]. Chin J Plant Ecol, 2017, 41(3): 359-368. |
[11] | Zhan-Wei ZHAI, Ji-Rui GONG, Qin-Pu LUO, Yan PAN, Taogetao BAOYIN, Sha XU, Min LIU, Li-Li YANG. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2017, 41(2): 196-208. |
[12] | Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress [J]. Chin J Plan Ecolo, 2017, 41(11): 1199-1207. |
[13] | Li-Li YANG, Ji-Rui GONG, Yi-Hui WANG, Min LIU, Qin-Pu LUO, Sha XU, Yan PAN, Zhan-Wei ZHAI. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(8): 748-759. |
[14] | Yong-Qiang LI, Zhi-Guo LI, Zhi DONG, Zhong-Wu WANG, Zhi-Qiang QU, Guo-Dong HAN. Effects of grazing intensity on windblown sediment mass flux and particle size distribution in the desert steppe of Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(10): 1003-1014. |
[15] | ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plant Ecol, 2016, 40(1): 36-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn