Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (1): 68-79.DOI: 10.17521/cjpe.2023.0120 cstr: 32100.14.cjpe.2023.0120
Special Issue: 植被生态学
• Research Articles • Previous Articles Next Articles
CHEN Zhao-Quan1,2,3, WANG Ming-Hui1,3, HU Zi-Han1,3, LANG Xue-Dong1,3, HE Yun-Qiong4, LIU Wan-De1,3,*()
Received:
2023-05-04
Accepted:
2023-11-09
Online:
2024-01-20
Published:
2023-11-09
Contact:
(Supported by:
CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China[J]. Chin J Plant Ecol, 2024, 48(1): 68-79.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0120
序号 Order | 科 Family | 属 Genus | 物种 Species | 重要值 Important value (%) | 多度(株) Abundance |
---|---|---|---|---|---|
1 | 壳斗科 Fagaceae | 锥属 Castanopsis | 短刺锥 Castanopsis echidnocarpa | 35.86 | 1 349 |
2 | 壳斗科 Fagaceae | 锥属 Castanopsis | 枹丝锥 Castanopsis calathiformis | 28.11 | 1 258 |
3 | 樟科 Lauraceae | 木姜子属 Litsea | 红叶木姜子 Litsea rubescens | 20.68 | 575 |
4 | 卫矛科 Celastraceae | 南蛇藤属 Celastrus | 独子藤 Celastrus monospermus | 11.73 | 287 |
5 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 粉背菝葜 Smilax hypoglauca | 7.18 | 182 |
6 | 豆科 Fabaceae | 巴豆藤属 Craspedolobium | 巴豆藤 Craspedolobium schochii | 5.75 | 125 |
7 | 买麻藤科 Gnetaceae | 买麻藤属 Gnetum | 买麻藤 Gnetum montanum | 5.60 | 116 |
8 | 樟科 Lauraceae | 润楠属 Machilus | 红梗润楠 Machilus rufipes | 5.53 | 153 |
9 | 壳斗科 Fagaceae | 柯属 Lithocarpus | 泥柯 Lithocarpus fenestratus | 5.11 | 152 |
10 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 抱茎菝葜 Smilax ocreata | 3.02 | 106 |
Table 1 Important value and abundance of seedling species in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China
序号 Order | 科 Family | 属 Genus | 物种 Species | 重要值 Important value (%) | 多度(株) Abundance |
---|---|---|---|---|---|
1 | 壳斗科 Fagaceae | 锥属 Castanopsis | 短刺锥 Castanopsis echidnocarpa | 35.86 | 1 349 |
2 | 壳斗科 Fagaceae | 锥属 Castanopsis | 枹丝锥 Castanopsis calathiformis | 28.11 | 1 258 |
3 | 樟科 Lauraceae | 木姜子属 Litsea | 红叶木姜子 Litsea rubescens | 20.68 | 575 |
4 | 卫矛科 Celastraceae | 南蛇藤属 Celastrus | 独子藤 Celastrus monospermus | 11.73 | 287 |
5 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 粉背菝葜 Smilax hypoglauca | 7.18 | 182 |
6 | 豆科 Fabaceae | 巴豆藤属 Craspedolobium | 巴豆藤 Craspedolobium schochii | 5.75 | 125 |
7 | 买麻藤科 Gnetaceae | 买麻藤属 Gnetum | 买麻藤 Gnetum montanum | 5.60 | 116 |
8 | 樟科 Lauraceae | 润楠属 Machilus | 红梗润楠 Machilus rufipes | 5.53 | 153 |
9 | 壳斗科 Fagaceae | 柯属 Lithocarpus | 泥柯 Lithocarpus fenestratus | 5.11 | 152 |
10 | 菝葜科 Smilacaceae | 菝葜属 Smilax | 抱茎菝葜 Smilax ocreata | 3.02 | 106 |
Fig. 2 Results of stepwise community assembly models for different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. DA, dispersal assembly; HF, habitat filtering; LS, limiting similarity.
指标 Index | 短刺锥样方 Castanopsis echidnocarpa plot | 枹丝锥样方 Castanopsis calathiformis plot | 混合优势种样方 Mixed-dominant species plot | 非优势种样方 Non-dominant species plot | |
---|---|---|---|---|---|
功能多样性 Functional diversity | Rao’Q | 3.22 ± 0.09b | 2.91 ± 0.17b | 2.29 ± 0.16c | 4.07 ± 0.11a |
优势种相对多度 Relative abundance of dominant species | RA | 0.46 ± 0.01c | 0.58 ± 0.03b | 0.72 ± 0.02a | 0 |
功能性状 Functional trait | SLA | 171.81 ± 1.61b | 205.77 ± 2.68a | 179.62 ± 1.95b | 213.39 ± 2.71a |
LT | 0.131 ± 0.001b | 0.109 ± 0.002c | 0.109 ± 0.002c | 0.150 ± 0.002a | |
SSL | 66.09 ± 0.91a | 51.80 ± 1.24c | 56.93 ± 1.22b | 58.14 ± 1.50b | |
RMF | 0.428 ± 0.003a | 0.406 ± 0.004b | 0.413 ± 0.002b | 0.408 ± 0.004b | |
LF | 1.62 ± 0.03b | 1.50 ± 0.04c | 1.30 ± 0.03d | 2.17 ± 0.03a | |
PPH | 16.45 ± 0.30a | 12.98 ± 0.45b | 13.56 ± 0.34b | 17.17 ± 0.53a |
Table 2 Diversity and functional traits of different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China (mean ± SE)
指标 Index | 短刺锥样方 Castanopsis echidnocarpa plot | 枹丝锥样方 Castanopsis calathiformis plot | 混合优势种样方 Mixed-dominant species plot | 非优势种样方 Non-dominant species plot | |
---|---|---|---|---|---|
功能多样性 Functional diversity | Rao’Q | 3.22 ± 0.09b | 2.91 ± 0.17b | 2.29 ± 0.16c | 4.07 ± 0.11a |
优势种相对多度 Relative abundance of dominant species | RA | 0.46 ± 0.01c | 0.58 ± 0.03b | 0.72 ± 0.02a | 0 |
功能性状 Functional trait | SLA | 171.81 ± 1.61b | 205.77 ± 2.68a | 179.62 ± 1.95b | 213.39 ± 2.71a |
LT | 0.131 ± 0.001b | 0.109 ± 0.002c | 0.109 ± 0.002c | 0.150 ± 0.002a | |
SSL | 66.09 ± 0.91a | 51.80 ± 1.24c | 56.93 ± 1.22b | 58.14 ± 1.50b | |
RMF | 0.428 ± 0.003a | 0.406 ± 0.004b | 0.413 ± 0.002b | 0.408 ± 0.004b | |
LF | 1.62 ± 0.03b | 1.50 ± 0.04c | 1.30 ± 0.03d | 2.17 ± 0.03a | |
PPH | 16.45 ± 0.30a | 12.98 ± 0.45b | 13.56 ± 0.34b | 17.17 ± 0.53a |
Fig. 3 Coefficient of variation of functional traits for different seedling plots in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. LF, life form; LT, leaf thickness; PPH, potential plant height; RMF, root mass fraction; SLA, specific leaf area; SSL, specific stem length.
Fig. 4 Multiple regression analyses of functional traits and Rao’s quadratic entropy (Rao’Q) in different seedling plots of a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China. Black diamonds represent variables that have a significant effect on Rao’Q (p < 0.05), while grey diamonds are the opposite. LF, life form; LT, leaf thickness; PPH, potential plant height; RMF, root mass fraction; SLA, specific leaf area; SSL, specific stem length.
[1] |
Adler PB, HilleRisLambers J, Levine JM (2007). A niche for neutrality. Ecology Letters, 10, 95-104.
PMID |
[2] |
Ahmad M, Rosbakh S, Bucher SF, Sharma P, Rathee S, Uniyal SK, Batish DR, Singh HP (2023). The role of floral traits in community assembly processes at high elevations in the Himalayas. Journal of Ecology, 111, 1107-1119.
DOI URL |
[3] | Angulo DF, Tun-Garrido J, Arceo-Gómez G, Munguía-Rosas MA, Parra-Tabla V (2018). Patterns of phylogenetic community structure of sand dune plant communities in the Yucatan Peninsula: the role of deterministic and stochastic processes in community assembly. Plant Ecology & Diversity, 11, 515-526. |
[4] |
Augspurger CK (1984). Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65, 1705-1712.
DOI URL |
[5] |
Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT, Smith MD (2019). Demystifying dominant species. New Phytologist, 223, 1106-1126.
DOI PMID |
[6] |
Bin Y, Ye WH, Cao HL, Huang ZL, Lian JY (2011). Seedling distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain. Biodiversity Science, 19, 127-133.
DOI |
[宾粤, 叶万辉, 曹洪麟, 黄忠良, 练琚愉 (2011). 鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布. 生物多样性, 19, 127-133.]
DOI |
|
[7] | Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021). Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603. |
[8] |
Botta-Dukát Z, Czúcz B (2016). Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126.
DOI URL |
[9] |
Chisholm RA, Pacala SW (2010). Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 107, 15821-15825.
DOI PMID |
[10] | Clark DB, Palmer MW, Clark DA (1999). Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675. |
[11] |
Connor EF, Simberloff D (1979). The assembly of species communities: chance or competition? Ecology, 60, 1132-1140.
DOI URL |
[12] | Cordero RD, Jackson DA (2019). Species-pair associations, null models, and tests of mechanisms structuring ecological communities. Ecosphere, 10, e02797. DOI: 10.1002/ecs2.2797. |
[13] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[14] | Delecti Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae (1959-2004). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. |
[中国科学院中国植物志编辑委员会 (1959-2004). 中国植物志. 科学出版社, 北京.] | |
[15] | Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23. |
[16] |
Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS (2016). On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. Journal of Ecology, 104, 1488-1503.
DOI URL |
[17] |
Gilbert B, Turkington R, Srivastava DS (2009). Dominant species and diversity: linking relative abundance to controls of species establishment. The American Naturalist, 174, 850-862.
DOI PMID |
[18] |
Gong X, Jarvie S, Zhang Q, Liu Q, Yan Y, Su N, Han P, Li F (2023). Community assembly of plant, soil bacteria, and fungi vary during the restoration of an ecosystem threatened by desertification. Journal of Soils and Sediments, 23, 459-472.
DOI |
[19] |
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012). Ecological assembly rules in plant communities— Approaches, patterns and prospects. Biological Reviews, 87, 111-127.
DOI URL |
[20] | He P, Fontana S, Ma C, Liu H, Xu L, Wang R, Jiang Y, Li M (2023). Using leaf traits to explain species co-existence and its consequences for primary productivity across a forest-steppe ecotone. Science of the Total Environment, 859, 160139. DOI: 10.1016/j.scitotenv.2022.160139. |
[21] |
Hu Y, Sha L, Blanchet FG, Zhang J, Tang Y, Lan G, Cao M (2012). Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos, 121, 952-960.
DOI URL |
[22] |
Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172.
DOI URL |
[23] |
Hubbell SP (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
PMID |
[24] |
Iida Y, Swenson NG (2020). Towards linking species traits to demography and assembly in diverse tree communities: revisiting the importance of size and allocation. Ecological Research, 35, 947-966.
DOI URL |
[25] | Jin Y, Qian H, Yu MJ (2015). Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. PLoS ONE, 10, e0131162. DOI: 10.1371/journal.pone.0131162. |
[26] | Johnson DJ, Condit R, Hubbell SP, Comita LS (2017). Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 284, 20172210. DOI: 10.1098/rspb.2017.2210. |
[27] |
Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283.
PMID |
[28] |
Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386-398.
PMID |
[29] | Li L, Wei SG, Ma JM, Ye WH, Lian JY (2020). Relative effects of habitat heterogeneity and dispersal limitation on species diversity maintenance in south subtropical evergreen broad-leaved forest. Scientia Silvae Sinicae, 56(10), 1-10. |
[李林, 魏识广, 马姜明, 叶万辉, 练琚愉 (2020). 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用. 林业科学, 56(10), 1-10.] | |
[30] |
Li SF, Lang XD, Huang XB, Wang YH, Liu WD, Xu CH, Su JR (2020). Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Pu’er, Yunnan, China. Chinese Journal of Plant Ecology, 44, 236-247.
DOI URL |
[李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣 (2020). 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44, 236-247.]
DOI |
|
[31] | Li XL, Wang H, Zheng Z, Lin LX, Deng XB, Cao M (2009). Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in Xishuangbanna, SW China. Chinese Journal of Plant Ecology, 33, 658-671. |
[李晓亮, 王洪, 郑征, 林露湘, 邓晓保, 曹敏 (2009). 西双版纳热带森林树种幼苗的组成、空间分布和旱季存活. 植物生态学报, 33, 658-671.]
DOI |
|
[32] |
Lin L, Comita LS, Zheng Z, Cao M (2012). Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914.
DOI URL |
[33] |
Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011). Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175-184.
DOI URL |
[34] |
Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62.
DOI URL |
[刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.]
DOI |
|
[35] |
MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
DOI URL |
[36] |
McNaughton SJ, Wolf LL (1970). Dominance and the niche in ecological systems. Science, 167, 131-139.
PMID |
[37] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
DOI PMID |
[38] |
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, et al. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301-312.
DOI PMID |
[39] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI PMID |
[40] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
PMID |
[41] |
Rosindell J, Hubbell SP, Etienne RS (2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology Evolution, 26, 340-348.
DOI URL |
[42] |
Sevillano I, Short I, Grant J, O’Reilly C (2016). Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. Forest Ecology and Management, 374, 11-19.
DOI URL |
[43] | Shang H, Wang YQ, Han BC, Mi XC, Chen L, Liang Y, Ma KP (2023). Effects of functional phylogeny of light- response-related orthologous genes on seedling survival in a subtropical forest. Forest Ecosystems, 10, 100087. DOI: 10.1016/j.fecs.2023.100087. |
[44] |
Song X, Cao M, Kitching RL, Tang Y, Sun Z, Nakamura A, Laidlaw MJ, Yang J (2019). Environmental and spatial contributions to seedling and adult tree assembly across tropical, subtropical and subalpine elevational gradients. Journal of Plant Ecology, 12, 103-112.
DOI |
[45] | Song XY, Li JQ, Zhang WF, Tang Y, Sun ZH, Cao M (2016). Variant responses of tree seedling to seasonal drought stress along an elevational transect in tropical montane forests. Scientific Reports, 6, 36438. DOI: 10.1038/srep36438. |
[46] |
Song X, Yang J, Cao M, Lin L, Sun Z, Wen H, Swenson NG (2021). Traits mediate a trade-off in seedling growth response to light and conspecific density in a diverse subtropical forest. Journal of Ecology, 109, 703-713.
DOI URL |
[47] |
van der Plas F, Janzen T, Ordonez A, Fokkema W, Reinders J, Etienne RS, Olff H (2015). A new modeling approach estimates the relative importance of different community assembly processes. Ecology, 96, 1502-1515.
DOI URL |
[48] |
Vanderlei RS, Barros MF, Leal IR, Tabarelli M (2022). Impoverished woody seedling assemblages and the regeneration of Caatinga dry forest in a human-modified landscape. Biotropica, 54, 670-681.
DOI URL |
[49] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037.
DOI |
[50] |
Wang YH, Li SF, Lang XD, Huang XB, Liu WD, Xu CH, Su JR (2020). Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad-leaved forest in Puʼer, Yunnan, China. Chinese Journal of Plant Ecology, 44, 1015-1027.
DOI URL |
[王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣 (2020). 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响. 植物生态学报, 44, 1015-1027.] | |
[51] | Webb CO, Gilbert GS, Donoghue MJ (2006). Phylodiversity- dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, 123-131. |
[52] | Wills J, Herbohn J, Wells J, Maranguit Moreno MO, Ferraren A, Firn J (2021). Seedling diversity in actively and passively restored tropical forest understories. Ecological Applications, 31, e02286. DOI: 10.1002/eap.2286. |
[53] | Worthy SJ, Laughlin DC, Zambrano J, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG (2020). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101, e03007. DOI: 10.1002/ecy.3007. |
[54] | Xu YZ, Wan D, Xiao ZQ, Wu H, Jiang MX (2019). Spatio-temporal dynamics of seedling communities are determined by seed input and habitat filtering in a subtropical montane forest. Forest Ecology and Management, 449, 117475. DOI: 10.1016/j.foreco.2019.117475. |
[55] | Yang QS, Shen GC, Liu HM, Wang ZH, Ma ZP, Fang XF, Zhang J, Wang XH (2016). Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: life stage matters. PLoS ONE, 11, e0156326. DOI: 10.1371/journal.pone.0156326. |
[56] |
Yu M, Sun OJ (2013). Effects of forest patch type and site on herb-layer vegetation in a temperate forest ecosystem. Forest Ecology and Management, 300, 14-20.
DOI URL |
[57] | Zhao LJ, Xiang WH, Li JX, Liu WQ, Hu YT, Wu HL, Zhang YL, Cheng X, Wang WJ, Wang WT, Ouyang S (2022). “Realistic strategies” and neutral processes drive the community assembly based on leaf functional traits in a subtropical evergreen broad-leaved forest. Ecology and Evolution, 12, e9323. DOI: 10.1002/ece3.9323. |
[1] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[2] | CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[3] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[4] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[5] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[6] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[7] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[8] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[9] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[10] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, XIN Xiao-Ping, YAN Yu-Chun, YAN Rui-Rui. Dynamic response of functional traits to fertilization in Leymus chinensis [J]. Chin J Plant Ecol, 2023, 47(7): 943-953. |
[11] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[12] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[13] | CHEN Xue-Chun, LIU Hong, ZHU Shao-Qi, SUN Ming-Yao, YU Zhen-Rong, WANG Qing-Gang. Intraspecific variations in plant functional traits of four common herbaceous species under different abandoned years and their relevant driving factors in Lijiang River Basin, China [J]. Chin J Plant Ecol, 2023, 47(4): 559-570. |
[14] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[15] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn