Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (2): 208-219.DOI: 10.17521/cjpe.2021.0262
• Research Articles • Previous Articles Next Articles
QIN Hui-Jun(), JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi
Received:
2021-07-13
Accepted:
2021-11-15
Online:
2022-02-20
Published:
2021-12-13
Contact:
QIN Hui-Jun,JIAO Liang
Supported by:
QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China[J]. Chin J Plant Ecol, 2022, 46(2): 208-219.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0262
树种 Species | 采样点 Sample site | 海拔 Altitude (m) | 纬度 Longitude (N)/ 经度 Latitude (E) | 坡向 Exposure | 坡度 Slope | 平均树高 Mean tree height (m) | 平均胸径 Mean diameter at breast height (cm) | 平均冠幅 Mean crown width (m) |
---|---|---|---|---|---|---|---|---|
青海云杉 P. crassifolia | P1 | 2 850 | 38.33° 100.17° | 西北 Northwest | 17° | 14.5 | 30.8 | 4.0 |
P2 | 3 300 | 38.32° 100.18° | 北 North | 30° | 20.3 | 41.0 | 4.1 | |
祁连圆柏 J. przewalskii | P3 | 2 850 | 38.53° 100.23° | 偏北 Northerly | 31° | 7.1 | 32.0 | 4.3 |
P4 | 3 300 | 38.52° 100.21° | 偏北 Northerly | 33° | 7.6 | 37.7 | 4.0 |
Table 1 Basic characteristics of the sample sites of the study on Picea crassifolia and Juniperus przewalskii in the Qilian Mountains
树种 Species | 采样点 Sample site | 海拔 Altitude (m) | 纬度 Longitude (N)/ 经度 Latitude (E) | 坡向 Exposure | 坡度 Slope | 平均树高 Mean tree height (m) | 平均胸径 Mean diameter at breast height (cm) | 平均冠幅 Mean crown width (m) |
---|---|---|---|---|---|---|---|---|
青海云杉 P. crassifolia | P1 | 2 850 | 38.33° 100.17° | 西北 Northwest | 17° | 14.5 | 30.8 | 4.0 |
P2 | 3 300 | 38.32° 100.18° | 北 North | 30° | 20.3 | 41.0 | 4.1 | |
祁连圆柏 J. przewalskii | P3 | 2 850 | 38.53° 100.23° | 偏北 Northerly | 31° | 7.1 | 32.0 | 4.3 |
P4 | 3 300 | 38.52° 100.21° | 偏北 Northerly | 33° | 7.6 | 37.7 | 4.0 |
树种 Species | 器官 Organ | 异速生长方程 Anisotropic growth equations |
---|---|---|
青海云杉 P. crassifolia | 叶 Leaf | |
干 Trunk | | |
根 Root | | |
祁连圆柏 J. przewalskii | 叶 Leaf | |
干 Trunk | | |
根 Root | |
Table 2 Anisotropic growth equations for each organ of Picea crassifolia and Juniperus przewalskii
树种 Species | 器官 Organ | 异速生长方程 Anisotropic growth equations |
---|---|---|
青海云杉 P. crassifolia | 叶 Leaf | |
干 Trunk | | |
根 Root | | |
祁连圆柏 J. przewalskii | 叶 Leaf | |
干 Trunk | | |
根 Root | |
Fig. 1 Comparisons of the contents of non-structural carbohydrate (NSC) of whole plant and its components, and soluble sugar:starch of Picea crassifolia and Juniperus przewalskii at different altitudes (mean ± SD). Different lowercase letters indicate significant differences of the two species at the same altitude (p < 0.05); different uppercase letters indicate significant differences between the altitudes for each species (p < 0.05).
Fig. 2 Comparisons of the contents of non-structural carbohydrate (NSC) of organs and its components, and soluble sugar:starch of Picea crassifolia and Juniperus przewalskii at two altitudes (mean ± SD). Different lowercase letters indicate significant differences between the species at the same altitude (p < 0.05), and different uppercase letters indicate significant differences between the altitudes for the same species (p < 0.05).
变异来源 Source of variation | 参数 Parameter | 三型平方和 SS | 均方 MS | F | p | η2 |
---|---|---|---|---|---|---|
海拔 Altitude | 非结构性碳水化合物含量 NSC content | 110.217 | 110.217 | 117.664 | <0.010 | 0.148 |
可溶性糖含量 Soluble sugar content | 0.630 | 0.630 | 10.580 | <0.010 | 0.010 | |
淀粉含量 Starch content | 94.181 | 94.181 | 110.201 | <0.010 | 0.164 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.185 | 0.185 | 5.060 | 0.028 | 0.024 | |
树种 Species | 非结构性碳水化合物含量 NSC content | 278.566 | 278.566 | 297.387 | <0.010 | 0.375 |
可溶性糖含量 Soluble sugar content | 4.702 | 4.702 | 78.967 | <0.010 | 0.077 | |
淀粉含量 Starch content | 210.885 | 210.885 | 246.756 | <0.010 | 0.368 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.986 | 0.986 | 26.909 | <0.010 | 0.128 | |
器官 Organ | 非结构性碳水化合物含量 NSC content | 29.128 | 9.709 | 10.365 | <0.010 | 0.039 |
可溶性糖含量 Soluble sugar content | 41.715 | 13.905 | 233.527 | <0.010 | 0.681 | |
淀粉含量 Starch content | 3.524 | 1.175 | 1.375 | 0.259 | 0.006 | |
可溶性糖:淀粉 Soluble sugar:starch | 3.220 | 1.073 | 29.286 | <0.010 | 0.418 | |
海拔×树种 Altitude × Species | 非结构性碳水化合物含量 NSC content | 237.780 | 237.780 | 253.850 | <0.010 | 0.320 |
可溶性糖含量 Soluble sugar content | 63.188 | 63.188 | 253.545 | <0.010 | 0.052 | |
淀粉含量 Starch content | 185.906 | 185.906 | 217.528 | <0.010 | 0.324 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.353 | 0.353 | 9.628 | <0.010 | 0.046 | |
海拔×器官 Altitude × Organ | 非结构性碳水化合物含量 NSC content | 3.511 | 1.170 | 1.249 | 0.299 | 0.005 |
可溶性糖含量 Soluble sugar content | 0.264 | 0.088 | 1.476 | 0.229 | 0.004 | |
淀粉含量 Starch content | 3.231 | 1.077 | 1.260 | 0.296 | 0.006 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.071 | 0.024 | 0.649 | 0.586 | 0.009 | |
树种×器官 Species × Organ | 非结构性碳水化合物含量 NSC content | 17.734 | 5.911 | 6.311 | <0.010 | 0.024 |
可溶性糖含量 Soluble sugar content | 5.682 | 1.894 | 31.809 | <0.010 | 0.093 | |
淀粉含量 Starch content | 12.362 | 4.121 | 4.821 | <0.010 | 0.022 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.386 | 0.123 | 3.347 | 0.024 | 0.048 | |
海拔×树种×器官 Altitude × Species × Organ | 非结构性碳水化合物含量 NSC content | 6.275 | 2.092 | 2.333 | 0.093 | 0.008 |
可溶性糖含量 Soluble sugar content | 1.240 | 0.413 | 6.941 | <0.010 | 0.020 | |
淀粉含量 Starch content | 8.787 | 2.929 | 3.427 | 0.022 | 0.015 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.167 | 0.056 | 1.515 | 0.219 | 0.022 |
Table 3 Effects on non-structural carbohydrates (NSC) of Picea crassifolia and Juniperus przewalskii at the two altitudes from altitude, species, organ and their interactions
变异来源 Source of variation | 参数 Parameter | 三型平方和 SS | 均方 MS | F | p | η2 |
---|---|---|---|---|---|---|
海拔 Altitude | 非结构性碳水化合物含量 NSC content | 110.217 | 110.217 | 117.664 | <0.010 | 0.148 |
可溶性糖含量 Soluble sugar content | 0.630 | 0.630 | 10.580 | <0.010 | 0.010 | |
淀粉含量 Starch content | 94.181 | 94.181 | 110.201 | <0.010 | 0.164 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.185 | 0.185 | 5.060 | 0.028 | 0.024 | |
树种 Species | 非结构性碳水化合物含量 NSC content | 278.566 | 278.566 | 297.387 | <0.010 | 0.375 |
可溶性糖含量 Soluble sugar content | 4.702 | 4.702 | 78.967 | <0.010 | 0.077 | |
淀粉含量 Starch content | 210.885 | 210.885 | 246.756 | <0.010 | 0.368 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.986 | 0.986 | 26.909 | <0.010 | 0.128 | |
器官 Organ | 非结构性碳水化合物含量 NSC content | 29.128 | 9.709 | 10.365 | <0.010 | 0.039 |
可溶性糖含量 Soluble sugar content | 41.715 | 13.905 | 233.527 | <0.010 | 0.681 | |
淀粉含量 Starch content | 3.524 | 1.175 | 1.375 | 0.259 | 0.006 | |
可溶性糖:淀粉 Soluble sugar:starch | 3.220 | 1.073 | 29.286 | <0.010 | 0.418 | |
海拔×树种 Altitude × Species | 非结构性碳水化合物含量 NSC content | 237.780 | 237.780 | 253.850 | <0.010 | 0.320 |
可溶性糖含量 Soluble sugar content | 63.188 | 63.188 | 253.545 | <0.010 | 0.052 | |
淀粉含量 Starch content | 185.906 | 185.906 | 217.528 | <0.010 | 0.324 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.353 | 0.353 | 9.628 | <0.010 | 0.046 | |
海拔×器官 Altitude × Organ | 非结构性碳水化合物含量 NSC content | 3.511 | 1.170 | 1.249 | 0.299 | 0.005 |
可溶性糖含量 Soluble sugar content | 0.264 | 0.088 | 1.476 | 0.229 | 0.004 | |
淀粉含量 Starch content | 3.231 | 1.077 | 1.260 | 0.296 | 0.006 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.071 | 0.024 | 0.649 | 0.586 | 0.009 | |
树种×器官 Species × Organ | 非结构性碳水化合物含量 NSC content | 17.734 | 5.911 | 6.311 | <0.010 | 0.024 |
可溶性糖含量 Soluble sugar content | 5.682 | 1.894 | 31.809 | <0.010 | 0.093 | |
淀粉含量 Starch content | 12.362 | 4.121 | 4.821 | <0.010 | 0.022 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.386 | 0.123 | 3.347 | 0.024 | 0.048 | |
海拔×树种×器官 Altitude × Species × Organ | 非结构性碳水化合物含量 NSC content | 6.275 | 2.092 | 2.333 | 0.093 | 0.008 |
可溶性糖含量 Soluble sugar content | 1.240 | 0.413 | 6.941 | <0.010 | 0.020 | |
淀粉含量 Starch content | 8.787 | 2.929 | 3.427 | 0.022 | 0.015 | |
可溶性糖:淀粉 Soluble sugar:starch | 0.167 | 0.056 | 1.515 | 0.219 | 0.022 |
Fig. 3 Distribution patterns of non-structural carbohydrate (NSC) and its component content in different organs of Picea crassifolia (A) and Juniperus przewalskii (B) at the two altitudes.
[1] |
Bai XP, Zhang XL, Li JX, Duan XY, Jin YT, Chen ZJ (2019). Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Science of the Total Environment, 670, 466-477.
DOI URL |
[2] |
Chapin III FS, Schulze E-D, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[3] |
Chen T, Pei HJ, Zhang YF, Qian QL (2012). Seasonal changes in non-structural carbohydrates and sucrose metabolism enzymes in two Sabina species. Acta Physiologiae Plantarum, 34, 173-180.
DOI URL |
[4] |
Cruz A, Moreno JM (2001). Seasonal course of total non-structural carbohydrates in the lignotuberous Mediterranean-type shrub Erica australis. Oecologia, 128, 343-350.
DOI URL |
[5] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[ 杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.] | |
[6] |
Dusenge ME, Duarte AG, Way DA (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
DOI URL |
[7] |
Fajardo A, Gazol A, Mayr C, Camarero JJ (2019). Recent decadal drought reverts warming-triggered growth enhancement in contrasting climates in the southern Andes tree line. Journal of Biogeography, 46, 1367-1379.
DOI |
[8] |
Fajardo A, Piper FI (2017). An assessment of carbon and nutrient limitations in the formation of the southern Andes tree line. Journal of Ecology, 105, 517-527.
DOI URL |
[9] |
Fang KY, Gou XH, Chen FH, Peng JF, D’Arrigo R, Wright W, Li MH (2009). Response of regional tree-line forests to climate change: evidence from the northeastern Tibetan Plateau. Trees, 23, 1321-1329.
DOI URL |
[10] |
Filippo AD, Biondi F, Čufar K, Luis MD, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007). Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34, 1873-1892.
DOI URL |
[11] | Gao LL, Gou XH, Deng Y, Wang ZQ, Gu F, Wang F (2018). Increased growth of Qinghai spruce in northwestern China during the recent warming Hiatus. Agricultural and Forest Meteorology, 260-261, 9-16. |
[12] |
Gaucher C, Gougeon S, Mauffette Y, Messier C (2005). Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. Tree Physiology, 25, 93-100.
DOI URL |
[13] |
Genet M, Li MC, Luo TX, Fourcaud T, Clément-Vidal A, Stokes A (2011). Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Annals of Botany, 107, 311-320.
DOI URL |
[14] |
Guerrieri R, Belmecheri S, Ollinger SV, Asbjornsen H, Jennings K, Xiao JF, Stocker BD, Martin M, Hollinger DY, Bracho-Garrillo R, Clark K, Dore S, Kolb T, Munger JW, Novick K, Richardson AD (2019). Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences of the United States of America, 116, 16909-16914.
DOI PMID |
[15] |
Guo QX, Li JY, Zhang YX, Zhang JX, Lu DL, Korpelainen H, Li CY (2016). Species-specific competition and N fertilization regulate non-structural carbohydrate contents in two Larix species. Forest Ecology and Management, 364, 60-69.
DOI URL |
[16] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
[17] |
Jiao L, Jiang Y, Zhang WT, Wang MC, Wang SJ, Liu XR (2019). Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. Forest Ecology and Management, 433, 667-677.
DOI URL |
[18] | Jin MY, Li JJ, Che ZX, Wang F, Zhang JZ, Gou XH (2020). Intra-annual radial growth responses of Qilian juniper (Juniperus przewalskii) to climate factors in the central Qilian Mountains, northwest China. Acta Ecologica Sinica, 40, 7699-7708. |
[ 金敏艳, 李进军, 车宗玺, 王放, 张军周, 勾晓华 (2020). 祁连山中部祁连圆柏年内径向生长对气候因子的响应. 生态学报, 40, 7699-7708.] | |
[19] |
Kobe RK (1997). Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos, 80, 226-233.
DOI URL |
[20] |
Körner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI URL |
[21] |
Körner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
DOI URL |
[22] |
Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 28, 1287-1296.
DOI URL |
[23] | Li X, Gou XH, Wang NL, Sheng Y, Jin HJ, Qi Y, Song XY, Hou FJ, Li Y, Zhao CM, Zou SB, Wang HW, Zheng DH, Chen YY, Niu XL (2019). Tightening ecological management facilitates green development in the Qilian Mountains. Chinese Science Bulletin, 64, 2928-2937. |
[ 李新, 勾晓华, 王宁练, 盛煜, 金会军, 祁元, 宋晓谕, 侯扶江, 李育, 赵长明, 邹松兵, 王宏伟, 郑东海, 陈莹莹, 牛晓蕾 (2019). 祁连山绿色发展: 从生态治理到生态恢复. 科学通报, 64, 2928-2937.] | |
[24] | Li XR, Liu QJ, Cai Z, Ma ZQ (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou station of subtropical China. Journal of Plant Ecology (Chinese Version), 31, 93-101. |
[ 李轩然, 刘琪璟, 蔡哲, 马泽清 (2007). 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31, 93-101.]
DOI |
|
[25] | Liang EY, Shao XM, Eckstein D, Huang L, Liu XH (2006). Topography- and species-dependent growth responses of Juniperus przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236, 268-277. |
[26] |
Liu XH, Shao XM, Zhao LJ, Qin DH, Chen T, Ren JW (2007). Dendroclimatic temperature record derived from tree-ring width and stable carbon isotope chronologies in the middle Qilian Mountains, China. Arctic, Antarctic, and Alpine Research, 39, 651-657.
DOI URL |
[27] |
Lyu LX, Suvanto S, Nöjd P, Henttonen HM, Mäkinen H, Zhang QB (2017). Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau. Biogeosciences, 14, 3083-3095.
DOI URL |
[28] |
Ma RY, Zhang Q, Zhang Q, Zhao CM (2010). Effects of continuous drought on water status and photosynthesis of leaves of Platycladus orientalis (L.) Franco and Juniperus przewalskii Kom. Arid Zone Research, 27, 88-96.
DOI URL |
[ 马仁义, 张茜, 张强, 赵长明 (2010). 持续干旱对侧柏和祁连圆柏叶片水分状况及光合作用的影响. 干旱区研究, 27, 88-96.] | |
[29] |
Martínez-Vilalta J, Sala AN, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 86, 495-516.
DOI URL |
[30] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[31] |
Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197, 862-872.
DOI PMID |
[32] |
Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourgeois F, Miglietta F, Chuine I (2007). Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiology, 27, 817-825.
DOI URL |
[33] |
Nagavciuc V, Kern Z, Perşoiu A, Kesjár D, Popa I (2018). Aerial decay influence on the stable oxygen and carbon isotope ratios in tree ring cellulose. Dendrochronologia, 49, 110-117.
DOI URL |
[34] |
Newell EA, Mulkey SS, Wright JS (2002). Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia, 131, 333-342.
DOI URL |
[35] |
Palacio S, Maestro M, Montserrat-Martí G (2007). Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environmental and Experimental Botany, 59, 34-42.
DOI URL |
[36] |
Piper FI (2011). Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 68, 415-424.
DOI URL |
[37] |
Poorter L, Kitajima K (2007). Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88, 1000-1011.
DOI URL |
[38] | Qi J, Ma KM, Zhang YX (2007). The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations. Acta Ecologica Sinica, 27, 930-937. |
[ 祁建, 马克明, 张育新 (2007). 辽东栎 (Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释. 生态学报, 27, 930-937.] | |
[39] |
Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, Walker JC, Xu XM, Schaberg PG, Murakami P (2015). Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytologist, 206, 590-597.
DOI PMID |
[40] |
Sala AN, Mencuccini M (2014). Plump trees win under drought. Nature Climate Change, 4, 666-667.
DOI URL |
[41] |
Shi PL, Körner C, Hoch G (2006). End of season carbon supply status of woody species near the treeline in Western China. Basic and Applied Ecology, 7, 370-377.
DOI URL |
[42] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI URL |
[ 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[43] |
Stevens GC, Fox JF (1991). The causes of treeline. Annual Review of Ecology and Systematics, 22, 177-191.
DOI URL |
[44] |
Susiluoto S, Hilasvuori E, Berninger F (2010). Testing the growth limitation hypothesis for subarctic Scots pine. Journal of Ecology, 98, 1186-1195.
DOI URL |
[45] |
Sveinbjörnsson B, Smith M, Traustason T, Ruess RW, Sullivan PF (2010). Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska. Oecologia, 163, 833-843.
DOI PMID |
[46] | The Leading Group Office for Combating Climate Change, Energy-Saving and Emission Reduction of State Forest Administration of China (2008). China Green Carbon Fund Forestation Project Guide to Measuring and Monitoring Carbon Sinks. China Forestry Publishing House, Beijing. |
[ 国家林业局应对气候变化和节能减排工作领导小组办公室 (2008). 中国绿色碳基金造林项目碳汇计量与监测指南. 中国林业出版社, 北京.] | |
[47] |
Wang B, Jiang Y, Wang MC, Dong MY, Zhang YP (2015). Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China. Chinese Journal of Plant Ecology, 39, 746-752.
DOI URL |
[ 王彪, 江源, 王明昌, 董满宇, 章异平 (2015). 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 39, 746-752.]
DOI |
|
[48] | Wang C, Li YX, Wang ZC, Meng YB (2021). Analysis of NSC variation sources of main tree species in Xiaoxing’an Mountains conifer and broadleaf mixed natural secondary forest. Forest Engineering, 37, 36-43. |
[ 王晨, 李耀翔, 王子纯, 孟永斌 (2021). 小兴安岭针阔混交天然次生林主要树种NSC变异来源分析. 森林工程, 37, 36-43.] | |
[49] | Wang XY, Wang SL, Tang Y, Zhou WM, Zhou L, Zhong QL, Dai LM, Yu DP (2019). Characteristics of non-structural carbohydrate reserves of three dominant tree species in broadleaved Korean pine forest in Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1608-1614. |
[ 王晓雨, 王守乐, 唐杨, 周旺明, 周莉, 仲庆林, 代力民, 于大炮 (2019). 长白山阔叶红松林3个主要树种的非结构性碳储存特征. 应用生态学报, 30, 1608-1614.] | |
[50] | Wang YF, Zhang YX, Gou XH, Gao LL, Wang F (2020). Climate response mechanism of radial growth of Picea crassifolia in low altitude area of middle Qilian Mountains. Acta Ecologica Sinica, 40, 161-169. |
[ 王延芳, 张永香, 勾晓华, 高琳琳, 王放 (2020). 祁连山中部低海拔地区青海云杉径向生长的气候响应机制. 生态学报, 40, 161-169.] | |
[51] |
Wang ZG, Wang CK (2019). Mechanisms of carbon source- sink limitations to tree growth. Chinese Journal of Plant Ecology, 43, 1036-1047.
DOI URL |
[ 王兆国, 王传宽 (2019). 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43, 1036-1047.]
DOI |
|
[52] |
Wiley E, Helliker B (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195, 285-289.
DOI PMID |
[53] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI URL |
[54] | Yang SL, Gao XL, Chen LT, Zhang XW (2015). Variations in leaf functional traits of Juniperus przewalskii near the alpine timberline in Qaidam Basin, Qinghai. Journal of Glaciology and Geocryology, 37, 80-86. |
[ 杨淑丽, 高贤良, 陈立同, 张晓玮 (2015). 青海柴达木盆地林线附近祁连圆柏叶片功能性状的变化特征. 冰川冻土, 37, 80-86.] | |
[55] |
Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI URL |
[ 于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[56] |
Zhao CM, Chen LT, Ma F, Yao BQ, Liu JQ (2008). Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia). Tree Physiology, 28, 133-141.
DOI URL |
[57] |
Zhu WZ, Cao M, Wang SG, Xiao WF, Li MH (2012a). Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit. PLOS ONE, 7, e34213. DOI: 10.1371/journal.pone.0034213.
DOI URL |
[58] | Zhu WZ, Ran F, Li MH, Wang WZ, Jia M (2017). Alpine timberline dynamics and physiological mechanisms of the timberline formation on the Mt. Gongga. Mountain Research, 35, 622-628. |
[ 朱万泽, 冉飞, 李迈和, 王文志, 贾敏 (2017). 贡嘎山高山林线动态与生理形成机制. 山地学报, 35, 622-628.] | |
[59] |
Zhu WZ, Xiang JS, Wang SG, Li MH (2012b). Resprouting ability and mobile carbohydrate reserves in an oak shrubland decline with increasing elevation on the eastern edge of the Qinghai-Tibet Plateau. Forest Ecology and Management, 278, 118-126.
DOI URL |
[60] | Zuo YF, He KN, Chai SX, Yu GF, Li YH, Lin S, Chen Q, Wang QL (2021). Simulation of daily transpiration of Picea crassifolia in growing season based on Penman- Monteith equation. Acta Ecologica Sinica, 41, 3656-3668. |
[ 左亚凡, 贺康宁, 柴世秀, 俞国峰, 李远航, 林莎, 陈琪, 王琼琳 (2021). 基于Penman-Monteith方程模拟青海云杉生长季日蒸腾过程. 生态学报, 41, 3656-3668.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn