Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (6): 822-832.DOI: 10.17521/cjpe.2022.0195
Special Issue: 全球变化与生态系统; 生态系统结构与功能; 青藏高原植物生态学:群落生态学; 生物多样性
• Research Articles • Previous Articles Next Articles
LÜ Zi-Li1, LIU Bin1,*(), CHANG Feng1, MA Zi-Jing1, CAO Qiu-Mei2
Received:
2022-05-16
Accepted:
2022-12-09
Online:
2023-06-20
Published:
2022-12-26
Contact:
* (About author:
** Current workplace: Putian Licheng Middle School, Fujian 351199.
Supported by:
LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient[J]. Chin J Plant Ecol, 2023, 47(6): 822-832.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0195
编号 Plot No. | 海拔 Altitude (m) | 经度 Longitude (° E) | 纬度 Latitude (° N) | 坡向 Aspect | 坡度 Slope (°) |
---|---|---|---|---|---|
2200-1 | 2 194.12 | 83.86 | 42.35 | 阳坡 Sunny slope | 13.2 |
2200-2 | 2 203.71 | 83.86 | 42.34 | 阳坡 Sunny slope | 3.1 |
2200-3 | 2 210.63 | 83.85 | 42.34 | 阳坡 Sunny slope | 5.4 |
2400-1 | 2 406.20 | 83.53 | 42.68 | 阳坡 Sunny slope | 7.2 |
2400-2 | 2 400.90 | 83.53 | 42.68 | 阳坡 Sunny slope | 12.1 |
2400-3 | 2 415.20 | 84.39 | 43.05 | 阳坡 Sunny slope | 10.7 |
2600-1 | 2 590.42 | 84.05 | 43.05 | 阳坡 Sunny slope | 7.9 |
2600-2 | 2 602.60 | 82.97 | 42.86 | 阳坡 Sunny slope | 9.4 |
2600-3 | 2 597.20 | 84.05 | 42.85 | 阳坡 Sunny slope | 6.7 |
2800-1 | 2 794.62 | 82.99 | 42.86 | 阳坡 Sunny slope | 3.9 |
2800-2 | 2 817.50 | 82.99 | 42.87 | 阳坡 Sunny slope | 8.4 |
2800-3 | 2 802.00 | 82.97 | 42.87 | 阳坡 Sunny slope | 17.5 |
3000-1 | 3 052.70 | 83.47 | 42.51 | 阳坡 Sunny slope | 10.6 |
3000-2 | 3 062.10 | 83.47 | 42.51 | 阳坡 Sunny slope | 9.5 |
3000-3 | 3 004.12 | 83.03 | 42.51 | 阳坡 Sunny slope | 7.7 |
Table 1 List of geographic information for sample plots in Bayanbulak alpine meadow
编号 Plot No. | 海拔 Altitude (m) | 经度 Longitude (° E) | 纬度 Latitude (° N) | 坡向 Aspect | 坡度 Slope (°) |
---|---|---|---|---|---|
2200-1 | 2 194.12 | 83.86 | 42.35 | 阳坡 Sunny slope | 13.2 |
2200-2 | 2 203.71 | 83.86 | 42.34 | 阳坡 Sunny slope | 3.1 |
2200-3 | 2 210.63 | 83.85 | 42.34 | 阳坡 Sunny slope | 5.4 |
2400-1 | 2 406.20 | 83.53 | 42.68 | 阳坡 Sunny slope | 7.2 |
2400-2 | 2 400.90 | 83.53 | 42.68 | 阳坡 Sunny slope | 12.1 |
2400-3 | 2 415.20 | 84.39 | 43.05 | 阳坡 Sunny slope | 10.7 |
2600-1 | 2 590.42 | 84.05 | 43.05 | 阳坡 Sunny slope | 7.9 |
2600-2 | 2 602.60 | 82.97 | 42.86 | 阳坡 Sunny slope | 9.4 |
2600-3 | 2 597.20 | 84.05 | 42.85 | 阳坡 Sunny slope | 6.7 |
2800-1 | 2 794.62 | 82.99 | 42.86 | 阳坡 Sunny slope | 3.9 |
2800-2 | 2 817.50 | 82.99 | 42.87 | 阳坡 Sunny slope | 8.4 |
2800-3 | 2 802.00 | 82.97 | 42.87 | 阳坡 Sunny slope | 17.5 |
3000-1 | 3 052.70 | 83.47 | 42.51 | 阳坡 Sunny slope | 10.6 |
3000-2 | 3 062.10 | 83.47 | 42.51 | 阳坡 Sunny slope | 9.5 |
3000-3 | 3 004.12 | 83.03 | 42.51 | 阳坡 Sunny slope | 7.7 |
海拔 Altitude (m) | 物种丰富度 (平均值±标准差) Specie richness (mean ± SD) | 优势种(重要值) Dominant species (importance value) |
---|---|---|
2 200 | 15.00 ± 2.00a | 薹草 Carex sp. (0.212 5) |
线叶嵩草 Kobresia capillifolia (0.187 5) | ||
2 400 | 14.49 ± 2.33ab | 丘陵老鹳草 Geranium collinum (0.212 2) |
线叶嵩草 Kobresia capillifolia (0.186 3) | ||
2 600 | 16.13 ± 3.14ab | 线叶嵩草 Kobresia capillifolia (0.251 6) |
薹草 Carex sp. (0.145 8) | ||
2 800 | 15.17 ± 1.47a | 珠芽蓼 Polygonum viviparum (0.276 5) |
针茅 Stipa sp. (0.266 0) | ||
3 000 | 12.25 ± 2.87b | 珠芽蓼 Polygonum viviparum (0.349 0) |
丘陵老鹳草 Geranium collinum (0.188 1) |
Table 2 Composition of dominant species of plant community in Bayanbulak alpine meadow at different altitudes
海拔 Altitude (m) | 物种丰富度 (平均值±标准差) Specie richness (mean ± SD) | 优势种(重要值) Dominant species (importance value) |
---|---|---|
2 200 | 15.00 ± 2.00a | 薹草 Carex sp. (0.212 5) |
线叶嵩草 Kobresia capillifolia (0.187 5) | ||
2 400 | 14.49 ± 2.33ab | 丘陵老鹳草 Geranium collinum (0.212 2) |
线叶嵩草 Kobresia capillifolia (0.186 3) | ||
2 600 | 16.13 ± 3.14ab | 线叶嵩草 Kobresia capillifolia (0.251 6) |
薹草 Carex sp. (0.145 8) | ||
2 800 | 15.17 ± 1.47a | 珠芽蓼 Polygonum viviparum (0.276 5) |
针茅 Stipa sp. (0.266 0) | ||
3 000 | 12.25 ± 2.87b | 珠芽蓼 Polygonum viviparum (0.349 0) |
丘陵老鹳草 Geranium collinum (0.188 1) |
Fig. 1 Distribution of functional diversity index of plant communities at different altitudes in Bayanbulak alpine meadow (mean ± SD). FDis, functional dispersion index; FEve, functional evenness index; FRic, functional richness index; Rao’Q, Rao’s quadratic entropy. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 2 Correlation analysis between community functional diversity index and single elosystem function (SEF) and elosystem multifuctionality (EMF) index in Bayanbulak alpine meadow. FDis, functional dispersion index; FEve, functional evenness index; FRic, functional richness index; NCI, nutrient cycling index; PGI, plant growth index; Rao’Q, Rao’s quadratic entropy; SCSI, soil carbon stock index. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 3 Regression analysis of community functional diversity index and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow. FDis, functional dispersion index; FEve, functional uniformity index; FRic, functional richness index; Rao’Q, Rao’s quadratic entropy; the gray part represents the confidence interval.
海拔 (m) Altitude | 生态系统功能指数 Ecosystem function index | 功能多样性指数 Functional diversity index | |||
---|---|---|---|---|---|
FRic | FDis | FEve | Rao’Q | ||
2 200 | EMF | 0.025 0* | 0.882 9* | 0.139 4 | 0.352 2* |
植物生长 Plant growth | 0.984 9* | 0.947 7* | 0.904 3 | -0.705 4 | |
养分循环 Nutrient cycling | 0.852 0* | 0.638 2* | 0.890 6 | -0.707 8 | |
有机碳蓄积 Soil carbon stock | 0.918 4*** | 0.820 7* | 0.934 5 | -0.577 2 | |
2 400 | EMF | 0.957 3** | 0.926 7* | -0.280 9 | 0.162 8 |
植物生长 Plant growth | 0.938 5*** | 0.843 0*** | -0.248 2 | 0.201 0 | |
养分循环 Nutrient cycling | 0.867 3*** | 0.968 4*** | -0.323 6 | 0.011 4 | |
有机碳蓄积 Soil carbon stock | -0.568 1* | -0.642 5** | -0.186 3 | 0.137 0 | |
2 600 | EMF | 0.080 7* | 0.244 9 | 0.265 8 | 0.152 0 |
植物生长 Plant growth | 0.099 7* | 0.004 5 | -0.100 6 | 0.176 0 | |
养分循环 Nutrient cycling | 0.168 0 | 0.078 8** | 0.262 3** | 0.184 9 | |
有机碳蓄积 Soil carbon stock | 0.171 4** | 0.080 3* | 0.257 2* | 0.268 7 | |
2 800 | EMF | 0.585 7** | 0.222 7 | 0.373 7 | -0.449 0 |
植物生长 Plant growth | 0.345 3 | 0.194 2 | -0.004 2 | -0.238 8 | |
养分循环 Nutrient cycling | 0.961 4*** | 0.504 5 | 0.203 5 | -0.161 9 | |
有机碳蓄积 Soil carbon stock | 0.523 5* | 0.220 6 | 0.495 6 | -0.486 0 | |
3 000 | EMF | 0.868 2* | 0.918 5* | -0.044 4 | 0.695 3* |
植物生长 Plant growth | 0.952 1** | 0.975 1*** | 0.054 0 | 0.690 9 | |
养分循环 Nutrient cycling | 0.782 2** | 0.838 6*** | -0.267 6 | 0.668 2** | |
有机碳蓄积 Soil carbon stock | 0.856 8* | 0.927 4** | 0.005 6 | 0.734 5** |
Table 3 Correlation analysis between functional diversity index and ecosystem multifunctional index (EMF) at different altitudes in Bayanbulak alpine meadow
海拔 (m) Altitude | 生态系统功能指数 Ecosystem function index | 功能多样性指数 Functional diversity index | |||
---|---|---|---|---|---|
FRic | FDis | FEve | Rao’Q | ||
2 200 | EMF | 0.025 0* | 0.882 9* | 0.139 4 | 0.352 2* |
植物生长 Plant growth | 0.984 9* | 0.947 7* | 0.904 3 | -0.705 4 | |
养分循环 Nutrient cycling | 0.852 0* | 0.638 2* | 0.890 6 | -0.707 8 | |
有机碳蓄积 Soil carbon stock | 0.918 4*** | 0.820 7* | 0.934 5 | -0.577 2 | |
2 400 | EMF | 0.957 3** | 0.926 7* | -0.280 9 | 0.162 8 |
植物生长 Plant growth | 0.938 5*** | 0.843 0*** | -0.248 2 | 0.201 0 | |
养分循环 Nutrient cycling | 0.867 3*** | 0.968 4*** | -0.323 6 | 0.011 4 | |
有机碳蓄积 Soil carbon stock | -0.568 1* | -0.642 5** | -0.186 3 | 0.137 0 | |
2 600 | EMF | 0.080 7* | 0.244 9 | 0.265 8 | 0.152 0 |
植物生长 Plant growth | 0.099 7* | 0.004 5 | -0.100 6 | 0.176 0 | |
养分循环 Nutrient cycling | 0.168 0 | 0.078 8** | 0.262 3** | 0.184 9 | |
有机碳蓄积 Soil carbon stock | 0.171 4** | 0.080 3* | 0.257 2* | 0.268 7 | |
2 800 | EMF | 0.585 7** | 0.222 7 | 0.373 7 | -0.449 0 |
植物生长 Plant growth | 0.345 3 | 0.194 2 | -0.004 2 | -0.238 8 | |
养分循环 Nutrient cycling | 0.961 4*** | 0.504 5 | 0.203 5 | -0.161 9 | |
有机碳蓄积 Soil carbon stock | 0.523 5* | 0.220 6 | 0.495 6 | -0.486 0 | |
3 000 | EMF | 0.868 2* | 0.918 5* | -0.044 4 | 0.695 3* |
植物生长 Plant growth | 0.952 1** | 0.975 1*** | 0.054 0 | 0.690 9 | |
养分循环 Nutrient cycling | 0.782 2** | 0.838 6*** | -0.267 6 | 0.668 2** | |
有机碳蓄积 Soil carbon stock | 0.856 8* | 0.927 4** | 0.005 6 | 0.734 5** |
关系 Regression | 完全中介模型 Full mediation model (df = 15, SRMR = 0.08, GFI = 0.92) | 部分中介模型 Partial mediation model (df = 13, SRMR = 0.08, GFI = 0.81) | ||||
---|---|---|---|---|---|---|
Est. std | SE | p | Est. std | SE | p | |
Alt-FRic | 0.067 | 0.127 | 0.008 | 0.004 | 0.059 | 0.952 |
Alt-FEve | -0.044 | 0.111 | 0.147 | -0.015 | 0.029 | 0.606 |
Alt-FDis | -0.049 | 0.129 | 0.309 | -0.080 | 0.058 | 0.165 |
Alt-Rao’Q | -0.980 | 0.023 | <0.001 | -0.980 | 0.023 | 0.000 |
FRic-EMF | 0.475 | 0.275 | <0.001 | 0.506 | 0.161 | 0.002 |
FEve-EMF | 0.127 | 0.089 | <0.001 | 0.143 | 0.084 | 0.087 |
FDis-EMF | 0.283 | 0.274 | <0.001 | 0.233 | 0.167 | 0.163 |
Rao’Q-EMF | 0.050 | 0.570 | 0.017 | 0.067 | 0.068 | 0.325 |
Alt-EMF | 0.007 | 0.400 | 0.857 |
Table 4 A summary of structural equation model of the effect of altitude on functional diversity and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow
关系 Regression | 完全中介模型 Full mediation model (df = 15, SRMR = 0.08, GFI = 0.92) | 部分中介模型 Partial mediation model (df = 13, SRMR = 0.08, GFI = 0.81) | ||||
---|---|---|---|---|---|---|
Est. std | SE | p | Est. std | SE | p | |
Alt-FRic | 0.067 | 0.127 | 0.008 | 0.004 | 0.059 | 0.952 |
Alt-FEve | -0.044 | 0.111 | 0.147 | -0.015 | 0.029 | 0.606 |
Alt-FDis | -0.049 | 0.129 | 0.309 | -0.080 | 0.058 | 0.165 |
Alt-Rao’Q | -0.980 | 0.023 | <0.001 | -0.980 | 0.023 | 0.000 |
FRic-EMF | 0.475 | 0.275 | <0.001 | 0.506 | 0.161 | 0.002 |
FEve-EMF | 0.127 | 0.089 | <0.001 | 0.143 | 0.084 | 0.087 |
FDis-EMF | 0.283 | 0.274 | <0.001 | 0.233 | 0.167 | 0.163 |
Rao’Q-EMF | 0.050 | 0.570 | 0.017 | 0.067 | 0.068 | 0.325 |
Alt-EMF | 0.007 | 0.400 | 0.857 |
Fig. 4 Structural equation model diagram of the effect of altitude on functional diversity index and ecosystem multifunctional index (EMF) in Bayanbulak alpine meadow. Alt, altitude; FDis, functional dispersion; FEve, functional uniformity; FRic, functional richness; Rao’Q, Rao’s quadratic entropy. The number next to the arrow in the plot is the normalized path coefficient (positive values represent positive effects, negative values represent negative effects). A solid line indicates a significant correlation, and a dashed line indicates no significant correlation. The thickness of the arrow represents significant difference (thick represents high significance, thin represents low significance). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] |
Aiba M, Takafumi H, Hiura T (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits. Journal of Ecology, 100, 950-957.
DOI URL |
[2] | Bao SD (2005). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 9-54. |
[鲍士旦 (2005). 土壤农化分析. 3版. 中国农业出版社, 北京. 9-54.] | |
[3] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
[4] |
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
DOI PMID |
[5] | Chang F (2021). Relationship Between Plant Diversity and Productivity of Gentianella turkestanorum Adaptive Communities in Bayinbulak Mountains of Xinjiang. Master degree dissertation, Xinjiang Normal University, Ürümqi. |
[常凤 (2021). 天山巴音布鲁克新疆假龙胆适生地群落植物多样性与生产力的关系. 硕士学位论文, 新疆师范大学, 乌鲁木齐.] | |
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] | Dong SK, Tang L, Zhang XF, Liu SL, Liu QR, Su XK, Zhang Y, Wu XY, Zhao ZZ, Li Y, Sha W (2017). Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 37, 1472-1483. |
[董世魁, 汤琳, 张相锋, 刘世梁, 刘全儒, 苏旭坤, 张勇, 武晓宇, 赵珍珍, 李钰, 沙威 (2017). 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 37, 1472-1483.] | |
[8] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
DOI PMID |
[9] |
Guo J, Zhang Q, Song MH, Shi Y, Zhou BR, Wang WY, Li YK, Zhao XQ, Zhou HK (2020). Status and function improvement technology of the grassland ecosystem in the upper Yellow River Basin. Acta Agrestia Sinica, 28, 1173-1184.
DOI |
[郭婧, 张骞, 宋明华, 师燕, 周秉荣, 王文颖, 李以康, 赵新全, 周华坤 (2020). 黄河上游草地生态现状及功能提升技术. 草地学报, 28, 1173-1184.]
DOI |
|
[10] |
Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI |
[11] |
Hou ZF, Lv GH, Jiang LM (2021). Functional diversity can predict ecosystem functions better than dominant species: the case of desert plants in the Ebinur Lake Basin. Sustainability, 13, 2858. DOI: 10.3390/su13052858.
DOI |
[12] | Huang C, Wei H, Wu KJ, He XR, Wang P, Qi YC, Qi HD (2020). The functional divernity of understory plants during the trausomaion from Pinus massoniana to Cinnamomum camphora forest. Acta Ecologica Sinica, 40, 4573-4584. |
[黄超, 魏虹, 吴科君, 何欣芮, 汪鹏, 綦远才, 齐代华 (2020). 马尾松林向香樟林改造林下植物功能多样性研究. 生态学报, 40, 4573-4584.] | |
[13] |
Huang XB, Su JR, Li SF, Liu WD, Lang XD (2019). Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Scientific Reports, 9, 6979. DOI: 10.1038/s41598-019-43475-1.
DOI |
[14] |
Khalil MI, Gibson DJ, Baer SG, Willand JE (2018). Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere, 9, e02164. DOI: 10.1002/ecs2.2164.
DOI |
[15] | Klimešáová J, Latzel V, de Bello F, van Groenendael JM (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia, 80, 245-253. |
[16] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI |
[雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[17] |
Lepš J (2004). What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic and Applied Ecology, 5, 529-534.
DOI URL |
[18] | Li H, Yu YH, Long J, Li J (2021). Responses of leaf functional traits of Zanthoxylum planispinum var. dintanensis to premature senescence. Chinese Journal of Ecology, 40, 1695-1704. |
[李红, 喻阳华, 龙健, 李娟 (2021). 顶坛花椒叶片功能性状对早衰的响应. 生态学杂志, 40, 1695-1704.] | |
[19] |
Li JP, Zheng ZR, Zhao NX, Gao YB (2016). Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747.
DOI URL |
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016). 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
DOI |
|
[20] | Li RX, Ding Y, Ma WJ, Niu JM, Zhang Q (2016). Research advances in plant functional diversity and its relationship with ecosystem functions. Ecology and Environmental Science, 25, 1069-1075. |
[李瑞新, 丁勇, 马文静, 牛建明, 张庆 (2016). 植物功能多样性及其与生态系统功能关系研究进展. 生态环境学报, 25, 1069-1075.]
DOI |
|
[21] | Liu MX, Zhang GJ, Li L, Mu RL, Xu L, Yu RX (2022). Relationship between functional diversity and ecosystem multifunctionality of alpine meadow along an altitude gradient in Gannan, China. Chinese Journal of Applied Ecology, 33, 1291-1299. |
[刘旻霞, 张国娟, 李亮, 穆若兰, 徐璐, 于瑞新 (2022). 甘南高寒草甸海拔梯度上功能多样性与生态系统多功能的关系. 应用生态学报, 33, 1291-1299.]
DOI |
|
[22] | Liu MX, Zhao RD, Zhang C, Li R, Shao P (2017). Responses of physiological parameters in plants on sub-alpine meadow to slope aspects. Chinese Journal of Applied Ecology, 28, 2863-2869. |
[刘旻霞, 赵瑞东, 张灿, 李瑞, 邵鹏 (2017). 亚高寒草甸植物叶片生理指标对坡向的响应. 应用生态学报, 28, 2863-2869.]
DOI |
|
[23] | Liu Y (2021). Study on Variation in Ecosystem Multifunctionality Driven by Plant Diversity and Environmental Factors in Inner Mongolia Grassland. Master degree dissertation, Inner Mongolia University, Hohhot. |
[刘阳 (2021). 内蒙古草原生态系统多功能性变化的生物多样性与环境驱动因素研究. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[24] |
Qin H, Zhang YB, Dong G, Zhang F (2019). Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 43, 762-773.
DOI |
[秦浩, 张殷波, 董刚, 张峰 (2019). 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43, 762-773.]
DOI |
|
[25] |
Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012). Using plant functional traits to explain diversity-productivity relationships. PLoS ONE, 7, e36760. DOI: 10.1371/journal.pone.0036760.
DOI |
[26] | Sun L, Yue Y, Hu TX (2022). Research progress on the effects of disturbance on ecosystem multifunctionality. Acta Ecologica Sinica, 42, 6066-6075. |
[孙龙, 岳阳, 胡同欣(2022). 干扰对生态系统多功能性的影响研究进展. 生态学报, 42, 6066-6075.] | |
[27] |
Wondimu MT, Nigussie ZA, Yusuf MM (2021). Tree species diversity predicts aboveground carbon storage through functional diversity and functional dominance in the dry evergreen Afromontane forest of Hararghe highland, Southeast Ethiopia. Ecological Processes, 10, 47. DOI: 10.1186/s13717-021-00322-4.
DOI |
[28] | Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016). The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. |
[熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016). 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.] | |
[29] | Xu Y (2017). Plant Community Functional Diversity of Tropical Rainforests in Xishuangbanna. Master degree dissertation, Yunnan University, Kunming. |
许彧 (2017). 西双版纳热带雨林植物功能多样性研究. 硕士学位论文, 云南大学, 昆明.] | |
[30] |
Zhang ZH, Hou JH, He NP (2021). Predictability of functional diversity depends on the number of traits. Journal of Resources and Ecology, 12, 332-345.
DOI |
[1] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[2] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[3] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[4] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[5] | ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China [J]. Chin J Plant Ecol, 2023, 47(2): 275-288. |
[6] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[7] | HE Xi, FENG Qiu-Hong, ZHANG Pei-Pei, YANG Han, DENG Shao-Jun, SUN Xiao-Ping, YIN Hua-Jun. Altitudinal patterns of nutrient limiting characteristics of Abies fargesii var. faxoniana forest based on leaf and soil enzyme stoichiometry in western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(12): 1646-1657. |
[8] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[9] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[10] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[11] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[12] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[13] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[14] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[15] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn