Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (2): 183-194.DOI: 10.17521/cjpe.2022.0156
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
XIA Jing-Yu1,2, ZHANG Yang-Jian2, ZHENG Zhou-Tao2, ZHAO Guang2, ZHAO Ran2,3, ZHU Yi-Xuan2, GAO Jie2, SHEN Ruo-Nan2, LI Wen-Yu2, ZHENG Jia-He2, ZHANG Yu-Xue1, ZHU Jun-Tao2,*(), SUN Osbert Jianxin1
Received:
2022-04-21
Accepted:
2022-10-18
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau[J]. Chin J Plant Ecol, 2023, 47(2): 183-194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0156
Fig. 1 Responses of air temperature (A), soil temperature (B) and soil water content (C) to warming during the growing seasons of 2015, 2017, 2018, 2021 under multiple levels warming in an alpine meadow on Qingzang Plateau. CK, control (ambient temperature); W1, W2, W3 and W4 are the four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively).
Fig. 2 Effects of gradient warming treatments on four-year mean green up, budding and flowering time of each monitored species in an alpine meadow on Qingzang Plateau (mean ± SE). W1, W2, W3 and W4 are the four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively). A positive value indicates later green up, budding or flowering than the control; a negative value indicates earlier green up, budding or flowering than the control. One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
物种 Species | 处理 Treatment | 返青时间 Green up date | 现蕾时间 Budding date | 开花时间 Flowering date | ||||||
---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | ||
高山嵩草 Kobresia pygmaea | W | 4 | 45.619 | <0.001 | 4 | 28.665 | <0.001 | 4 | 6.832 | <0.001 |
Y | 3 | 258.565 | <0.001 | 3 | 151.230 | <0.001 | 3 | 79.438 | <0.001 | |
W × Y | 12 | 10.445 | <0.001 | 12 | 1.970 | 0.032 | 12 | 18.260 | 0.699 | |
钉柱委陵菜 Potentilla saundersiana | W | 4 | 7.781 | <0.001 | 4 | 7.344 | <0.001 | 4 | 8.260 | <0.001 |
Y | 3 | 27.377 | <0.001 | 3 | 18.011 | <0.001 | 3 | 1.117 | 0.344 | |
W × Y | 12 | 2.912 | 0.001 | 12 | 4.560 | <0.001 | 12 | 3.423 | <0.001 |
Table 1 Repeated measured analysis of variance for main and interactive effects of year (Y), warming (W) on Kobresia pygmaea and Potentilla saundersiana green-up, budding and flowering time
物种 Species | 处理 Treatment | 返青时间 Green up date | 现蕾时间 Budding date | 开花时间 Flowering date | ||||||
---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | ||
高山嵩草 Kobresia pygmaea | W | 4 | 45.619 | <0.001 | 4 | 28.665 | <0.001 | 4 | 6.832 | <0.001 |
Y | 3 | 258.565 | <0.001 | 3 | 151.230 | <0.001 | 3 | 79.438 | <0.001 | |
W × Y | 12 | 10.445 | <0.001 | 12 | 1.970 | 0.032 | 12 | 18.260 | 0.699 | |
钉柱委陵菜 Potentilla saundersiana | W | 4 | 7.781 | <0.001 | 4 | 7.344 | <0.001 | 4 | 8.260 | <0.001 |
Y | 3 | 27.377 | <0.001 | 3 | 18.011 | <0.001 | 3 | 1.117 | 0.344 | |
W × Y | 12 | 2.912 | 0.001 | 12 | 4.560 | <0.001 | 12 | 3.423 | <0.001 |
Fig. 3 Effects of gradient warming treatments on Kobresia pygmaea and Potentilla saundersiana green up, budding and flowering time (mean ± SE) averaged on 2015, 2017, 2018, 2021. W1, W2, W3 and W4 are the four level warming treatments, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C, respectively). A positive value indicates later green up, budding or flowering time than the control; a negative value indicates earlier green up, budding or flowering time than the control. One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
Fig. 4 Effects of gradient warming treatment on four years mean temperature sensitivity of green up, budding and flowering time (mean ± SE) of Kobresia pygmaea and Potentilla saundersiana. W1, W2, W3 and W4 are four level warming, respectively (the warming amplitudes are about 2.18, 2.66, 3.21 and 3.68 °C). One-way analysis of variance and Tukey test were used for pairwise comparison. Different lowercase letters indicate significant differences between warming treatments (p < 0.05).
物种 Species | 物候时间 Phenological time | 回归方程 Regression equation | F | R2 | p |
---|---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 返青时间 Green up time | y = -6.363 + 4.647x2 + 9.968x3 | 55.744 | 0.503 | <0.01 |
现蕾时间 Budding time | y = -4.787 + 3.308x2 + 7.640x3 | 33.781 | 0.381 | <0.01 | |
开花时间 Flowering time | y = 1.517 + 4.579x1 + 2.980x2 | 13.590 | 0.198 | <0.01 | |
钉柱委陵菜 Potentilla saundersiana | 返青时间 Green up time | y = 1.030 - 3.984x1 - 9.349x2 - 5.606x3 | 41.132 | 0.495 | <0.01 |
现蕾时间 Budding time | y = 0.672 - 3.346x1 - 8.092x2 - 4.654x3 | 31.390 | 0.428 | <0.01 | |
开花时间 Flowering time | y = -0.045 - 2.958x1 - 6.400x2 - 2.748x3 | 18.649 | 0.307 | <0.01 |
Table 2 Regression equations linking Kobresia pygmaea and Potentilla saundersiana phenological change time and environmental factors in an alpine meadow on Qingzang Plateau
物种 Species | 物候时间 Phenological time | 回归方程 Regression equation | F | R2 | p |
---|---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 返青时间 Green up time | y = -6.363 + 4.647x2 + 9.968x3 | 55.744 | 0.503 | <0.01 |
现蕾时间 Budding time | y = -4.787 + 3.308x2 + 7.640x3 | 33.781 | 0.381 | <0.01 | |
开花时间 Flowering time | y = 1.517 + 4.579x1 + 2.980x2 | 13.590 | 0.198 | <0.01 | |
钉柱委陵菜 Potentilla saundersiana | 返青时间 Green up time | y = 1.030 - 3.984x1 - 9.349x2 - 5.606x3 | 41.132 | 0.495 | <0.01 |
现蕾时间 Budding time | y = 0.672 - 3.346x1 - 8.092x2 - 4.654x3 | 31.390 | 0.428 | <0.01 | |
开花时间 Flowering time | y = -0.045 - 2.958x1 - 6.400x2 - 2.748x3 | 18.649 | 0.307 | <0.01 |
Fig. 5 Effects of air temperature, soil temperature and soil water content on green up, flowering time of Kobresia pygmaea (A) and Potentilla saundersiana (B). Kobresia pygmaea: χ2 = 0.198, p = 0.656, comparative fit index (CFI) = 1.000, root mean square error (RMSE) = 0.000, Akaike information criterion (AIC) = -127.449. Potentilla saundersiana: χ2 = 0.019, p = 0.889, CFI = 1.000, RMSE = 0.000, AIC = -154.980. Number on the lines are standardized direct path coefficients; the red lines indicated negative correlations; the blue lines indicated positive correlations. Solid lines indicate significant correlation (p < 0.05).
[1] |
Bai L, Lv SJ, Qu ZQ, Ren HY, Wu Q, Han GD, Li ZG (2022). Effects of a warming gradient on reproductive phenology of Stipa breviflora in a desert steppe. Ecological Indicators, 136, 108590. DOI: 10.1016/j.ecolind.2022.108590.
DOI |
[2] | Ben GY, Han F, Shi SB (1993). Studies of leaf conductance, transpiration and water potential of plants in alpine Kobresia humilis meadow. Acta Ecologica Sinica, 13, 369-372. |
[贲桂英, 韩发, 师生波 (1993). 高寒矮嵩草草甸植物温度叶扩散导度、蒸腾作用与水势. 生态学报, 13, 369-372.] | |
[3] |
Chen AP, Huang L, Liu Q, Piao SL (2021). Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 27, 1942-1951.
DOI PMID |
[4] | Ding MJ, Chen Q, Li LH, Zhang YL, Wang ZF, Liu LS, Sun XM (2016). Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai-Tibetan Plateau. GIScience & Remote Sensing, 53, 147-163. |
[5] |
Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI PMID |
[6] |
Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs, 73, 69-86.
DOI URL |
[7] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[8] |
Ganjurjav H, Gornish ES, Hu G, Schwartz MW, Wan Y, Li Y, Gao Q (2020). Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 287, 107943. DOI: 10.1016/j.agrformet.2020.107943.
DOI |
[9] |
Ganjurjav H, Hu G, Zhang Y, Gornish ES, Yu T, Gao Q (2022). Warming tends to decrease ecosystem carbon and water use efficiency in dissimilar ways in an alpine meadow and a cultivated grassland in the Tibetan Plateau. Agricultural and Forest Meteorology, 323, 109079. DOI: 10.1016/j.agrformet.2022.109079.
DOI |
[10] |
Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany, 103, 1165-1172.
DOI PMID |
[11] | Gu SL, Hui DF, Bian AH (1998). The contraction-expansion algorithm and its use in fitting nonlinear equations. International Journal of Biomathematics, 13, 426-434. |
[12] | Guo MZ (2020). Response and Sensitivity Analysis of Phenology of Alpine Grassland to Climate Change in Qinghai-Tibet Plateau. Master degree dissertation, Chengdu University of Technology, Chengdu. |
[郭蒙珠 (2020). 青藏高原高寒草地物候对气候变化的响应与敏感性分析. 硕士学位论文, 成都理工大学, 成都.] | |
[13] |
Hassan T, Hamid M, Wani SA, Malik AH, Waza SA, Khuroo AA (2021). Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: supplementing decadal field records with historical and experimental evidences. Science of the Total Environment, 795, 148811. DOI: 10.1016/j.scitotenv.2021.148811.
DOI |
[14] |
Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren CH (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. Journal of Ecology, 98, 927-937.
DOI URL |
[15] | Hu MX, Zhou GS, Lü XM, Wang SQ, Zhang SY (2021). Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedlings. Acta Ecologica Sinica, 41, 2816-2825. |
[胡明新, 周广胜, 吕晓敏, 王思琪, 张世雅 (2021). 温度和光周期协同作用对蒙古栎幼苗春季物候的影响. 生态学报, 41, 2816-2825.] | |
[16] | IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] |
Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, et al. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
DOI PMID |
[18] | Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe. Chinese Journal of Ecology, 33, 849-856. |
[李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志, 33, 849-856.] | |
[19] | Lu PL, Yu Q, He QT (2006). Responses of plant phenology to climatic change. Acta Ecologica Sinica, 26, 923-929. |
[陆佩玲, 于强, 贺庆棠 (2006). 植物物候对气候变化的响应. 生态学报, 26, 923-929.] | |
[20] | Luo WR, Hu GZ, Ganjurjav H, Gao QZ, Li Y, Ge YQ, Li Y, He SC, Danjiu LB (2021). Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet. Acta Prataculturae Sinica, 30(2), 82-92. |
[罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布 (2021). 模拟干旱对藏北高寒草甸植物物候期和生产力的影响. 草业学报, 30(2), 82-92.]
DOI |
|
[21] |
McKeown M, Schubert M, Preston JC, Fjellheim S (2017). Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae. Molecular Phylogenetics and Evolution, 114, 111-121.
DOI PMID |
[22] |
Meng F, Jiang L, Zhang Z, Cui S, Duan J, Wang S, Luo C, Wang Q, Zhou Y, Li X, Zhang L, Li B, Dorji T, Li Y, Du M (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
DOI PMID |
[23] |
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian L, Shen M, Zhu X (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
DOI PMID |
[24] |
Prevéy J, Vellend M, Rüger N, Hollister RD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Clark K, Cooper EJ, Elberling B, Fosaa AM, Henry GHR, Høye TT, Jónsdóttir IS, Klanderud K, et al. (2017). Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 23, 2660-2671.
DOI PMID |
[25] |
Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
DOI URL |
[26] |
Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-301.
DOI URL |
[27] | Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann J, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, et al. (2020). Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nature Ecology & Evolution, 5, 155-164. |
[28] |
Shen M, Piao S, Dorji T, Liu Q, Cong N, Chen X, An S, Wang S, Wang T, Zhang G (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2, 454-467.
DOI URL |
[29] |
Shen MG, Tang YH, Chen J, Zhu XL, Zheng YH (2011). Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151, 1711-1722.
DOI URL |
[30] | Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, Lv WW, Li BL, Sun QL, Meng FD, Jiang YH, et al. (2022). Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 633-651. |
[31] |
Sherry RA, Zhou X, Gu S, Arnone III JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
DOI PMID |
[32] |
Song CQ, You SC, Ke LH, Liu GH, Zhong XK (2011). Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology, 35, 853-863.
DOI URL |
[宋春桥, 游松财, 柯灵红, 刘高焕, 钟新科 (2011). 藏北高原植被物候时空动态变化的遥感监测研究. 植物生态学报, 35, 853-863.]
DOI |
|
[33] |
Sun QL, Li BL, Jiang YH, Chen XZ, Zhou GY (2021). Declined trend in herbaceous plant green-up dates on the Qinghai-Tibetan Plateau caused by spring warming slowdown. Science of the Total Environment, 772, 145039. DOI: 10.1016/j.scitotenv.2021.145039.
DOI |
[34] |
Wang L, Zhang Q (2018). Analysis of phytogeographic characteristics of typical alpine grassland steppe in Qinghai-Tibetan Plateau recently 20 years. Plateau Meteorology, 37, 1528-1534.
DOI |
[王力, 张强 (2018). 近20年青藏高原典型高寒草甸化草原植物物候变化特征. 高原气象, 37, 1528-1534.]
DOI |
|
[35] |
Wolf AA, Zavaleta ES, Selmants PC (2017). Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 114, 3463-3468.
DOI PMID |
[36] |
Xia JY, Wan SQ (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 111, 1207-1217.
DOI PMID |
[37] |
Yang L, Rudolf VHW (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 13, 1-10.
DOI PMID |
[38] | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[39] |
Zhang W, Yi Y, Kimball JS, Kim Y, Song K (2015). Climatic controls on spring onset of the Tibetan Plateau grasslands from 1982 to 2008. Remote Sensing, 7, 16607-16622.
DOI URL |
[40] | Zhang XX, Ge QS, Zheng JY (2003). Application of remote sensing technology in plant phenology. Advances in Earth Science, 18(4), 534-544. |
[张学霞, 葛全胜, 郑景云 (2003). 遥感技术在植物物候研究中的应用综述. 地球科学进展, 18(4), 534-544.]
DOI |
|
[41] |
Zhao GS, Shi PL, Zong N, He YT, Zhang XZ, He HL, Zhang J (2017). Declining precipitation enhances the effect of warming on phenological variation in a semiarid Tibetan meadow steppe. Journal of Resources and Ecology, 8, 50-56.
DOI |
[42] |
Zheng ZT, Zhu WQ, Chen GS, Jiang N, Fan DQ, Zhang DH (2016). Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194-202.
DOI URL |
[43] | Zhou S, Zhang Y, Caylor KK, Luo Y, Xiao X, Ciais P, Huang Y, Wang G (2016). Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agricultural Agricult and Forest Meteorology, 226-227, 246-256. |
[44] |
Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
DOI URL |
[朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
DOI |
|
[45] |
Zhu JT, Zhang YJ, Wang WF (2016). Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biology Letters, 12, 20150749. DOI: 10.1098/rsbl.2015.0749.
DOI |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[3] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[4] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[5] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[8] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[9] | LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(5): 476-486. |
[10] | DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland [J]. Chin J Plant Ecol, 2021, 45(5): 507-515. |
[11] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[12] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[13] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
[14] | ZHAO He-Ju, YUE Yan-Peng, JIA Xiao-Hong, CHENG Long, WU Bo, LI Yuan-Shou, ZHOU Hong, ZHAO Xue-Bin. Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands [J]. Chin J Plant Ecol, 2020, 44(9): 916-925. |
[15] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn