Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (8): 834-843.DOI: 10.17521/cjpe.2021.0100
• Research Articles • Previous Articles Next Articles
DU Jun1, WANG Wen1,2, HE Zhi-Bin1,*(), CHEN Long-Fei1, LIN Peng-Fei1, ZHU Xi1, TIAN Quan-Yan1
Received:
2021-03-19
Revised:
2021-06-04
Online:
2021-08-20
Published:
2021-06-25
Contact:
HE Zhi-Bin
Supported by:
DU Jun, WANG Wen, HE Zhi-Bin, CHEN Long-Fei, LIN Peng-Fei, ZHU Xi, TIAN Quan-Yan. Spatial variability of phenological phenotype of Picea crassifolia in Qilian Mountains and its internal mechanism[J]. Chin J Plant Ecol, 2021, 45(8): 834-843.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0100
Fig. 1 Variation of annual phenological stages of Picea crassifolia monitored in shady-slope plots (including small and large patches) in 2018 along the altitudinal gradient (mean ± SD). DOY, day of the year.
影响因子 Impact factor | df | 萌芽 Bud burst | 展叶 Leaf expansion | 抽枝 Branching | 开花 Flowering | 结果 Fruiting | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | F | p | MS | F | p | MS | F | p | MS | F | p | MS | F | p | ||
海拔 Altitude (AL) | 4 | 155.23 | 38.70 | 0.00 | 216.80 | 82.50 | 0.00 | 239.76 | 72.91 | 0.00 | 63.27 | 4.44 | 0.00 | 849.72 | 744.96 | 0.00 |
坡向 Aspect (AS) | 1 | 40.19 | 10.02 | 0.00 | 39.62 | 15.08 | 0.00 | 24.09 | 7.33 | 0.01 | 16.92 | 1.19 | 0.28 | 13.14 | 11.52 | 0.00 |
斑块大小 Patch size (PS) | 1 | 0.95 | 0.24 | 0.63 | 1.83 | 0.70 | 0.41 | 1.65 | 0.50 | 0.48 | 0.07 | 0.01 | 0.94 | 0.02 | 0.01 | 0.91 |
AL × AS | 4 | 1.58 | 0.39 | 0.71 | 2.09 | 0.80 | 0.53 | 1.42 | 0.43 | 0.79 | 0.12 | 0.01 | 1.00 | 8.14 | 7.14 | 0.00 |
AL × PS | 4 | 0.39 | 0.10 | 0.98 | 0.72 | 0.28 | 0.89 | 0.61 | 0.19 | 0.95 | 0.40 | 0.03 | 1.00 | 2.35 | 2.06 | 0.12 |
AS × PS | 1 | 40.76 | 10.16 | 0.00 | 22.16 | 8.43 | 0.01 | 5.89 | 1.79 | 0.19 | 59.16 | 4.15 | 0.05 | 1.27 | 1.11 | 0.30 |
AL × AS × PS | 4 | 15.80 | 3.94 | 0.01 | 13.84 | 5.27 | 0.00 | 12.34 | 3.75 | 0.01 | 19.62 | 1.38 | 0.25 | 1.27 | 1.11 | 0.35 |
误差 Error | 60 | 4.01 | 2.63 | 3.29 | 14.26 | 1.14 |
Table 1 Effects of altitude, aspect and patch size on the spatial differentiation of Picea crassifolia population phenology
影响因子 Impact factor | df | 萌芽 Bud burst | 展叶 Leaf expansion | 抽枝 Branching | 开花 Flowering | 结果 Fruiting | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | F | p | MS | F | p | MS | F | p | MS | F | p | MS | F | p | ||
海拔 Altitude (AL) | 4 | 155.23 | 38.70 | 0.00 | 216.80 | 82.50 | 0.00 | 239.76 | 72.91 | 0.00 | 63.27 | 4.44 | 0.00 | 849.72 | 744.96 | 0.00 |
坡向 Aspect (AS) | 1 | 40.19 | 10.02 | 0.00 | 39.62 | 15.08 | 0.00 | 24.09 | 7.33 | 0.01 | 16.92 | 1.19 | 0.28 | 13.14 | 11.52 | 0.00 |
斑块大小 Patch size (PS) | 1 | 0.95 | 0.24 | 0.63 | 1.83 | 0.70 | 0.41 | 1.65 | 0.50 | 0.48 | 0.07 | 0.01 | 0.94 | 0.02 | 0.01 | 0.91 |
AL × AS | 4 | 1.58 | 0.39 | 0.71 | 2.09 | 0.80 | 0.53 | 1.42 | 0.43 | 0.79 | 0.12 | 0.01 | 1.00 | 8.14 | 7.14 | 0.00 |
AL × PS | 4 | 0.39 | 0.10 | 0.98 | 0.72 | 0.28 | 0.89 | 0.61 | 0.19 | 0.95 | 0.40 | 0.03 | 1.00 | 2.35 | 2.06 | 0.12 |
AS × PS | 1 | 40.76 | 10.16 | 0.00 | 22.16 | 8.43 | 0.01 | 5.89 | 1.79 | 0.19 | 59.16 | 4.15 | 0.05 | 1.27 | 1.11 | 0.30 |
AL × AS × PS | 4 | 15.80 | 3.94 | 0.01 | 13.84 | 5.27 | 0.00 | 12.34 | 3.75 | 0.01 | 19.62 | 1.38 | 0.25 | 1.27 | 1.11 | 0.35 |
误差 Error | 60 | 4.01 | 2.63 | 3.29 | 14.26 | 1.14 |
Fig. 2 Phenological pattern of Picea crassifolia populations in the common garden experiment versus elevation of provenance sites in 2018 (mean ± SD). DOY, day of the year.
阶段 Phase | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
D | F | p | D | F | p | |
萌芽期 Bud burst | 13.4 | 2.669 | 0.043 | 19.9 | 3.636 | 0.011 |
展叶期 Leaf expansion | 23.2 | 4.283 | 0.005 | 20.4 | 3.700 | 0.010 |
抽枝期 Branching | 29.2 | 5.512 | 0.001 | 19.3 | 3.495 | 0.013 |
Table 2 Genetic differentiation in phenological stages among populations of Picea crassifolia
阶段 Phase | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
D | F | p | D | F | p | |
萌芽期 Bud burst | 13.4 | 2.669 | 0.043 | 19.9 | 3.636 | 0.011 |
展叶期 Leaf expansion | 23.2 | 4.283 | 0.005 | 20.4 | 3.700 | 0.010 |
抽枝期 Branching | 29.2 | 5.512 | 0.001 | 19.3 | 3.495 | 0.013 |
变量 Variable | 展叶 Leaf expansion (Scaled) | Lar序列 Lar sequence | 开花 Flowering (Scaled) | Lar序列 Lar sequence | 结果 Fruiting (Scaled) | Lar序列 Lar sequence |
---|---|---|---|---|---|---|
海拔 Altitude | 4.80 (0.72)*** | 2 | 2.34 (0.69) *** | 1 | 6.85 (0.23) *** | 5 |
CH0(Oct.-Feb.) | -4.07 (0.38) *** | 8 | -1.42 (0.51) ** | 7 | -7.00 (0.22) *** | 10 |
CH5(Oct.-Feb.) | -2.52 (0.31) *** | - | -1.09 (0.43) * | - | -4.69 (0.18) *** | - |
CDD0(Mar.-May)1 | -5.93 (0.63) *** | 5 | -1.90 (0.57) *** | 5 | -9.49 (0.29) *** | - |
CDD5(Mar.-May)1 | -6.83 (0.79) *** | 1 | -2.13 (0.65) ** | 2 | -10.65 (0.36) *** | 1 |
CDD0(Mar.-May)2 | 0.74 (0.88) | 6 | -0.90 (0.94) | 9 | 2.34 (0.45) *** | 7 |
CDD5(Mar.-May)2 | - | - | - | - | - | - |
TR(Mar.-May) | 1.01 (1.68) | 9 | 1.27 (1.41) | 6 | 4.27 (0.30) *** | 9 |
RD(Mar.-May) | 4.33 (1.27) *** | 3 | 0.84 (1.11) | 4 | 9.87 (0.80) *** | 2 |
FD(May) | 6.47 (0.83) *** | 4 | 2.13 (0.67) ** | 3 | 10.11 (0.41) *** | 3 |
HD(May) | 3.60 (1.29) ** | - | 0.32 (0.97) | - | 4.26 (0.62) *** | 8 |
PSD(Mar.-May) | 0.02 (1.15) | 7 | 0.93 (1.21) | 8 | -1.68 (0.51) ** | 6 |
FSD(May) | -4.78 (0.60) *** | 10 | -1.98 (0.64) ** | 10 | -6.50 (0.38) *** | 4 |
Table 3 Ridge regression and Lasso regression analysis of the phenology of Picea crassifolia populations and environmental factors
变量 Variable | 展叶 Leaf expansion (Scaled) | Lar序列 Lar sequence | 开花 Flowering (Scaled) | Lar序列 Lar sequence | 结果 Fruiting (Scaled) | Lar序列 Lar sequence |
---|---|---|---|---|---|---|
海拔 Altitude | 4.80 (0.72)*** | 2 | 2.34 (0.69) *** | 1 | 6.85 (0.23) *** | 5 |
CH0(Oct.-Feb.) | -4.07 (0.38) *** | 8 | -1.42 (0.51) ** | 7 | -7.00 (0.22) *** | 10 |
CH5(Oct.-Feb.) | -2.52 (0.31) *** | - | -1.09 (0.43) * | - | -4.69 (0.18) *** | - |
CDD0(Mar.-May)1 | -5.93 (0.63) *** | 5 | -1.90 (0.57) *** | 5 | -9.49 (0.29) *** | - |
CDD5(Mar.-May)1 | -6.83 (0.79) *** | 1 | -2.13 (0.65) ** | 2 | -10.65 (0.36) *** | 1 |
CDD0(Mar.-May)2 | 0.74 (0.88) | 6 | -0.90 (0.94) | 9 | 2.34 (0.45) *** | 7 |
CDD5(Mar.-May)2 | - | - | - | - | - | - |
TR(Mar.-May) | 1.01 (1.68) | 9 | 1.27 (1.41) | 6 | 4.27 (0.30) *** | 9 |
RD(Mar.-May) | 4.33 (1.27) *** | 3 | 0.84 (1.11) | 4 | 9.87 (0.80) *** | 2 |
FD(May) | 6.47 (0.83) *** | 4 | 2.13 (0.67) ** | 3 | 10.11 (0.41) *** | 3 |
HD(May) | 3.60 (1.29) ** | - | 0.32 (0.97) | - | 4.26 (0.62) *** | 8 |
PSD(Mar.-May) | 0.02 (1.15) | 7 | 0.93 (1.21) | 8 | -1.68 (0.51) ** | 6 |
FSD(May) | -4.78 (0.60) *** | 10 | -1.98 (0.64) ** | 10 | -6.50 (0.38) *** | 4 |
[1] | Anderson JT, Gezon ZJ (2015). Plasticity in functional traits in the context of climate change: a case study of the subalpine Boechera stricta (Brassicaceae). Global Change Biology, 21, 1689-1703. |
[2] | Bresson CC, Vitasse Y, Kremer A, Delzon S (2011). To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 31, 1164-1174. |
[3] | Chen XQ, Li J (2009). Relationships between Leymus chinensis phenology and meteorological factors in Inner Mongolia grasslands. Acta Ecologica Sinica, 29, 5280-5290. |
[ 陈效逑, 李倞 (2009). 内蒙古草原羊草物候与气象因子的关系. 生态学报, 29, 5280-5290.] | |
[4] | Cooper HF, Grady KC, Cowan JA, Best RJ, Allan GJ, Whitham TG (2019). Genotypic variation in phenological plasticity: reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Global Change Biology, 25, 187-200. |
[5] | Dantec CF, Ducasse H, Capdevielle X, Fabreguettes O, Delzon S, Desprez-Loustau ML (2015). Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. Journal of Ecology, 103, 1044-1056. |
[6] | Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S (2014). Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. International Journal of Biometeorology, 58, 1853-1864. |
[7] | Du J, He ZB, Yang JJ, Chen LF, Zhu X (2014). Detecting the effects of climate change on canopy phenology in coniferous forests in semi-arid mountain regions of China. International Journal of Remote Sensing, 35, 6490-6507. |
[8] | Du J, Li K, He ZB, Chen LF, Lin PF, Zhu X (2020). Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. International Journal of Climatology, 40, 2568-2579. |
[9] | Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs, 73, 69-86. |
[10] | Fan GZ, Jia ZJ (2010). Study advances on plant phenology. Journal of Arid Meteorology, 28, 250-255. |
[ 范广洲, 贾志军 (2010). 植物物候研究进展. 干旱气象, 28, 250-255.] | |
[11] | Frei ER, Ghazoul J, Matter P, Heggli M, Pluess AR (2014). Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Global Change Biology, 20, 441-455. |
[12] | Ge QS, Dai JH, Zheng JY (2010). The progress of phenology studies and challenges to modern phenology research in China. Bulletin of Chinese Academy of Sciences, 25, 310-316. |
[ 葛全胜, 戴君虎, 郑景云 (2010). 物候学研究进展及中国现代物候学面临的挑战. 中国科学院院刊, 25, 310-316.] | |
[13] | Geng YP, Zhang WJ, Li B, Chen JK (2004). Phenotypic plasticity and invasiveness of alien plants. Chinese Biodiversity, 12, 447-455. |
[ 耿宇鹏, 张文驹, 李博, 陈家宽 (2004). 表型可塑性与外来植物的入侵能力. 生物多样性, 12, 447-455.] | |
[14] | Gong GF, Jian WM (1983). On the geographical distribution of phenodate in China. Acta Geographica Sinica, 38, 33-40. |
[ 龚高法, 简慰民 (1983). 我国植物物候期的地理分布. 地理学报, 38, 33-40.] | |
[15] |
Guo XL, Klisz M, Puchałka R, Silvestro R, Faubert P, Belien E, Huang JG, Rossi S (2021). Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. Journal of Ecology. DOI: 10.1111/1365-2745.13582.
DOI |
[16] | Hoerl AE, Kennard RW (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55-67. |
[17] | Hwang T, Song C, Vose JM, Band LE (2011). Topography- mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 26, 541-556. |
[18] | Ji RX, Yu X, Chang Y, Shen C, Bai XQ, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 44, 277-286. |
[ 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.] | |
[19] | Kosugi Y, Takanashi S, Ueyama M, Ohkubo S, Tanaka H, Matsumoto K, Yoshifuji N, Ataka M, Sakabe A (2013). Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis. Ecological Research, 28, 373-385. |
[20] | Körner C, Basler D (2010). Phenology under global warming. Science, 327, 1461-1462. |
[21] | Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011). Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees, 25, 59-70. |
[22] | Leiblein-Wild MC, Tackenberg O (2014). Phenotypic variation of 38 European Ambrosia artemisiifolia populations measured in a common garden experiment. Biological Invasions, 16, 2003-2015. |
[23] | Lin Y, West G (2016). Reflecting conifer phenology using mobile terrestrial LiDAR: a case study of Pinus sylvestris growing under the Mediterranean climate in Perth, Australia. Ecological Indicators, 70, 1-9. |
[24] | Liu XD, Zhao WJ, Zhang XL, Jing WM, Fan LM (2013). Variation of soil nutrient content and pH value under Picea crassifolia forest in the Pailugou drainage basin in the Qilian mountains. Arid Zone Research, 30, 1013-1020. |
[ 刘贤德, 赵维俊, 张学龙, 敬文茂, 范莉梅 (2013). 祁连山排露沟流域青海云杉林土壤养分和pH变化特征. 干旱区研究, 30, 1013-1020.] | |
[25] | Peng XM, Du J, Yang B, Xiao SC, Li G (2019). Elevation- influenced variation in canopy and stem phenology of Qinghai spruce, central Qilian Mountains, northeastern Tibetan Plateau. Trees, 33, 707-717. |
[26] | Peñuelas J, Filella I (2001). Responses to a warming world. Science, 294, 793-795. |
[27] | Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’keefe J (2009). Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree physiology, 29, 321-331. |
[28] | Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173. |
[29] | Shen MG, Piao SL, Cong N, Zhang GX, Jassens IA (2015). Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21, 3647-3656. |
[30] | Springate DA, Kover PX (2014). Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming. Global Change Biology, 20, 456-465. |
[31] | Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83. |
[32] | Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009). Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 39, 1259-1269. |
[33] | Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Scheepens JF, Körner C (2013). Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia, 171, 663-678. |
[34] | Vitasse Y, Signarbieux C, Fu YH (2018). Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America, 115, 1004-1008. |
[35] | Volis S, Ormanbekova D, Yermekbayev K (2015). Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions. Ecology and Evolution, 5, 3818-3829. |
[36] | Wang SP, Wang CS, Duan JC, Zhu XX, Xu GP, Luo CY, Zhang ZH, Meng FD, Li YN, Du MY (2014). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189- 190, 220-228. |
[37] | Ware IM, van Nuland ME, Schweitzer JA, Yang Z, Schadt CW, Sidak-Loftis LC, Stone NE, Busch JD, Bailey JK (2019). Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Global Change Biology, 25, 1514-1528. |
[38] | Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 365, 3129-3147. |
[39] | Yu Z, Sun PS, Liu SR (2010). Phenological change of main vegetation types along a North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 34, 316-329. |
[ 余振, 孙鹏森, 刘世荣 (2015). 中国东部南北样带主要植被类型物候期的变化. 植物生态学报, 34, 316-329.] | |
[40] | Zandler H, Brenning A, Samimi C (2015). Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sensing of Environment, 158, 140-155. |
[41] | Zheng JY, Liu Y, Ge QS, Hao ZX (2015). Spring phenodate records derived from historical documents and reconstruction on temperature change in Central China during 1850-2008. Acta Geographica Sinica, 70, 696-704. |
[ 郑景云, 刘洋, 葛全胜, 郝志新 (2015). 华中地区历史物候记录与1850-2008年的气温变化重建. 地理学报, 70, 696-704.] |
[1] | CHEN Yu-Ting, MA Song-Mei, ZHANG Dan, ZHANG Lin, WANG Chun-Cheng. Diversity pattern and formation mechanism of sympatric Haloxylon ammodendron and Haloxylon persicum in Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 56-67. |
[2] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[3] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[4] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[5] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[6] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
[7] | ZHANG Di, DU Ye-Qin, WANG Lei, CHEN Xin, YAN Xing-Fu, TANG Zhan-Hui. Differences in flowering and pollination characteristics of two gender phenotypes of Lilium concolor var. megalanthum between two habitats [J]. Chin J Plant Ecol, 2022, 46(5): 580-592. |
[8] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[9] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[10] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[11] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[12] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[13] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[14] | ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(4): 345-354. |
[15] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn