Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (2): 242-253.DOI: 10.17521/cjpe.2022.0430 cstr: 32100.14.cjpe.2022.0430
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
WU Jun-Mei1, ZENG Quan-Xin1, MEI Kong-Can1, LIN Hui-Ying1, XIE Huan1, LIU Yuan-Yuan1, XU Jian-Guo2, CHEN Yue-Min1,*()
Received:
2022-10-31
Accepted:
2023-04-06
Online:
2024-02-28
Published:
2023-04-20
Contact:
CHEN Yue-Min
Supported by:
WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest[J]. Chin J Plant Ecol, 2024, 48(2): 242-253.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0430
全碳(C)含量 Total carbon (C) content (g·kg-1) | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | C:N | 全磷(P)含量 Total phosphorus (P) content (g·kg-1) | C:P | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | 458.37 ± 9.84ab | 12.07 ± 0.41a | 37.98 ± 0.53c | 2.03 ± 0.01a | 225.58 ± 5.24c |
醉香含笑 Michelia macclurei | 475.18 ± 1.89a | 10.38 ± 0.25b | 45.81 ± 1.23b | 0.96 ± 0.02c | 496.57 ± 13.45a |
枫香树 Liquidambar formosana | 454.87 ± 1.01b | 9.44 ± 0.14c | 48.17 ± 0.78a | 1.41 ± 0.01b | 323.38 ± 2.36b |
p | 0.011 | <0.001 | <0.001 | <0.001 | <0.001 |
Table 1 Basic properties of three kinds of litters (mean ± SD, n = 3)
全碳(C)含量 Total carbon (C) content (g·kg-1) | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | C:N | 全磷(P)含量 Total phosphorus (P) content (g·kg-1) | C:P | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | 458.37 ± 9.84ab | 12.07 ± 0.41a | 37.98 ± 0.53c | 2.03 ± 0.01a | 225.58 ± 5.24c |
醉香含笑 Michelia macclurei | 475.18 ± 1.89a | 10.38 ± 0.25b | 45.81 ± 1.23b | 0.96 ± 0.02c | 496.57 ± 13.45a |
枫香树 Liquidambar formosana | 454.87 ± 1.01b | 9.44 ± 0.14c | 48.17 ± 0.78a | 1.41 ± 0.01b | 323.38 ± 2.36b |
p | 0.011 | <0.001 | <0.001 | <0.001 | <0.001 |
Fig. 1 Effects of litter and phosphorus (P) addition on soil physical and chemical properties in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA respectively represent the main effects of litter addition and P addition and their interactions respectively following a two-way ANOVA. AP, available P; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; TC, total carbon; TN, total nitrogen; TP, total P. Different lowercase letters meant significant difference at 0.05 level among treatments.
Fig. 2 Effects of litter and phosphorus (P) addition on soil microbial biomass nutrient content in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litter addition and P addition, and their interactions, respectively following a two-way ANOVA. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass P. Different lowercase letters meant significant difference at 0.05 level among treatments.
Fig. 3 Effects of litter and phosphorus (P) addition on soil enzymes activities in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litters addition and P addition, and their interactions, respectively following a two-way ANOVA. ACP, acid phosphatase; βG, β-glucosidase; NAG, β-N-acetyl-glucosaminidase. Different lowercase letters meant significant difference at 0.05 level among treatments.
处理 Treatment | EC:N | EC:P | EN:P | VL | VA (°) |
---|---|---|---|---|---|
CT | 0.98 ± 0.03bcd | 0.49 ± 0.01ab | 0.507 ± 0.02ab | 1.09 ± 0.03bcd | 63.11 ± 0.73bc |
PA | 0.90 ± 0.04d | 0.48 ± 0.01b | 0.533 ± 0.02a | 1.02 ± 0.04d | 61.81 ± 0.99c |
PM | 0.95 ± 0.05cd | 0.50 ± 0.02ab | 0.527 ± 0.02ab | 1.07 ± 0.05cd | 62.22 ± 0.73bc |
MM | 1.15 ± 0.11a | 0.52 ± 0.02ab | 0.457 ± 0.03c | 1.26 ± 0.10a | 65.49 ± 1.50a |
LF | 1.03 ± 0.08bc | 0.51 ± 0.04ab | 0.500 ± 0.01ab | 1.15 ± 0.09abcd | 63.46 ± 0.45b |
PM+PA | 0.97 ± 0.05bcd | 0.52 ± 0.04ab | 0.533 ± 0.01a | 1.10 ± 0.06bcd | 61.99 ± 0.65bc |
MM+PA | 1.07 ± 0.04ab | 0.54 ± 0.03a | 0.503 ± 0.01ab | 1.20 ± 0.05ab | 63.20 ± 0.43bc |
LF+PA | 1.05 ± 0.07abc | 0.52 ± 0.03ab | 0.497 ± 0.01b | 1.17 ± 0.08abc | 63.46 ± 0.58b |
Two-way ANOVA | |||||
L | <0.001 | 0.063 | <0.001 | <0.001 | <0.001 |
PA | 0.323 | 0.421 | 0.310 | 0.422 | 0.446 |
L×PA | 0.350 | 0.689 | 0.104 | 0.101 | 0.468 |
Table 2 Effects of litter and phosphorus (P) addition on soil enzymatic stoichiometry in a subtropical forest (mean ± SD, n = 3)
处理 Treatment | EC:N | EC:P | EN:P | VL | VA (°) |
---|---|---|---|---|---|
CT | 0.98 ± 0.03bcd | 0.49 ± 0.01ab | 0.507 ± 0.02ab | 1.09 ± 0.03bcd | 63.11 ± 0.73bc |
PA | 0.90 ± 0.04d | 0.48 ± 0.01b | 0.533 ± 0.02a | 1.02 ± 0.04d | 61.81 ± 0.99c |
PM | 0.95 ± 0.05cd | 0.50 ± 0.02ab | 0.527 ± 0.02ab | 1.07 ± 0.05cd | 62.22 ± 0.73bc |
MM | 1.15 ± 0.11a | 0.52 ± 0.02ab | 0.457 ± 0.03c | 1.26 ± 0.10a | 65.49 ± 1.50a |
LF | 1.03 ± 0.08bc | 0.51 ± 0.04ab | 0.500 ± 0.01ab | 1.15 ± 0.09abcd | 63.46 ± 0.45b |
PM+PA | 0.97 ± 0.05bcd | 0.52 ± 0.04ab | 0.533 ± 0.01a | 1.10 ± 0.06bcd | 61.99 ± 0.65bc |
MM+PA | 1.07 ± 0.04ab | 0.54 ± 0.03a | 0.503 ± 0.01ab | 1.20 ± 0.05ab | 63.20 ± 0.43bc |
LF+PA | 1.05 ± 0.07abc | 0.52 ± 0.03ab | 0.497 ± 0.01b | 1.17 ± 0.08abc | 63.46 ± 0.58b |
Two-way ANOVA | |||||
L | <0.001 | 0.063 | <0.001 | <0.001 | <0.001 |
PA | 0.323 | 0.421 | 0.310 | 0.422 | 0.446 |
L×PA | 0.350 | 0.689 | 0.104 | 0.101 | 0.468 |
Fig. 4 Response ratio of soil enzyme vector length (A) and vector angle (B) to litter and phosphorus (P) addition in a subtropical forest (mean ± SD, n = 3). LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litter addition and P addition, and their interactions, respectively following a two-way ANOVA. VA, vector angle; VL, vector length. Different lowercase letters mean significant difference at 0.05 level among treatments.
Fig. 5 Redundancy analysis of soil enzyme activity and enzymatic stoichiometry under litter (A) and phosphorus (P) addition (B). ACP, acid phosphatase activity; AP, available P content; βG, β-glucosaminidase activity; CK, control; DOC, dissolved organic carton content; EC:N, the ratio of carbon-acquiring enzyme activity to nitrogen-acquiring enzyme activity; EC:P, the ratio of carbon-acquiring enzyme activity to phosphorus-acquiring enzyme activity; EN:P, the ratio of nitrogen-acquiring enzyme activity to phosphorus-acquiring enzyme activity; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; NAG, β-N-acetyl-glucosaminidase activity; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. TC:TN, the ratio of total carbon content to total nitrogen content; TN, total nitrogen content; TP, total P content; VA, vector angle; VL, vector length.
Fig. 6 A conceptual framework of soil enzyme activity and its stoichiometry in response to litter and phosphorus (P) addition in a subtropical forest. CK, control; LF, Liquidambar formosana; MM, Michelia macclurei; PM, Pinus massoniana. ACP, acid phosphatase activity; AP, available P content; βG, β-glucosaminidase activity; DOC, dissolved organic carton content; EC:N, the ratio of carbon-acquiring enzyme activity to nitrogen-acquiring enzyme activity; EC:P, the ratio of carbon-acquiring enzyme activity to phosphorus-acquiring enzyme activity; EN:P, the ratio of nitrogen-acquiring enzyme activity to phosphorus-acquiring enzyme activity; NAG, β-N-acetyl-glucosaminidase activity; TC:TN, the ratio of total carbon content to total nitrogen content; VA, vector angle; VL, vector length. The width of the trapezoid and CK represent the size of the corresponding index value.
[1] | Bao SD (2000). Soil and Agricultural Chemistry. 3rd ed. China Agriculture Press, Beijing. 25-108. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 25-108.] | |
[2] | Bending GD, Turner MK, Jones JE (2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082. |
[3] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[4] | Brookes PC, Powlson DS, Jenkinson DS (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, 14, 319-329. |
[5] | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234. |
[6] | Chen X, Hao BH, Jing X, He JS, Ma WH, Zhu B (2019). Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, 444, 21-37. |
[7] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[8] | Cleveland CC, Neff JC, Townsend AR, Hood TE (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 7, 275-285. |
[9] | Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814. |
[10] | DeForest JL, Moorhead DL (2020). Effects of elevated pH and phosphorus fertilizer on soil C, N and P enzyme stoichiometry in an acidic mixed mesophytic deciduous forest. Soil Biology & Biochemistry, 150, 107996. |
[11] | Fan YX, Zhong XJ, Lin F, Liu C, Yang LM, Wang MH, Chen GS, Chen Y, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255. |
[12] | Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS (2017). Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 37, 136-146. |
[洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛 (2017). 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 37, 136-146.] | |
[13] | Hu S, Firestone M, Chapin III FS (1999). Soil microbial feedbacks to atmospheric CO2enrichment. Trends in Ecology & Evolution, 14, 433-437. |
[14] | Jing X, Chen X, Fang JY, Ji CJ, Shen HH, Zheng CY, Zhu B (2020). Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biology & Biochemistry, 141, 107657. DOI: 10.1016/j.soilbio.2019.107657. |
[15] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[16] |
Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Stuart Grandy A, Cleveland CC (2012). Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 18, 2969-2979.
DOI PMID |
[17] | Lin HY, Zhou JC, Zeng QX, Sun J, Xie H, Liu YY, Mei KC, Wu Y, Yuan XC, Wu JM, Su XC, Cheng DL, Chen YM (2022). Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China. Chinese Journal of Applied Ecology, 33, 33-41. |
[林惠瑛, 周嘉聪, 曾泉鑫, 孙俊, 谢欢, 刘苑苑, 梅孔灿, 吴玥, 元晓春, 吴君梅, 苏先楚, 程栋梁, 陈岳民 (2022). 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化. 应用生态学报, 33, 33-41.]
DOI |
|
[18] | Liu Q, Liu R, Zhang LS, Chen FS, Guo CL, Wang FC (2022). Effects of fertilization and light on soil enzyme activity and its stoichiometric ratio of Liquidambar formosana seedling. Acta Agriculturae Universitatis Jiangxiensis, 44, 127-138. |
[刘俏, 刘仁, 张绿水, 陈伏生, 郭春兰, 王方超 (2022). 施肥与光照对枫香栽培土壤酶活性及其化学计量比的影响. 江西农业大学学报, 44, 127-138.] | |
[19] | Liu R, Chen FS, Fang XM, Wan SZ, Bu WS, Wang HM, Li JJ (2020). Effects of litter addition and removal on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry in Chinese fir plantation. Acta Ecologica Sinica, 40, 5739-5750. |
[刘仁, 陈伏生, 方向民, 万松泽, 卜文圣, 王辉民, 李建军 (2020). 凋落物添加和移除对杉木人工林土壤水解酶活性及其化学计量比的影响. 生态学报, 40, 5739-5750.] | |
[20] | Lu YM, Xu EL, Wu DM, Lu SX, Liu XF, Guo JF (2021). Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 35, 313-320. |
[陆宇明, 许恩兰, 吴东梅, 卢胜旭, 刘小飞, 郭剑芬 (2021). 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 35, 313-320.] | |
[21] | Luan LL, Liu EY, Gu X, Sun JX (2020). Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest. Acta Ecologica Sinica, 40, 9220-9233. |
[栾历历, 刘恩媛, 顾新, 孙建新 (2020). 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响. 生态学报, 40, 9220-9233.] | |
[22] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[23] | Mei KC, Chen YM, Fan YX, Zhou JC, Zhang QF, Cheng L, Zeng QX, Xu JG, Yuan XC, Cui JY, Liu YY (2022). Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest. Acta Pedologica Sinica, 59, 1089-1099. |
[梅孔灿, 陈岳民, 范跃新, 周嘉聪, 张秋芳, 程蕾, 曾泉鑫, 徐建国, 元晓春, 崔琚琰, 刘苑苑 (2022). 凋落叶和磷添加对马尾松林土壤碳激发效应的影响. 土壤学报, 59, 1089-1099.] | |
[24] | Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. DOI: 10.3389/fmicb.2013.00223. |
[25] | Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. |
[26] | Pan AF (2018). The occurrence and control strategy of the pests on Liquidambar formosana in Fujian. Wuyi Science Journal, 34, 100-109. |
[潘爱芳 (2018). 福建枫香害虫发生现状与防治对策. 武夷科学, 34, 100-109.] | |
[27] | Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622. |
[28] | Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013. |
[29] | Qiao H, Mo XQ, Luo YH, Liu XY, Hu YJ, Chen XB, Su YR (2019). Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations. Acta Ecologica Sinica, 39, 1887-1896. |
[乔航, 莫小勤, 罗艳华, 刘兴元, 胡亚军, 陈香碧, 苏以荣 (2019). 不同林龄油茶人工林土壤酶化学计量及其影响因素. 生态学报, 39, 1887-1896.] | |
[30] |
Ru JY, Zhou YQ, Hui DF, Zheng MM, Wan SQ (2018). Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology, 24, 1001-1011.
DOI PMID |
[31] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[32] |
Sheldrake M, Rosenstock NP, Revillini D, Olsson PA, Mangan S, Sayer EJ, Wallander H, Turner BL, Tanner EVJ (2017). Arbuscular mycorrhizal fungal community composition is altered by long-term litter removal but not litter addition in a lowland tropical forest. New Phytologist, 214, 455-467.
DOI PMID |
[33] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[34] | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[35] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[36] |
Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354.
PMID |
[37] | Tang ML, Wei L, Zhu ZK, Li H, Zhou P, Ge TD, Wu JS, Wang GJ (2018). Responses of organic carbon mineralization and priming effect to phosphorus addition in paddy soils. Chinese Journal of Applied Ecology, 29, 857-864. |
[唐美玲, 魏亮, 祝贞科, 李欢, 周萍, 葛体达, 吴金水, 王光军 (2018). 稻田土壤有机碳矿化及其激发效应对磷添加的响应. 应用生态学报, 29, 857-864.]
DOI |
|
[38] |
Tian T, Fan WY, Lu W, Xiao X (2015). An object-based information extraction technology for dominant tree species group types. Chinese Journal of Applied Ecology, 26, 1665-1672.
PMID |
[田甜, 范文义, 卢伟, 肖湘 (2015). 面向对象的优势树种类型信息提取技术. 应用生态学报, 26, 1665-1672.] | |
[39] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[40] | Wang L, Liang YF, Yang JQ, Zhang BB, Wang T, Shi XZ, Hu HW, Huang ZQ (2020). Characteristics of soil nitrogen retention and related functional microorganism in soils of main afforestation species in subtropical region. Scientia Silvae Sinicae, 56(8), 27-37. |
[王磊, 梁艺凡, 杨军钱, 张冰冰, 王涛, 施秀珍, 胡行伟, 黄志群 (2020). 亚热带主要造林树种土壤氮保留及相关功能的微生物特征. 林业科学, 56(8), 27-37.] | |
[41] | Wang N, Huang M, Gu FX, Yan HM, Wang SQ, He HL, Wang ZS, Sun XY, Xu WT, Yang FT, Chu GW (2019). Diagnosing phosphorus limitation in subtropical forests in China under climate warming. Sustainability, 11, 2202. DOI: 10.3390/su11082202. |
[42] | Wang QK, Wang SL, Liu YX (2008). Responses to N and P fertilization in a young Eucalyptus dunnii plantation: microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 40, 484-490. |
[43] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[44] | Wang XX, Cui YX, Wang YH, Duan CJ, Niu YN, Sun RX, Shen YF, Guo XT, Fang LC (2022). Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems. Journal of Soils and Sediments, 22, 536-546. |
[45] | Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. |
[魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[46] |
Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915.
DOI PMID |
[47] | Zeng QX, Zhang QF, Lin KM, Zhou JC, Yuan XC, Mei KC, Wu Y, Cui JY, Xu JG, Chen YM (2021). Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest. Chinese Journal of Applied Ecology, 32, 521-528. |
[曾泉鑫, 张秋芳, 林开淼, 周嘉聪, 元晓春, 梅孔灿, 吴玥, 崔琚琰, 徐建国, 陈岳民 (2021). 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制. 应用生态学报, 32, 521-528.]
DOI |
|
[48] | Zhang BB, Wan XH, Yang JQ, Wang T, Huang ZQ (2021). Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation. Acta Pedologica Sinica, 58, 1040-1049. |
[张冰冰, 万晓华, 杨军钱, 王涛, 黄志群 (2021). 不同凋落物质量对杉木人工林土壤微生物群落结构的影响. 土壤学报, 58, 1040-1049.] | |
[49] |
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI |
[50] | Zhang W, Xu YD, Gao DX, Wang X, Liu WC, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology & Biochemistry, 134, 1-14. |
[51] | Zhang XX, Yang LM, Chen Z, Li YQ, Lin YY, Zheng XZ, Chu HY, Yang YS (2018). Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas. Acta Ecologica Sinica, 38, 5828-5836. |
[张星星, 杨柳明, 陈忠, 李一清, 林燕语, 郑宪志, 楚海燕, 杨玉盛 (2018). 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 38, 5828-5836.] | |
[52] | Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, Shibistova O, Guggenberger G, Wu J (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76. |
[1] | Jia-xin RAN yuhui zhang Yun WANG Zhi-Jie YANG Mao Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in subtropical forests. [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[2] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[3] | WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary [J]. Chin J Plant Ecol, 2024, 48(7): 844-857. |
[4] | LIU Yao, ZHONG Quan-Lin, XU Chao-Bin, CHENG Dong-Liang, ZHENG Yue-Fang, ZOU Yu-Xing, ZHANG Xue, ZHENG Xin-Jie, ZHOU Yun-Ruo. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[7] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[8] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[9] | YU Ji-Mei, WU Fu-Zhong, YUAN Ji, JIN Xia, WEI Shu-Yuan, YUAN Chao-Xiang, PENG Yan, NI Xiang-Yin, YUE Kai. Global patterns and influencing factors of initial concentrations of phenols in plant litter [J]. Chin J Plant Ecol, 2023, 47(5): 608-617. |
[10] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[11] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[12] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[13] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[14] | LIU Yao, JIAO Ze-Bin, TAN Bo, LI Han, WANG Li-Xia, LIU Si-Ning, YOU Cheng-Ming, XU Zhen-Feng, ZHANG Li. Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(3): 330-339. |
[15] | Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests [J]. Chin J Plant Ecol, 2022, 46(1): 102-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn