Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (6): 882-894.DOI: 10.17521/cjpe.2022.0031
• Research Articles • Previous Articles
GUO Min1, LUO Lin2, LIANG Jin2, WANG Yan-Jie1,*(), ZHAO Chun-Zhang3,*()
Received:
2022-01-18
Accepted:
2022-05-20
Online:
2023-06-20
Published:
2022-06-09
Contact:
* (Wang YJ, Supported by:
GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China[J]. Chin J Plant Ecol, 2023, 47(6): 882-894.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0031
处理 Treatment | 土深5 cm Soil depth 5 cm | 土深15 cm Soil depth 15 cm | ||
---|---|---|---|---|
冻结时间 Freezing time (d) | 冻融循环次数 Freeze thaw cycle (times) | 冻结时间 Freezing time (d) | 冻融循环次数 Freeze thaw cycle (times) | |
对照 Control | 65 ± 2.9 | 3 ± 0 | 36 ± 1.1 | 1 ± 0 |
增温 Warming | 5 ± 0.6 | 0 ± 0 | 4 ± 0.5 | 0 ± 0 |
Table 1 Freeze-thaw cycles of the warming and control plots during December 2018 to March 2019 under subalpine forests of China (mean ± SE)
处理 Treatment | 土深5 cm Soil depth 5 cm | 土深15 cm Soil depth 15 cm | ||
---|---|---|---|---|
冻结时间 Freezing time (d) | 冻融循环次数 Freeze thaw cycle (times) | 冻结时间 Freezing time (d) | 冻融循环次数 Freeze thaw cycle (times) | |
对照 Control | 65 ± 2.9 | 3 ± 0 | 36 ± 1.1 | 1 ± 0 |
增温 Warming | 5 ± 0.6 | 0 ± 0 | 4 ± 0.5 | 0 ± 0 |
Fig. 2 Effects of warming on soil physicochemical properties of sample plot under subalpine forests of southwest China (mean ± SE). CK, control treatment; W, warming treatment. FN, Fargesia nitida; PA, Picea asperata. DON, dissolved organic nitrogen; MBN, microbial biomass nitrogen; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen. *, p < 0.05; ns, p > 0.05.
Fig. 3 Effects of warming on soil enzyme activities of sample plot under subalpine forests of southwest China (mean ± SE). CK, control treatments; W, warming treatments. FN, Fargesia nitida; PA, Picea asperata. BG, activity of 4-methylumbelliferyl-β-D-glucoside; NAG, activity of β-N-acetylglucosaminidase; Pro, activity of protease; Ure, activity of urease. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p < 0.05.
SM | pH | TC | TN | NO3--N | NH4+-N | MBN | DON | BG | NAG | Pro | Ure | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T5 | -0.33 | -0.27 | 0.08 | -0.67* | -0.38 | 0.72** | -0.14 | -0.62** | 0.94 | -0.93** | 0.02 | 0.72** |
T15 | -0.33 | -0.27 | 0.08 | -0.48* | -0.51 | 0.83** | -0.01 | -0.85** | 0.889 | -0.91** | 0.16 | 0.76** |
D5 | -0.33 | -0.30 | 0.01 | -0.66* | -0.43 | 0.80** | -0.08 | -0.71** | 0.906 | -0.96** | 0.04 | 0.74** |
D15 | -0.34 | -0.29 | 0.02 | -0.68* | -0.42 | 0.79** | -0.08 | -0.69** | 0.898 | -0.97** | 0.03 | 0.74** |
Table 2 Correlation analysis between soil physicochemical factors, enzyme activities and freeze-thaw cycles
SM | pH | TC | TN | NO3--N | NH4+-N | MBN | DON | BG | NAG | Pro | Ure | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T5 | -0.33 | -0.27 | 0.08 | -0.67* | -0.38 | 0.72** | -0.14 | -0.62** | 0.94 | -0.93** | 0.02 | 0.72** |
T15 | -0.33 | -0.27 | 0.08 | -0.48* | -0.51 | 0.83** | -0.01 | -0.85** | 0.889 | -0.91** | 0.16 | 0.76** |
D5 | -0.33 | -0.30 | 0.01 | -0.66* | -0.43 | 0.80** | -0.08 | -0.71** | 0.906 | -0.96** | 0.04 | 0.74** |
D15 | -0.34 | -0.29 | 0.02 | -0.68* | -0.42 | 0.79** | -0.08 | -0.69** | 0.898 | -0.97** | 0.03 | 0.74** |
Fig. 4 Effects of freeze-thaw cycles on soil physicochemical properties of sample plot under subalpine forests of southwest China (mean ± SE). 0, control treatment; 5, five freeze-thaw cycles; 15, fifteen freeze-thaw cycles. FN, Fargesia nitida; PA, Picea asperata. Different lowercase letters represent significant difference between treatments (p < 0.05).
Fig. 5 Effects of freeze-thaw cycles on soil enzyme activities of sample plot under subalpine forests of southwest China (mean ± SE). 0, control treatment; 5, five freeze-thaw cycles; 15, fifteen freeze-thaw cycles. FN, Fargesia nitida; PA, Picea asperata. BG, activity of 4-methylumbelliferyl-β-D-glucoside; NAG, activity of β-N-acetylglucosaminidase; Pro, activity of protease; Ure, activity of urease. Different lowercase letters represent significant difference between treatments (p < 0.05).
Fig. 6 Redundancy analysis (RDA) of soil enzyme activities and physicochemical factors of sample plot under subalpine forests of southwest China. A, Fargesia nitida. B, Picea asperata. BG, activity of 4-methylumbelliferyl-β-D-glucoside; DON, dissolved organic nitrogen content; MBN, microbial biomass nitrogen content; NAG, activity of β-N-acetylglucosaminidase; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; Pro, activity of protease; TC, total carbon content; TN, total nitrogen content; Ure, activity of urease.
[1] | Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451. |
[2] | Bai ZL, Wang BX, Lin JH (2021). Effect of freeze-thaw cycles on the bonding properties between BTRC textile and concrete. New Building Materials, 48(9), 36-40. |
[白子龙, 王伯昕, 林建宏 (2021). 冻融循环作用对玄武岩纤维编织网与混凝土粘结性能的影响. 新型建筑材料, 48(9), 36-40.] | |
[3] | Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD (2013). High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments, 81, e50961. DOI: 10.3791/50961. |
[4] | Cai YJ, Wang XD, Ding WX, Yan Y, Lu XY, Du ZY (2013). Effects of freeze-thaw on soil nitrogen transformation and N2O emission: a review. Acta Pedologica Sinica, 50, 1032-1042. |
[蔡延江, 王小丹, 丁维新, 鄢燕, 鲁旭阳, 杜子银 (2013). 冻融对土壤氮素转化和N2O排放的影响研究进展. 土壤学报, 50, 1032-1042.] | |
[5] | Camill P (2005). Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change, 68, 135-152. |
[6] | Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322. |
[7] | Chang ZQ, Ma YL, Liu W, Feng Q, Su YH, Xi HY, Si JH (2014). Effect of soil freezing and thawing on the carbon and nitrogen in forest soil in the Qilian Mountains. Journal of Glaciology and Geocryology, 36, 200-206. |
[常宗强, 马亚丽, 刘蔚, 冯起, 苏永红, 席海洋, 司建华 (2014). 土壤冻融过程对祁连山森林土壤碳氮的影响. 冰川冻土, 36, 200-206.] | |
[8] | Chen ZH, Zhang XR, Tan B, Wei XY, Chen Y, Yang YL, Wu QG, Zhang L (2020). Effects of the freeze-thaw cycle on soil enzyme activities in a sub-alpine forest in western Sichuan. Acta Ecologica Sinica, 40, 2662-2669. |
[陈子豪, 张晓蓉, 谭波, 卫芯宇, 谌亚, 杨玉莲, 吴庆贵, 张丽 (2020). 冻融循环对川西亚高山森林土壤酶活性的影响. 生态学报, 40, 2662-2669.] | |
[9] | Cleavitt NL, Fahey TJ, Groffman PM, Hardy JP, Henry KS, Driscoll CT (2008). Effects of soil freezing on fine roots in a northern hardwood forest. Canadian Journal of Forest Research, 38, 82-91. |
[10] | DeLuca TH, Keeney DR, McCarty GW (1992). Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils, 14, 116-120. |
[11] | Deng RJ, Yang WQ‚ Wu FZ (2009). Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platyphylla litters. Chinese Journal of Applied Ecology, 20, 1026-1031. |
[邓仁菊, 杨万勤, 吴福忠 (2009). 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响. 应用生态学报, 20, 1026-1031.] | |
[12] | Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K (2018). Early stage litter decomposition across biomes. Science of the Total Environment, 628- 629, 1369-1394. |
[13] | Du ZY (2020). Effects of freeze-thaw action on soil physicochemical and biological properties in the alpine grasslands. Ecology and Environmental Sciences, 29, 1054-1061. |
[杜子银 (2020). 冻融作用对高寒草地土壤理化和生物学性质的影响. 生态环境学报, 29, 1054-1061.] | |
[14] | Freeman C, Ostle N, Kang H (2001). An enzymic “latch” on a global carbon store. Nature, 409, 149. DOI: 10.1038/35051650. |
[15] | Gilliam FS, Cook A, Lyter S (2010). Effects of experimental freezing on soil nitrogen dynamics in soils from a net nitrification gradient in a nitrogen-saturated hardwood forest ecosystem. Canadian Journal of Forest Research, 40, 436-444. |
[16] | Han ZM, Deng MW, Yuan AQ, Wang JH, Li H, Ma JC (2018). Vertical variation of a black soil’s properties in response to freeze-thaw cycles and its links to shift of microbial community structure. Science of the Total Environment, 625, 106-113. |
[17] | Hentschel K, Borken W, Matzner E (2008). Repeated freezen the microbial community structure explain the response of soil respiration to land-use change. Journal of Plant Nutrition and Soil Science, 171, 699-706. |
[18] | Herrmann A, Witter E (2002). Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry, 34, 1495-1505. |
[19] | Hu CX, Tian ZW, Gu SL, Guo H, Fan YH, Abid M, Chen K, Jiang D, Cao WX, Dai TB (2018). Winter and spring night-warming improve root extension and soil nitrogen supply to increase nitrogen uptake and utilization of winter wheat (Triticum aestivum L.). European Journal of Agronomy, 96, 96-107. |
[20] | IPCC (2018). Special Report on Global Warming of 1.5 °C. Cambridge University Press, Cambridge, UK. |
[21] | Jefferies RL, Walker NA, Edwards KA, Dainty J (2010). Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biology & Biochemistry, 42, 129-135. |
[22] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[23] | Kang H, Freeman C (1999). Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology & Biochemistry, 31, 449-454. |
[24] | Koponen HT, Jaakkola T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology & Biochemistry, 38, 1861-1871. |
[25] | Kreyling J, Schumann R, Weigel R (2020). Soils from cold and snowy temperate deciduous forests release more nitrogen and phosphorus after soil freeze-thaw cycles than soils from warmer, snow-poor conditions. Biogeosciences, 17, 4103-4117. |
[26] | Larsen KS, Jonasson S, Michelsen A (2002). Repeated freeze-thaw cycles and their effects on biological processes in two Arctic ecosystem types. Applied Soil Ecology, 21, 187-195. |
[27] | Li L, Wang JJ, Gao F, Fu MJ (2021). Effects of freeze-thaw cycles on soil nitrogen invertase of four temperate forests. Journal of Yangzhou University (Agricultural and Life Science Edition), 42, 111-118. |
[李龙, 王佳佳, 高峰, 傅民杰 (2021). 冻融循环对4种温带森林土壤氮转化酶的影响. 扬州大学学报(农业与生命科学版), 42, 111-118.] | |
[28] | Liu L, Zhu X, Sun G, Luo P, Wang B (2011). Effects of simulated warming and fertilization on activities of soil enzymes in alpine meadow. Pratacultural Science, 28, 1405-1410. |
[刘琳, 朱霞, 孙庚, 罗鹏, 王蓓 (2011). 模拟增温与施肥对高寒草甸土壤酶活性的影响. 草业科学, 28, 1405-1410.] | |
[29] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Sci-Tech R&D, 23, 63-69. |
[刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23, 63-69.] | |
[30] | Lu BQ, Zang SY, Sun L (2019). The effects of freezing-thawing process on soil active organic carbon and nitrogen mineralization in Daxing’anling Mountain forests. Acta Scientiae Circumstantiae, 39, 1664-1672. |
[鲁博权, 臧淑英, 孙丽 (2019). 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响. 环境科学学报, 39, 1664-1672.] | |
[31] | Luo SQ, Fang XW, Lyu SH, Jiang Q, Wang JY (2017). Interdecadal changes in the freeze depth and period of frozen soil on the three rivers source region in China from 1960 to 2014. Advances in Meteorology, 2017, 5931467. DOI: 10.1155/2017/5931467. |
[32] | Luo SQ, Wang JY, Pomeroy JW, Lyu SH (2020). Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014. Journal of Climate, 33, 9427-9446. |
[33] | Luo YC, LÜ YL, Yang H, He NP, Li SG, Gao WL (2014). Soil carbon and nitrogen mineralization in a Larix gmelinii forest during freeze-thaw cycles. Ecology and Environmental Sciences, 23, 1769-1775. |
[罗亚晨, 吕瑜良, 杨浩, 何念鹏, 李胜功, 高文龙 (2014). 冻融作用下寒温带针叶林土壤碳氮矿化过程研究. 生态环境学报, 23, 1769-1775.] | |
[34] | Ma YH, Liu YH, Wei WD (2018). Effects of freezing and thawing on soil organic carbon and components in degraded alpine meadow. Modern Agricultural Science and Technology, (20), 175-176. |
[马延虎, 刘育红, 魏卫东 (2018). 冻融作用对退化高寒草甸土壤有机碳及组分的影响. 现代农业科技, (20), 175-176.] | |
[35] | Mei LL, Yang X, Zhang SQ, Zhang T, Guo JX (2019). Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of the Total Environment, 686, 1129-1139. |
[36] | Nyberg L, Stähli M, Mellander P-E, Bishop KH (2001). Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations. Hydrological Processes, 15, 909-926. |
[37] | Nazaries L, Tottey W, Robinson L, Khachane A, Al-Soud WA, Sørensen S, Singh BK (2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134. |
[38] | Nikrad MP, Kerkhof LJ, Häggblom MM (2016). The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiology Ecology, 92, fiw081. DOI: 10.1093/femsec/fiw081. |
[39] | Ouyang Q, Ren J, Yin J, Li YJ, Yuan FJ (2018). Effect of short-term simulated temperature enhancement on soil nutrients and urease activity of sub-alpine meadow. Pratacultural Science, 35, 2794-2800. |
[欧阳青, 任健, 尹俊, 李永进, 袁福锦 (2018). 短期增温对亚高山草甸土壤养分和脲酶的影响. 草业科学, 35, 2794-2800.] | |
[40] | Osterkamp TE (2004). Establishing long term permafrost observatories for active-layer and permafrost investigations in Alaska: 1977-2002. Permaf Rost & Peri Glacial Processes, 14, 331-342. |
[41] | Poutou E, Krinner G, Genthon C, Noblet-Ducoudré N (2004). Role of soil freezing in future boreal climate change. Climate Dynamics, 23, 621-639. |
[42] | Qin JH, Liu Q (2009). Impact of seasonally frozen soil on germinability and antioxidant enzyme activity of Picea asperata seeds. Canadian Journal of Forest Research, 39, 723-730. |
[43] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[44] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[45] | Song Y, Zou YC, Wang GP, Yu XF (2017). Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biology & Biochemistry, 109, 35-49. |
[46] | Souza RC, Solly EF, Dawes MA, Graf F, Hagedorn F, Egli S, Clement CR, Nagy L, Rixen C, Peter M (2017). Responses of soil extracellular enzyme activities to experimental warming and CO2enrichment at the alpine treeline. Plant and Soil, 416, 527-537. |
[47] | Tan B, Wu FZ, Qin JL, Wu QG, Yang WQ (2014). Dynamics of soil microbial biomass and enzyme activity in the subalpine/alpine forests of western Sichuan. Ecology and Environmental Sciences, 23, 1265-1271. |
[谭波, 吴福忠, 秦嘉励, 吴庆贵, 杨万勤 (2014). 川西亚高山、高山森林土壤微生物生物量和酶活性动态特征. 生态环境学报, 23, 1265-1271.] | |
[48] | Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010). Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99. |
[49] | Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A (2011). The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 61, 670-679. |
[50] | Ueda MU, Muller O, Nakamura M, Nakaji T, Hiura T (2013). Soil warming decreases inorganic and dissolved organic nitrogen pools by preventing the soil from freezing in a cool temperate forest. Soil Biology & Biochemistry, 61, 105-108. |
[51] | Wang HY, Yang WQ (2012). Effects of seasonal freeze-thaw cycles on quantity of soil microbes in the subalpine fir forest. Scientia Silvae Sinicae, 48(5), 88-94. |
[王怀玉, 杨万勤 (2012). 季节性冻融对亚高山冷杉林土壤微生物数量的影响. 林业科学, 48(5), 88-94.] | |
[52] | Wang R, Zhu QK, Ma H, Ai N (2017). Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002-2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data. Journal of Arid Land, 9, 850-864. |
[53] | Wei WD, Liu YH, Ma H, Li JL (2018). Analysis of freeze-thaw action characteristics in shallow layer soil of degraded alpine steppe. Acta Agriculturae Boreali-Occidentalis Sinica, 27, 1358-1366. |
[魏卫东, 刘育红, 马辉, 李积兰 (2018). 退化高寒草原浅层土壤冻融作用特征分析. 西北农业学报, 27,1358-1366.] | |
[54] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[55] | Wu QB, Zhu YL, Shi B (2001). Study of frozen soil environment relating to engineering activities. Journal of Glaciology and Geocryology, 23, 200-207. |
[吴青柏, 朱元林, 施斌 (2001). 工程活动下的冻土环境研究. 冰川冻土, 23, 200-207.] | |
[56] | Xiong L, Xu ZF, Wu FZ, Yang WQ, Yin R, Li ZP, Gou XL, Tang SS (2014). Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxoniana forest of western Sichuan, China. Chinese Journal of Applied Ecology, 25, 1293-1299. |
[熊莉, 徐振锋, 吴福忠, 杨万勤, 殷睿, 李志萍, 苟小林, 唐仕姗 (2014). 雪被斑块对川西亚高山冷杉林土壤氮转化酶活性的影响. 应用生态学报, 25, 1293-1299.] | |
[57] | Xue LX, Sun B, Yang YH, Jin B, Zhuang GQ, Bai ZH, Zhuang XL (2021). Efficiency and mechanism of reducing ammonia volatilization in alkaline farmland soil using Bacillus amyloliquefaciens biofertilizer. Environmental Research, 202, 111672. DOI: 10.1016/j.envres.2021.111672. |
[58] | Yang WQ, Feng RF, Zhang J, Wang KY (2007). Carbon stock and biochemical properties in the organic layer and mineral soil under three subalpine forests in Western China. Acta Ecologica Sinica, 27, 4157-4165. |
[杨万勤, 冯瑞芳, 张健, 王开运 (2007). 中国西部3个亚高山森林土壤有机层和矿质层碳储量和生化特性. 生态学报, 27, 4157-4165.] | |
[59] | Zhang CJ, He JZ, Shen JP (2016). Global change field manipulative experiments and their applications in soil microbial ecology. Chinese Journal of Applied Ecology, 27, 1663-1673. |
[张翠景, 贺纪正, 沈菊培 (2016). 全球变化野外控制试验及其在土壤微生物生态学研究中的应用. 应用生态学报, 27, 1663-1673.] | |
[60] | Zhang JF, Xu RP, Liu Y, Zhang HM, Qin XR, Chen M (2021). Experimental study on mechanical properties of grouted fractured rock mass under freeze-thaw cycle. Journal of Experimental Mechanics, 36, 378-388. |
[张嘉凡, 徐荣平, 刘洋, 张慧梅, 覃祥瑞, 陈敏 (2021). 冻融循环作用下注浆裂隙岩体力学特性试验研究. 实验力学, 36, 378-388.] | |
[61] | Zhao CZ, Liu Q (2009). Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173. |
[62] | Zhao CZ, Wang YJ, Zhang NN, Liang J, Li DD, Yin CY, Liu Q (2022). Seasonal shifts in the soil microbial community responded differently to in situ experimental warming in a natural forest and a plantation. European Journal of Soil Science, 73, e13135. DOI: 10.1111/ejss.13135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn