Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 516-527.DOI: 10.17521/cjpe.2020.0169
Special Issue: 青藏高原植物生态学:植物-土壤-微生物
• Research Articles • Previous Articles Next Articles
MA Shu-Qin1, WANG Zi-Wei2,3, CHEN You-Chao4, LU Xu-Yang2,*()
Received:
2020-05-25
Accepted:
2020-07-17
Online:
2021-05-20
Published:
2020-08-07
Contact:
LU Xu-Yang
Supported by:
MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China[J]. Chin J Plant Ecol, 2021, 45(5): 516-527.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0169
化学成分 Chemical Compositions | 化学分子 Chemical molecular |
---|---|
烷烃 n-Alkanes | 3-乙基-己烷、正十一烷、2,4,6-三甲基戊烷、3-甲基-十一烷、乙基-环十二烷、正十九烷 3-ethyl-hexane, undecane, 2,4,6-trimethyl-octane, 3-methyl-undecane, ethyl-cyclododecane, nonadecane |
烯烃 n-Alkenes | 2-甲基-1-丁烯、1,4-环己二烯、5-甲基-1,3-环戊二烯、1-庚烯、1,2-二甲基-环戊烯、(E)-1,5-庚二烯、2,6-辛二烯、1-辛烯、3-甲基-1-庚烯、3-甲基-1,5-庚二烯、(E)-2-十一烯、1-癸烯、(E)-2-十二烯、2-甲基-1-十五烯、17-三十五烯、(E)-5-十八烯、 9-十九烯 2-methyl-1-butene, 1,4-cyclohexadiene, 5-methyl-1,3-cyclopentadiene, 1-heptene, 1,2-dimethyl-cyclopentene, (E)-1,5-heptadiene, 2,6-octadiene, 1-octene, 3-methyl-1-heptene, 3-methyl-1,5-heptadiene, (E)-2-undecene, 1-decene, (E)-2-dodecene, 2-methyl-1- pentadecene, 17-pentatriacontene, (E)-5-octadecene, 9-nonadecene |
芳香烃 Aromatics | 苯、甲苯、乙苯、对二甲苯、苯乙烯、1-乙烯基-3-甲苯、邻苯二甲酸酐、2-甲基苯乙炔、2,5-二甲基-对三联苯、1-甲基-4-(1-丙炔基)-苯 Benzene, toluene, ethylbenzene, p-xylene, styrene, 1-ethenyl-3-methyl-benzene, phthalic anhydride, methylphenylacetylene, 2,5-dimethyl-p-terphenyl, 1-methyl-4-(1-propynyl)-benzene |
脂肪酸 Fatty acids | 4-溴丁酸、4-氰基苯甲酸-6-乙基-3-辛酯、邻苯二甲酸二甲酯、十四酸、邻苯二甲酸2-(2-甲氧基)异丁基己酯、十六烷酸甲酯、棕榈酸、十五烷酸、9-十六碳烯酸、反-13-十八烯酸、顺-13-十八烯酸、邻苯二酸二异辛酯、酞酸丁十一酯、1,3-苯二甲酸二(2-乙基己基)酯、(E)-3-己烯-1-醇乙酸酯 4-bromobutyric acid, 4-cyanobenzoic acid, 6-ethyl-3-octyl ester, dimethyl phthalate, tetradecanoic acid, phthalic acid, isobutyl 2-(2-methoxyethyl)hexyl ester, hexadecanoic acid, methyl ester, n-hexadecanoic acid, pentadecanoic acid, 9-hexadecenoic acid, trans-13-octadecenoic acid, cis-13-octadecenoic acid, diisooctyl phthalate, phthalic acid, butyl undecyl ester, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, (E)-3-hexen-1-ol, acetate |
木质素 Lignins | 2-甲基-1-戊醇、3-己炔-2,5-二醇、2-甲基-4-乙烯基酚、α-乙基-4-甲氧基-苯甲醇 2-methyl-1-pentanol, 3-hexyne-2,5-diol, 2-methoxy-4-vinylphenol, α-ethyl-4-methoxy-benzenemethanol |
含氮化合物 N-compounds | D-丙氨酸、1,2-丙二酰胺、2-丙胺、4-甲基-2-戊胺、异丁腈、3-甲基丁烯腈、N-甲基吡咯、吡啶、吡咯、2-甲基吡啶、2-甲基嘧啶、2-甲基吡咯、异已腈、3-甲基吡咯、3-甲基吡啶、2,6-二甲基吡啶、2,3-二甲基吡咯、3-乙基吡咯、3,5-二甲基吡啶、2,4-二甲基吡啶、苄腈、吲哚、氨基苯并噻唑、2(3H)-苯并噻唑酮、硬脂酰胺、十八腈、11-硝基-1-十一碳烯、十七腈、十二酰胺、N-苯基-2-氨基苯并噻唑、油酸酰胺、十九酰胺、芥酸酰胺 D-alanine, 1,2-propanediamine, 2-propanamine, 4-methyl-2-pentanamine, isobutyronitrile, 3-methyl-butanenitrile, 1-methyl-1H- pyrrole, pyridine, pyrrole, 2-methyl-pyridine, 2-methyl-pyrimidine, 2-methyl-1H-pyrrole, isoamyl cyanide, 3-methyl-1H-pyrrole, 3-methyl-pyridine, 2,6-dimethyl-pyridine, 2,3-dimethyl-1H-pyrrole, 3-ethyl-1H-pyrrole, 3,5-dimethyl-pyridine, 2,4-dimethyl-pyridine, benzyl nitrile, indole, 2-benzothiazolamine, 2(3H)-benzothiazolone, octadecanamide, octadecanenitrile, 11-nitro-1-undecene, heptadecanenitrile, dodecanamide, N-phenyl-2-benzothiazolamine, 9-octadecenamide, (Z)-, nonadecanamide, 13-docosenamide |
酚 Phenols | 酚、2-甲酚、对甲酚、3-乙基苯酚、邻苯基苯酚、4,4′-(1-甲基亚乙基)苯酚 Phenol, 2-methyl-phenol, p-cresol, 3-ethyl-phenol, o-hydroxybiphenyl, 4,4′-(1-methylethylidene)bis- phenol |
多环芳烃 Polyaromatics | 茚、1,2-二氢萘、1-亚甲基-1H-茚、1-亚乙基-1H-茚、1-甲基萘、2-甲基萘 Indane, 1,2-dihydro-naphthalene, 1-methylene-1H-indene, 1-ethylidene-1H-indene, 1-methyl-naphthalene, 2-methyl-naphthalene |
多糖 Polysaccharides | 3-甲基丁醛、乙酸、巴豆醛、异丁烯醛、2,5-二甲基呋喃、4-羟基-2-环戊烯酮、3-糠醛、糠醛、4-环戊烯-1,3-二酮、2-甲基-2-环戊烯酮、1,2-环戊二酮、5-甲基-2-糠醛、3-甲基-1,2-环戊二酮、2,3-二甲基-2-环戊烯酮、苯乙酮、2,3-二羟基苯呋喃、2,3-二羟基-1H-茚-1-酮、苯酐、黄柏酮、2-二烯丙氨基-N-苯基-2-硫基-乙酰胺 3-methyl-butanal, acetic acid, 2-butenal, methacrolein, 2,5-dimethyl-furan, 4-hydroxy-2-cyclohexen-1-one, 3-furaldehyde, furfural, 4-cyclopentene-1,3-dione, 2-methyl-2-cyclopenten-1-one, 1,2-cyclopentanedione, 5-methyl-2-furancarboxaldehyde, 3-methyl- 1,2-cyclopentanedione, 2,3-dimethyl-2-cyclopenten-1-one, acetophenone, 2,3-dihydro-benzofuran, 2,3-dihydro-1H-inden-1-one, phthalic anhydride, obacunone, 2-diallylamino-N-phenyl-2-thioxo-acetamide |
萜烯类 Terpenes | 角鲨烯 squalene |
其他成分 Others | 己基过氧化氢、顺-1,3-环戊烷二醇、反-4-环戊烯-1,3-二醇、癸醇、十六醇 Hexyl-hydroperoxide, cis-1,3-cyclopentanediol, trans-4-cyclopentene-1,3-diol, 1-decanol, 1-hexadecanol |
未知物质 Unknowns | 未知1、未知2、未知3、未知4、未知5、未知6、未知7、未知8、未知9、未知10、未知11、未知12 Unknown 1, unknown 2, unknown 3, unknown 4, unknown 5, unknown 6, unknown 7, unknown 8, unknown 9, unknown 10, unknown 11, unknown 12 |
Table 1 Soil organic matter chemical compositions in Northern Xizang
化学成分 Chemical Compositions | 化学分子 Chemical molecular |
---|---|
烷烃 n-Alkanes | 3-乙基-己烷、正十一烷、2,4,6-三甲基戊烷、3-甲基-十一烷、乙基-环十二烷、正十九烷 3-ethyl-hexane, undecane, 2,4,6-trimethyl-octane, 3-methyl-undecane, ethyl-cyclododecane, nonadecane |
烯烃 n-Alkenes | 2-甲基-1-丁烯、1,4-环己二烯、5-甲基-1,3-环戊二烯、1-庚烯、1,2-二甲基-环戊烯、(E)-1,5-庚二烯、2,6-辛二烯、1-辛烯、3-甲基-1-庚烯、3-甲基-1,5-庚二烯、(E)-2-十一烯、1-癸烯、(E)-2-十二烯、2-甲基-1-十五烯、17-三十五烯、(E)-5-十八烯、 9-十九烯 2-methyl-1-butene, 1,4-cyclohexadiene, 5-methyl-1,3-cyclopentadiene, 1-heptene, 1,2-dimethyl-cyclopentene, (E)-1,5-heptadiene, 2,6-octadiene, 1-octene, 3-methyl-1-heptene, 3-methyl-1,5-heptadiene, (E)-2-undecene, 1-decene, (E)-2-dodecene, 2-methyl-1- pentadecene, 17-pentatriacontene, (E)-5-octadecene, 9-nonadecene |
芳香烃 Aromatics | 苯、甲苯、乙苯、对二甲苯、苯乙烯、1-乙烯基-3-甲苯、邻苯二甲酸酐、2-甲基苯乙炔、2,5-二甲基-对三联苯、1-甲基-4-(1-丙炔基)-苯 Benzene, toluene, ethylbenzene, p-xylene, styrene, 1-ethenyl-3-methyl-benzene, phthalic anhydride, methylphenylacetylene, 2,5-dimethyl-p-terphenyl, 1-methyl-4-(1-propynyl)-benzene |
脂肪酸 Fatty acids | 4-溴丁酸、4-氰基苯甲酸-6-乙基-3-辛酯、邻苯二甲酸二甲酯、十四酸、邻苯二甲酸2-(2-甲氧基)异丁基己酯、十六烷酸甲酯、棕榈酸、十五烷酸、9-十六碳烯酸、反-13-十八烯酸、顺-13-十八烯酸、邻苯二酸二异辛酯、酞酸丁十一酯、1,3-苯二甲酸二(2-乙基己基)酯、(E)-3-己烯-1-醇乙酸酯 4-bromobutyric acid, 4-cyanobenzoic acid, 6-ethyl-3-octyl ester, dimethyl phthalate, tetradecanoic acid, phthalic acid, isobutyl 2-(2-methoxyethyl)hexyl ester, hexadecanoic acid, methyl ester, n-hexadecanoic acid, pentadecanoic acid, 9-hexadecenoic acid, trans-13-octadecenoic acid, cis-13-octadecenoic acid, diisooctyl phthalate, phthalic acid, butyl undecyl ester, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, (E)-3-hexen-1-ol, acetate |
木质素 Lignins | 2-甲基-1-戊醇、3-己炔-2,5-二醇、2-甲基-4-乙烯基酚、α-乙基-4-甲氧基-苯甲醇 2-methyl-1-pentanol, 3-hexyne-2,5-diol, 2-methoxy-4-vinylphenol, α-ethyl-4-methoxy-benzenemethanol |
含氮化合物 N-compounds | D-丙氨酸、1,2-丙二酰胺、2-丙胺、4-甲基-2-戊胺、异丁腈、3-甲基丁烯腈、N-甲基吡咯、吡啶、吡咯、2-甲基吡啶、2-甲基嘧啶、2-甲基吡咯、异已腈、3-甲基吡咯、3-甲基吡啶、2,6-二甲基吡啶、2,3-二甲基吡咯、3-乙基吡咯、3,5-二甲基吡啶、2,4-二甲基吡啶、苄腈、吲哚、氨基苯并噻唑、2(3H)-苯并噻唑酮、硬脂酰胺、十八腈、11-硝基-1-十一碳烯、十七腈、十二酰胺、N-苯基-2-氨基苯并噻唑、油酸酰胺、十九酰胺、芥酸酰胺 D-alanine, 1,2-propanediamine, 2-propanamine, 4-methyl-2-pentanamine, isobutyronitrile, 3-methyl-butanenitrile, 1-methyl-1H- pyrrole, pyridine, pyrrole, 2-methyl-pyridine, 2-methyl-pyrimidine, 2-methyl-1H-pyrrole, isoamyl cyanide, 3-methyl-1H-pyrrole, 3-methyl-pyridine, 2,6-dimethyl-pyridine, 2,3-dimethyl-1H-pyrrole, 3-ethyl-1H-pyrrole, 3,5-dimethyl-pyridine, 2,4-dimethyl-pyridine, benzyl nitrile, indole, 2-benzothiazolamine, 2(3H)-benzothiazolone, octadecanamide, octadecanenitrile, 11-nitro-1-undecene, heptadecanenitrile, dodecanamide, N-phenyl-2-benzothiazolamine, 9-octadecenamide, (Z)-, nonadecanamide, 13-docosenamide |
酚 Phenols | 酚、2-甲酚、对甲酚、3-乙基苯酚、邻苯基苯酚、4,4′-(1-甲基亚乙基)苯酚 Phenol, 2-methyl-phenol, p-cresol, 3-ethyl-phenol, o-hydroxybiphenyl, 4,4′-(1-methylethylidene)bis- phenol |
多环芳烃 Polyaromatics | 茚、1,2-二氢萘、1-亚甲基-1H-茚、1-亚乙基-1H-茚、1-甲基萘、2-甲基萘 Indane, 1,2-dihydro-naphthalene, 1-methylene-1H-indene, 1-ethylidene-1H-indene, 1-methyl-naphthalene, 2-methyl-naphthalene |
多糖 Polysaccharides | 3-甲基丁醛、乙酸、巴豆醛、异丁烯醛、2,5-二甲基呋喃、4-羟基-2-环戊烯酮、3-糠醛、糠醛、4-环戊烯-1,3-二酮、2-甲基-2-环戊烯酮、1,2-环戊二酮、5-甲基-2-糠醛、3-甲基-1,2-环戊二酮、2,3-二甲基-2-环戊烯酮、苯乙酮、2,3-二羟基苯呋喃、2,3-二羟基-1H-茚-1-酮、苯酐、黄柏酮、2-二烯丙氨基-N-苯基-2-硫基-乙酰胺 3-methyl-butanal, acetic acid, 2-butenal, methacrolein, 2,5-dimethyl-furan, 4-hydroxy-2-cyclohexen-1-one, 3-furaldehyde, furfural, 4-cyclopentene-1,3-dione, 2-methyl-2-cyclopenten-1-one, 1,2-cyclopentanedione, 5-methyl-2-furancarboxaldehyde, 3-methyl- 1,2-cyclopentanedione, 2,3-dimethyl-2-cyclopenten-1-one, acetophenone, 2,3-dihydro-benzofuran, 2,3-dihydro-1H-inden-1-one, phthalic anhydride, obacunone, 2-diallylamino-N-phenyl-2-thioxo-acetamide |
萜烯类 Terpenes | 角鲨烯 squalene |
其他成分 Others | 己基过氧化氢、顺-1,3-环戊烷二醇、反-4-环戊烯-1,3-二醇、癸醇、十六醇 Hexyl-hydroperoxide, cis-1,3-cyclopentanediol, trans-4-cyclopentene-1,3-diol, 1-decanol, 1-hexadecanol |
未知物质 Unknowns | 未知1、未知2、未知3、未知4、未知5、未知6、未知7、未知8、未知9、未知10、未知11、未知12 Unknown 1, unknown 2, unknown 3, unknown 4, unknown 5, unknown 6, unknown 7, unknown 8, unknown 9, unknown 10, unknown 11, unknown 12 |
Fig. 2 Amount of different soil organic matter chemical compositions by Py-GC/MS in Northern Xizang, China (mean ± SE). Different lowercase letters indicate significant differences among different grasslands (p < 0.05). AD, alpine desert; ADS, alpine desert steppe; AM, alpine meadow; AMS, alpine meadow steppe; AS, alpine steppe.
Fig. 3 Richness index of soil organic matter compositions in different alpine grassland soils in Northern Xizang, China (mean ± SE). Different lowercase letters indicate significant differences among different grasslands (p < 0.05). AD, alpine desert; ADS, alpine desert steppe; AM, alpine meadow; AMS, alpine meadow steppe; AS, alpine steppe.
Fig. 4 Relative abundance of soil organic matter chemical compositions in different grassland soils in Northern Xizang, China. AD, alpine desert; ADS, alpine desert steppe; AM, alpine meadow; AMS, alpine meadow steppe; AS, alpine steppe.
高寒草地类型 Alpine grassland type | 蛋白酶 Protease (μg·g-1·h-1) | 脲酶 Urease (mg·kg-1·h-1) |
---|---|---|
高寒草甸 Alpine meadow | 170.20 ± 55.28Aa | 96.25 ± 52.08Aa |
高寒草原 Alpine steppe | 117.84 ± 36.68Aab | 130.20 ± 41.59Aa |
高寒荒漠 Alpine desert | 85.60 ± 10.02Abc | 80.07 ± 1.97Aa |
高寒草甸草原 Alpine meadow steppe | 79.97 ± 43.97Abc | 68.53 ± 6.22Aa |
高寒荒漠草原 Alpine desert steppe | 31.00 ± 20.81Bc | 85.86 ± 14.31Aa |
Table 2 Enzyme activity in different alpine grassland soils in Northern Xizang, China (mean ± SE)
高寒草地类型 Alpine grassland type | 蛋白酶 Protease (μg·g-1·h-1) | 脲酶 Urease (mg·kg-1·h-1) |
---|---|---|
高寒草甸 Alpine meadow | 170.20 ± 55.28Aa | 96.25 ± 52.08Aa |
高寒草原 Alpine steppe | 117.84 ± 36.68Aab | 130.20 ± 41.59Aa |
高寒荒漠 Alpine desert | 85.60 ± 10.02Abc | 80.07 ± 1.97Aa |
高寒草甸草原 Alpine meadow steppe | 79.97 ± 43.97Abc | 68.53 ± 6.22Aa |
高寒荒漠草原 Alpine desert steppe | 31.00 ± 20.81Bc | 85.86 ± 14.31Aa |
高寒草地类型 Alpine grassland type | 净氮矿化速率 Net N mineralization rate (mg·g-1·d-1) | 净氨化速率 Net ammonification rate (mg·g-1·d-1) | 净硝化速率 Net nitrification rate (mg·g-1·d-1) |
---|---|---|---|
高寒草甸 Alpine meadow | 0.33 ± 0.17a | 0.010 ± 0.004a | 0.32 ± 0.16a |
高寒草原 Alpine steppe | 0.15 ± 0.06b | 0.008 ± 0.002b | 0.14 ± 0.06b |
高寒荒漠 Alpine desert | 0.05 ± 0.02b | 0.003 ± 0.002c | 0.05 ± 0.01b |
高寒草甸草原 Alpine meadow steppe | 0.12 ± 0.05b | 0.004 ± 0.001c | 0.12 ± 0.05b |
高寒荒漠草原 Alpine desert steppe | 0.05 ± 0.02b | 0.004 ± 0.002c | 0.04 ± 0.02b |
Table 3 Net nitrogen (N) mineralization rate, net ammonification rate and net nitrification rate in different alpine grassland soils in Northern Xizang, China (mean ± SE)
高寒草地类型 Alpine grassland type | 净氮矿化速率 Net N mineralization rate (mg·g-1·d-1) | 净氨化速率 Net ammonification rate (mg·g-1·d-1) | 净硝化速率 Net nitrification rate (mg·g-1·d-1) |
---|---|---|---|
高寒草甸 Alpine meadow | 0.33 ± 0.17a | 0.010 ± 0.004a | 0.32 ± 0.16a |
高寒草原 Alpine steppe | 0.15 ± 0.06b | 0.008 ± 0.002b | 0.14 ± 0.06b |
高寒荒漠 Alpine desert | 0.05 ± 0.02b | 0.003 ± 0.002c | 0.05 ± 0.01b |
高寒草甸草原 Alpine meadow steppe | 0.12 ± 0.05b | 0.004 ± 0.001c | 0.12 ± 0.05b |
高寒荒漠草原 Alpine desert steppe | 0.05 ± 0.02b | 0.004 ± 0.002c | 0.04 ± 0.02b |
土壤氮转化速率 Soil nitrogen transformation rate | 蛋白酶 Protease | 脲酶 Urease |
---|---|---|
净氮矿化速率 Net N mineralization rate | 0.75** | 0.33 |
净氨化速率 Net ammonification rate | 0.79** | 0.37 |
净硝化速率 Net nitrification rate | 0.71** | 0.33 |
Table 4 Relationship between soil enzyme activity and soil nitrogen (N) transformation rate in alpine grasslands in Northern Xizang, China
土壤氮转化速率 Soil nitrogen transformation rate | 蛋白酶 Protease | 脲酶 Urease |
---|---|---|
净氮矿化速率 Net N mineralization rate | 0.75** | 0.33 |
净氨化速率 Net ammonification rate | 0.79** | 0.37 |
净硝化速率 Net nitrification rate | 0.71** | 0.33 |
化学成分 Chemical composition | 蛋白酶 Protease | 脲酶 Urease | 净氮矿化速率 Net nitrogen mineralization rate | 净氨化速率 Net ammonification rate | 净硝化速率 Net nitrification rate |
---|---|---|---|---|---|
烷烃 n-Alkanes | 0.45* | -0.02 | 0.63** | 0.67** | 0.63** |
烯烃 n-Alkenes | 0.72** | 0.15 | 0.70** | 0.83** | 0.69** |
芳香烃 Aromatics | 0.53* | 0.16 | 0.61** | 0.80** | 0.60** |
脂肪酸 Fatty acids | -0.13 | -0.12 | -0.35 | -0.33 | -0.35 |
木质素 Lignins | 0.17 | -0.33 | -0.11 | -0.02 | -0.11 |
含氮化合物 N-compounds | -0.43 | -0.09 | -0.40 | -0.60* | -0.39 |
酚 Phenols | 0.27 | 0.22 | 0.33 | 0.60** | 0.32 |
多环芳烃 Polyaromatics | -0.27 | -0.12 | 0.03 | 0.05 | 0.02 |
多糖 Polysaccharides | 0.30 | 0.03 | 0.50* | 0.61** | 0.49* |
萜烯类 Terpenes | -0.35 | -0.16 | -0.49* | -0.53* | -0.49* |
糠醛:吡咯 Furfural:Pyrrole | 0.56** | 0.12 | 0.47* | 0.62** | 0.46* |
苯:甲苯 Benzene:Toluene | -0.38 | 0.07 | -0.19 | -0.41 | -0.18 |
吡咯:酚 Pyrrole:Phenol | -0.12 | 0.26 | 0.05 | -0.25 | 0.06 |
Table 5 Relationship between soil organic matter compositions and enzyme activity in alpine grasslands in Northern Xizang, China
化学成分 Chemical composition | 蛋白酶 Protease | 脲酶 Urease | 净氮矿化速率 Net nitrogen mineralization rate | 净氨化速率 Net ammonification rate | 净硝化速率 Net nitrification rate |
---|---|---|---|---|---|
烷烃 n-Alkanes | 0.45* | -0.02 | 0.63** | 0.67** | 0.63** |
烯烃 n-Alkenes | 0.72** | 0.15 | 0.70** | 0.83** | 0.69** |
芳香烃 Aromatics | 0.53* | 0.16 | 0.61** | 0.80** | 0.60** |
脂肪酸 Fatty acids | -0.13 | -0.12 | -0.35 | -0.33 | -0.35 |
木质素 Lignins | 0.17 | -0.33 | -0.11 | -0.02 | -0.11 |
含氮化合物 N-compounds | -0.43 | -0.09 | -0.40 | -0.60* | -0.39 |
酚 Phenols | 0.27 | 0.22 | 0.33 | 0.60** | 0.32 |
多环芳烃 Polyaromatics | -0.27 | -0.12 | 0.03 | 0.05 | 0.02 |
多糖 Polysaccharides | 0.30 | 0.03 | 0.50* | 0.61** | 0.49* |
萜烯类 Terpenes | -0.35 | -0.16 | -0.49* | -0.53* | -0.49* |
糠醛:吡咯 Furfural:Pyrrole | 0.56** | 0.12 | 0.47* | 0.62** | 0.46* |
苯:甲苯 Benzene:Toluene | -0.38 | 0.07 | -0.19 | -0.41 | -0.18 |
吡咯:酚 Pyrrole:Phenol | -0.12 | 0.26 | 0.05 | -0.25 | 0.06 |
[1] |
Adamczyk B,Kitunen V,Smolander A(2009).Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce.Soil Biology & Biochemistry,41, 2085-2093.
DOI URL |
[2] | Andreetta A,Macci C,Giansoldati V,Masciandaro G,Carnicelli S(2013).Microbial activity and organic matter composition in Mediterranean humus forms.Geoderma,209, 198-208. |
[3] |
Aranda V,Macci C,Peruzzi E,Masciandaro G(2015).Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.Journal of Environmental Management,147, 278-285.
DOI PMID |
[4] |
Avazpoor Z,Moradi M,Basiri R,Mirzaei J,Taghizadeh-Mehrjardi R,Kerry R(2019).Soil enzyme activity variations in riparian forests in relation to plant species and soil depth.Arabian Journal of Geosciences,12, 708. DOI:10.1007/s12517-019-4910-2.
DOI URL |
[5] | Bai JB,Xu XL,Fu G,Song MH,He YT,Jiang J(2011).Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.Journal of Anhui Agricultural Sciences,39, 14698-14700. |
[白洁冰,徐兴良,付刚,宋明华,何永涛,蒋婧(2011).温度和氮素输入对青藏高原3种高寒草地土壤氮矿化的影响.安徽农业科学,39, 14698-14700.] | |
[6] |
Baligar VC,Wright RJ,Fageria NK,Pitta GVE(1999).Enzyme activities in Cerrado soils of Brazil.Communications in Soil Science and Plant Analysis,30, 1551-1560.
DOI URL |
[7] |
Bao Y,Gao Y,Zeng XM,Yuan P,Si YT,Chen YM,Chen YY(2018).Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China.Chinese Journal of Plant Ecology,42, 508-516.
DOI URL |
[鲍勇,高颖,曾晓敏,袁萍,司友涛,陈岳民,陈滢伊(2018).中亚热带3种典型森林土壤碳氮含量和酶活性的关系.植物生态学报,42, 508-516.] | |
[8] | Bhattacharyya P,Nayak AK,Mohanty S,Tripathi R,Shahid M,Kumar A,Raja R,Panda BB,Roy KS,Neogi S,Dash PK,Shukla AK,Rao KS(2013).Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice.Soil & Tillage Research,129, 93-105. |
[9] | Cai H,Shen RF(2005).Determination of soil protease activity with modified ninhydrin colorimetry.Acta Pedologica Sinica,42, 306-313. |
[蔡红,沈仁芳(2005).改良茚三酮比色法测定土壤蛋白酶活性的研究.土壤学报,42, 306-313.] | |
[10] |
Cai YJ,Wang XD,Ding WX,Tian LL,Zhao H,Lu XY(2013).Potential short-term effects of yak and Tibetan sheep dung on greenhouse gas emissions in two alpine grassland soils under laboratory conditions.Biology and Fertility of Soils,49, 1215-1226.
DOI URL |
[11] |
Caldwell BA(2005).Enzyme activities as a component of soil biodiversity: a review.Pedobiologia,49, 637-644.
DOI URL |
[12] |
Chen QY,Niu B,Hu YL,Luo TX,Zhang GX(2020).Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms.Science of the Total Environment,714, 136787. DOI:10.1016/j.scitotenv.2020.136787.
DOI URL |
[13] |
Chen YC,Ma SQ,Sun J,Wang XD,Cheng GW,Lu XY(2017).Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil.Soil Biology & Biochemistry,109, 124-134.
DOI URL |
[14] | Cui HX,Wei NH(1997).The geographical distribution of grassland types in Xizang, China.Foreign Animal Husbandry—Grassland and Pastures, (4), 11-17. |
[崔恒心,维纳汉(1997).西藏草地类型及其地理分布规律.国外畜牧学——草原与牧草, (4), 11-17.] | |
[15] |
Cui JF,Holden NM(2015).The relationship between soil microbial activity and microbial biomass, soil structure and grassland management.Soil and Tillage Research,146, 32-38.
DOI URL |
[16] |
Derenne S,Quénéa K(2015).Analytical pyrolysis as a tool to probe soil organic matter.Journal of Analytical and Applied Pyrolysis,111, 108-120.
DOI URL |
[17] | Dinesh R,Shome BR,Shome R,Bandyopadhyay AK(1998).Soil enzymes in the mangroves: activities and their relation to relevant soil properties.Current Science,75, 510-512. |
[18] |
Du EZ,Terrer C,Pellegrini AFA,Ahlstrom A,van Lissa CJ,Zhao X,Xia N,Wu XH,Jackson RB(2020).Global patterns of terrestrial nitrogen and phosphorus limitation.Nature Geoscience,13, 221-226.
DOI URL |
[19] |
Fraser FC,Hallett PD,Wookey PA,Hartley IP,Hopkins DW(2013).How do enzymes catalysing soil nitrogen transformations respond to changing temperatures?Biology and Fertility of Soils,49, 99-103.
DOI URL |
[20] |
Gao QZ,Li Y,Wan YF,Qin XB,Jiangcun WZ,Liu YH(2009).Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet.Climatic Change,97, 515-528.
DOI URL |
[21] |
Grandy AS,Neff JC,Weintraub MN(2007).Carbon structure and enzyme activities in alpine and forest ecosytems.Soil Biology & Biochemistry,39, 2701-2711.
DOI URL |
[22] |
Gong SW,Zhang T,Guo R,Cao HB,Shi LX,Guo JX,Sun W(2015).Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe.Soil Research,53, 242-252.
DOI URL |
[23] | Huang HL,Zong N,He NP,Tian J(2019).Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China.Chinese Journal of Applied Ecology,30, 3689-3696. |
[黄海莉,宗宁,何念鹏,田静(2019).青藏高原高寒草甸不同海拔土壤酶化学计量特征.应用生态学报,30, 3689-3696.] | |
[24] | Huang J,Li Z,Zhang J(2012).Improvement of indophenol blue colorimetric method on activity of urease in soil.Journal of Civil, Architectural & Environment Engineering,34, 102-107. |
[黄娟,李稹,张健(2012).改良靛酚蓝比色法测土壤脲酶活性.土木建筑与环境工程,34, 102-107.] | |
[25] | Huang YF,Shu YG,Xiao SY,Chen MJ(2020).Quantification of soil nutrient levels and enzyme activities in different grassland categories in karst mountains.Acta Prataculturae Sinica,29, 93-104. |
[黄玙璠,舒英格,肖盛杨,陈梦军(2020).喀斯特山区不同草地土壤养分与酶活性特征.草业学报,29, 93-104.] | |
[26] |
Kuypers MMM,Marchant HK,Kartal B(2018).The microbial nitrogen-cycling network.Nature Reviews: Microbiology,16, 263-276.
DOI URL |
[27] | Li Q,Sun YN,Li L,Li YK,Du YG,Guo XW,Yang YS,Cao GM(2019).Changes of soil enzyme activities and nutrients across different succession stages of grazing alpine Kobresia grassland.Chinese Journal of Applied Ecology,30, 2267-2274. |
[李茜,孙亚男,林丽,李以康,杜岩功,郭小伟,杨永胜,曹广民(2019).放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征.应用生态学报,30, 2267-2274.] | |
[28] |
Li YY,Dong SK,Liu SL,Zhou HK,Gao QZ,Cao GM,Wang XX,Su XK,Zhang Y,Tang L,Zhao HD,Wu XY(2015).Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China.Soil Biology & Biochemistry,80, 306-314.
DOI URL |
[29] |
Li ZL,Zeng ZQ,Tian DS,Wang JS,Fu Z,Zhang FY,Zhang RY,Chen WN,Luo YQ,Niu SL(2020).Global patterns and controlling factors of soil nitrification rate.Global Change Biology,26, 4147-4157.
DOI URL |
[30] | Liang B,Li JL,Yang XY,Zhou JB(2016).Effect of fertilization on extractable organic nitrogen in wheat monoculture cropping systems.Acta Ecologica Sinica,36, 4430-4437. |
[梁斌,李俊良,杨学云,周建斌(2016).施肥对麦田土壤可溶性有机氮的影响.生态学报,36, 4430-4437.] | |
[31] | Liu L,Zhu X,Sun G,Luo P,Wang B(2011).Effects of simulated warming and fertilization on activities of soil enzymes in alpine meadow.Pratacultural Science,28, 1405-1410. |
[刘琳,朱霞,孙庚,罗鹏,王蓓(2011).模拟增温与施肥对高寒草甸土壤酶活性的影响.草业科学,28, 1405-1410.] | |
[32] | Liu SQ,Gao LL,Pu YL,Deng LJ,Zhang SR(2004).Analysis on status of soil organic matter and N nutrient and their influencing factors in Tibet.Journal of Soil and Water Conservation,18, 54-57. |
[刘世全,高丽丽,蒲玉琳,邓良基,张世熔(2004).西藏土壤有机质和氮素状况及其影响因素分析.水土保持学报,18, 54-57.] | |
[33] |
Lu XY,Yan Y,Fan JH,Wang XD(2012).Gross nitrification and denitrification in alpine grassland ecosystems on the Tibetan Plateau.Arctic, Antarctic, and Alpine Research,44, 188-196.
DOI URL |
[34] |
Luo RY,Luo JF,Fan JL,Liu DY,He JS,Perveen N,Ding WX(2020).Responses of soil microbial communities and functions associated with organic carbon mineralization to nitrogen addition in a Tibetan grassland.Pedosphere,30, 214-225.
DOI URL |
[35] |
Ma SQ,Chen YC,Lu XY,Wang XD(2018).Soil organic matter chemistry: based on pyrolysis-gas chromatography mass spectrometry (Py-GC/MS).Mini-reviews in Organic Chemistry,15, 389-403.
DOI URL |
[36] | Ma XX,Yan Y,Lu XY,Wang XD(2016).Dynamics of belowground biomass and its relationship with soil moisture in alpine grassland on the North Tibetan Plateau.Ecology and Environment,25, 189-195. |
[马星星,鄢燕,鲁旭阳,王小丹(2016).藏北高寒草地地下生物量特征及其与土壤水分的关系.生态环境学报,25, 189-195.] | |
[37] | Ma Y,Yang J,Zhang DG,Zhou H,Zhou HC,Chen JG(2020).Effects of alpine meadow degradation on soil microbial biomass and nitrogen mineralization rate in the Qilian Mountains.Acta Ecologica Sinica,40, 2680-2690. |
[马源,杨洁,张德罡,周恒,周会程,陈建纲(2020).高寒草甸退化对祁连山土壤微生物生物量和氮矿化速率的影响.生态学报,40, 2680-2690.] | |
[38] |
Mehrabanian M(2013).Molecular geochemistry of soil organic matter by pyrolysis gas chromatography/mass spectrometry (GC/MS) technique: a review.Journal of Soil Science and Environmental Management,4, 11-16.
DOI URL |
[39] |
Niu B,Zeng CX,Zhang XZ,He YT,Shi PL,Tian Y,Feng YF,Li M,Wang ZP,Wang XT,Cao YN(2019).High below- ground productivity allocation of alpine grasslands on the northern Tibet.Plants,8, 535. DOI:10.3390/plants8120535.
DOI URL |
[40] | Oliveira DMDS,Schellekens J,Cerri CEP(2016).Molecular characterization of soil organic matter from native vegetation-pasture-sugarcane transitions in Brazil.Science of the Total Environment,548, 450-462. |
[41] | Rao CS,Grover M,Kundu S,Desai S(2016).Soil enzymes//Lal R. Encyclopedia of Soil Science. 3rd ed.CRC Press, Boca Raton,USA. 2100-2107. |
[42] |
Schimel JP,Becerra CA,Blankinship JC(2017).Estimating decay dynamics for enzyme activities in soils from different ecosystems.Soil Biology & Biochemistry,114, 5-11.
DOI URL |
[43] |
Senthilkumar K,Manian S,Udaiyan K(1997).The effect of burning on soil enzyme activities in natural grasslands in southern India.Ecological Research,12, 21-25.
DOI URL |
[44] | Sun HL,Zheng D,Yao TD,Zhang YL(2012).Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica,67, 3-12. |
[孙鸿烈,郑度,姚檀栋,张镱锂(2012).青藏高原国家生态安全屏障保护与建设.地理学报,67, 3-12.] | |
[45] |
Sun J,Hou G,Liu M,Fu G,Zhan TY,Zhou HK,Tsunekawa A,Haregeweyn N(2019).Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet.Ecological Indicators,107, 105647. DOI:10.1016/j.ecolind.2019.105647.
DOI URL |
[46] | Suo NJ,Tan YR,Zhu WX,Gu ZK,Du GZ(2012).A study on soil enzyme activity in four different grasslands of the eastern Tibetan Plateau.Acta Prataculturae Sinica,21, 10-15. |
[索南吉,谈嫣蓉,朱炜歆,顾振宽,杜国祯(2012).青藏高原东缘不同草地类型土壤酶活性研究.草业学报,21, 10-15.] | |
[47] |
Utobo EB,Tewari L(2015).Soil enzymes as bioindicators of soil ecosystem status.Applied Ecology and Environmental Research,13, 147169. DOI:10.15666/aeer/1301_147169.
DOI |
[48] |
Wallenstein MD,McMahon SK,Schimel JP(2009).Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils.Global Change Biology,15, 1631-1639.
DOI URL |
[49] | Wang LD,Wang FL,Guo CF,Han FG,Wei LY,Li FM(2016).Review: progress of soil enzymology.Soils,48, 12-21. |
[王理德,王方琳,郭春芳,韩福贵,魏林源,李发明(2016).土壤酶学研究进展.土壤,48, 12-21.] | |
[50] | Wang XX,Dong SK,Gao QZ,Zhang Y,Hu GZ,Luo WR(2018).The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau.Acta Prataculturae Sinica,27, 1-9. |
[王学霞,董世魁,高清竹,张勇,胡国铮,罗文蓉(2018).青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究.草业学报,27, 1-9.] | |
[51] |
Watanabe K(2009).Detection of protease genes in field soil applied with liquid livestock feces and speculation on their function and origin.Soil Science and Plant Nutrition,55, 42-52.
DOI URL |
[52] |
Xu HY,Liu GM,Wu XD,Smoak JM,Mu CC,Ma XL,Zhang XL,Li HQ,Hu GL(2018).Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau.Ecological Indicators,85, 585-593.
DOI URL |
[53] | Yan ZQ,Qi YC,Peng Q,Dong YS,Guo SF,He YL,Wang LQ,Li ZL(2017).Effects of increased precipitation and nitrogen deposition on soil enzyme activities.Acta Ecologica Sinica,37, 3019-3027. |
[闫钟清,齐玉春,彭琴,董云社,郭树芳,贺云龙,王丽芹,李兆林(2017).降水和氮沉降增加对草地土壤酶活性的影响.生态学报,37, 3019-3027.] | |
[54] | Yassir I,Buurman P(2012).Soil organic matter chemistry changes upon secondary succession in Imperata grasslands, Indonesia: a pyrolysis-GC/MS study.Geoderma,173, 94-103. |
[55] | Yu CJ,Jiang DQ,Tian MY,Chen ZH,Zhang YL,Wang J,Jiang H,Chen LJ(2020).Soil intracellular and extracellular urease activities and their response mechanisms to carbon additions in chernozem.Chinese Journal of Applied Ecology,31, 1957-1962. |
[于春甲,姜东奇,田沐雨,陈振华,张玉兰,王俭,蒋晖,陈利军(2020).碳添加下黑钙土胞内、胞外脲酶活性变化及其机制.应用生态学报,31, 1957-1962.] | |
[56] | Yu YL,Pan Q,Chen AG(2008).Study on the mechanism of cinnamon extracts as an urease inhibitor.Acta Ecologiae Animalis Domastici,29, 47-50. |
[余燕玲,潘倩,陈安国(2008).脲酶抑制剂樟科提取物的作用机理初探.家畜生态学报,29, 47-50.] | |
[57] |
Zhong ZK,Makeschin F(2003).Soluble organic nitrogen in temperate forest soils.Soil Biology & Biochemistry,35, 333-338.
DOI URL |
[58] | Zhu GL,Li J,Wei XH,He NP(2017).Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands.Journal of Natural Resources,32, 210-222. |
[朱桂丽,李杰,魏学红,何念鹏(2017).青藏高寒草地植被生产力与生物多样性的经度格局.自然资源学报,32, 210-222.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn