Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (1): 102-113.DOI: 10.17521/cjpe.2021.0191
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
Yang ZHAO1, Jun-Wei LUAN1, Yi WANG1, Huai YANG1, Shi-Rong LIU2,*()
Received:
2021-05-19
Accepted:
2021-07-13
Online:
2022-01-20
Published:
2022-04-13
Contact:
Shi-Rong LIU
Supported by:
Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests[J]. Chin J Plant Ecol, 2022, 46(1): 102-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0191
土壤密度 Soil density (g·cm-3) | 土壤孔隙度 Soil porosity (%) | 土壤颗粒组成 Soil particle composition (%) | 土壤 Soil pH | 土壤有机碳含量 Soil organic carbon content (g·kg-1) | 土壤全氮含量 Soil total nitrogen content (g·kg-1) | 土壤全磷含量 Soil total phosphorus content (g·kg-1) | 土壤速效钾含量 Soil available potassium content (mg·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
毛管 Capillary | 非毛管 Non-capillary | 砂粒 Sand | 粉粒 Silt | 黏粒 Clay | ||||||
1.37 ± 0.02 | 37.55 ± 1.69 | 5.57 ± 0.46 | 54.01 ± 4.05 | 42.84 ± 3.71 | 3.15 ± 0.36 | 4.83 ± 0.08 | 12.52 ± 0.07 | 1.10 ± 0.09 | 0.19 ± 0.02 | 78.01 ± 3.11 |
Table 1 Soil physical and chemical properties of the study plots in Ganza Ridge Natural Reserve, Hainan (mean ± SE, n = 3)
土壤密度 Soil density (g·cm-3) | 土壤孔隙度 Soil porosity (%) | 土壤颗粒组成 Soil particle composition (%) | 土壤 Soil pH | 土壤有机碳含量 Soil organic carbon content (g·kg-1) | 土壤全氮含量 Soil total nitrogen content (g·kg-1) | 土壤全磷含量 Soil total phosphorus content (g·kg-1) | 土壤速效钾含量 Soil available potassium content (mg·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
毛管 Capillary | 非毛管 Non-capillary | 砂粒 Sand | 粉粒 Silt | 黏粒 Clay | ||||||
1.37 ± 0.02 | 37.55 ± 1.69 | 5.57 ± 0.46 | 54.01 ± 4.05 | 42.84 ± 3.71 | 3.15 ± 0.36 | 4.83 ± 0.08 | 12.52 ± 0.07 | 1.10 ± 0.09 | 0.19 ± 0.02 | 78.01 ± 3.11 |
样地 Sites | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) |
---|---|---|---|
对照 CK | 18 864 ± 6 543 | 3.28 ± 0.23 | 4.82 ± 0.33 |
林内减雨 D | 17 663 ± 4 441 | 2.89 ± 0.34 | 4.43 ± 0.59 |
磷添加 P | 18 194 ± 3 993 | 3.23 ± 0.29 | 4.55 ± 0.55 |
林内减雨和磷添加交互 D × P | 16 539 ± 6 912 | 3.42 ± 0.08 | 5.04 ± 0.26 |
Table 2 Stand characteristics of the study sample plot in Ganza Ridge Natural Reserve, Hainan (mean ± SE, n = 3)
样地 Sites | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) |
---|---|---|---|
对照 CK | 18 864 ± 6 543 | 3.28 ± 0.23 | 4.82 ± 0.33 |
林内减雨 D | 17 663 ± 4 441 | 2.89 ± 0.34 | 4.43 ± 0.59 |
磷添加 P | 18 194 ± 3 993 | 3.23 ± 0.29 | 4.55 ± 0.55 |
林内减雨和磷添加交互 D × P | 16 539 ± 6 912 | 3.42 ± 0.08 | 5.04 ± 0.26 |
Fig. 2 Daily mean soil temperature and soil water content at depth of 5 cm (A, B) and 15 cm (C, D) from April 13, 2019 to September 24, 2020 in Ganza Ridge Nature Reserve under different treatments (n = 4). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
Fig. 3 Effects of simulated drought and phosphorus addition of Ganza Ridge Nature Reserve on the content of ammonium nitrogen, nitrate nitrogen and inorganic nitrogen in 0-10 cm soil layer in dry (A, C, E) and wet (B, D, F) seasons, respectively (mean ± SE, n = 9). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
Fig. 4 Effects of simulated drought and phosphorus addition of Ganza Ridge Nature Reserve on the net ammonification rate (NAR), net nitrification rate (NNR) and net nitrogen mineralization rate (NMR) of 0-10 cm soil layer in the dry (A, C, E) and wet (B, D, F) seasons, respectively (mean ± SE, n = 9). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
指标 Index | NAR | NNR | NMR |
---|---|---|---|
5 cm土壤温度 5 cm soil temperature (℃) | 0.081 | 0.146 | 0.115 |
5 cm土壤水分含量 5 cm soil water content (m3·m-3) | 0.343* | 0.106 | 0.348* |
土壤pH Soil pH | 0.274 | -0.020 | 0.248 |
土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 0.103 | 0.072 | 0.118 |
土壤全氮含量 Soil total nitrogen (N) content (g·kg-1) | 0.071 | 0.173 | 0.116 |
土壤碳氮比 Soil C:N ratio | 0.060 | -0.181 | 0.009 |
土壤全磷含量 Soil total phosphorus (P) content (g·kg-1) | -0.177 | 0.133 | -0.128 |
土壤铵态氮含量 NH4+-N content (mg·kg-1) | 0.391* | 0.128 | 0.402* |
土壤硝态氮含量 NO3--N content (mg·kg-1) | 0.002 | 0.442** | 0.126 |
Table 3 Correlations between soil physical and chemical properties and net ammonification rate (NAR), net nitrification rate (NNR) and net nitrogen mineralization rate (NMR) in Ganza Ridge Nature Reserve, Hainan
指标 Index | NAR | NNR | NMR |
---|---|---|---|
5 cm土壤温度 5 cm soil temperature (℃) | 0.081 | 0.146 | 0.115 |
5 cm土壤水分含量 5 cm soil water content (m3·m-3) | 0.343* | 0.106 | 0.348* |
土壤pH Soil pH | 0.274 | -0.020 | 0.248 |
土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 0.103 | 0.072 | 0.118 |
土壤全氮含量 Soil total nitrogen (N) content (g·kg-1) | 0.071 | 0.173 | 0.116 |
土壤碳氮比 Soil C:N ratio | 0.060 | -0.181 | 0.009 |
土壤全磷含量 Soil total phosphorus (P) content (g·kg-1) | -0.177 | 0.133 | -0.128 |
土壤铵态氮含量 NH4+-N content (mg·kg-1) | 0.391* | 0.128 | 0.402* |
土壤硝态氮含量 NO3--N content (mg·kg-1) | 0.002 | 0.442** | 0.126 |
Fig. 5 Covariance analyses on the relationships between the net ammonification rate (NAR) and ammonium nitrogen (NH4+-N) content that affected by simulated drought (A) and phosphorus addition (B) in Ganza Ridge Nature Reserve, Hainan, respectively (n = 18).CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
Fig. 6 Covariance analyses on the relationships between net nitrification rate (NNR) and nitrate nitrogen (NO3--N) content that affected by simulated drought (A) and phosphorus addition (B) in Ganza Ridge Nature Reserve, respectively (n = 18). CK, control; D, rainfall reduction in the forest; P, phosphorus addition.
[1] |
Aggangan RT, O’Connell AM, McGrath JF, Dell B (1998). Fertilizer and previous land use effects on C and N mineralization in soils from Eucalyptus globulus plantations. Soil Biology & Biochemistry, 30, 1791-1798.
DOI URL |
[2] |
Bhogal A, Hatch DJ, Shepherd MA, Jarvis SC (1999). Comparison of methodologies for field measurement of net nitrogen mineralisation in arable soils. Plant and Soil, 207, 15-28.
DOI URL |
[3] | Binkley D, Hart SC (1989). The components of nitrogen availability assessments in forest soils. Advances in Soil Science, 10, 57-112. |
[4] |
Borken W, Matzner E (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808-824.
DOI URL |
[5] | Chang D, Li X, Liu JK, Chen X (2014). Study progress and comparison of soil moisture content measurement methods. Geotechnical Investigation & Surveying, 42(9), 17-22. |
[ 常丹, 李旭, 刘建坤, 陈曦 (2014). 土体含水率测量方法研究进展及比较. 工程勘察, 42(9), 17-22.] | |
[6] |
Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH (2009). Evaluation of different soil carbon determination methods. Critical Reviews in Plant Sciences, 28, 164-178.
DOI URL |
[7] |
Chen HP, Sun JQ (2017). Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 544, 306-318.
DOI URL |
[8] |
Chen J, Xiao GL, Kuzyakov Y, Jenerette GD, Ma Y, Liu W, Wang ZF, Shen WJ (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences, 14, 2513-2525.
DOI URL |
[9] | Chen L (2019). Response of Soil Nitrogen Cycle to Simulated’ Precipitation Reduction in a Southern Subtropical Castanopsis hystrix Plantation. PhD dissertation, Guangxi University, Nanning. |
[ 陈琳 (2019). 南亚热带红椎人工林土壤氮循环对模拟减雨的响应. 博士学位论文, 广西大学, 南宁.] | |
[10] |
Chen L, Liu SR, Wen YG, Zeng J, Li H, Yang YJ (2018). Growth responses of Castanopsis hystrix and Pinus massoniana plantations to throughfall reduction in subtropical China. Chinese Journal of Applied Ecology, 29, 2330-2338.
DOI PMID |
[ 陈琳, 刘世荣, 温远光, 曾冀, 李华, 杨予静 (2018). 南亚热带红锥和马尾松人工林生长对穿透雨减少的响应. 应用生态学报, 29, 2330-2338.]
PMID |
|
[11] | Chuan LM, Zhao TK, An ZZ, Du LF, Li SJ, Ma L (2010). Research advancement in nitrate leaching and nitrogen use in soils. Chinese Agricultural Science Bulletin, 26(11), 200- 205. |
[ 串丽敏, 赵同科, 安志装, 杜连凤, 李顺江, 马礼 (2010). 土壤硝态氮淋溶及氮素利用研究进展. 中国农学通报, 26(11), 200-205.] | |
[12] |
Cregger MA, McDowell NG, Pangle RE, Pockman WT, Classen AT (2014). The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 28, 1534-1544.
DOI URL |
[13] |
Falkiner RA, Khanna PK, Raison RJ (1993). Effect of superphosphate addition on N mineralization in some Australian forest soils. Soil Research, 31, 285-296.
DOI URL |
[14] |
Fan ZP, Tu ZH, Li FY, Qin YB, Deng DZ, Zeng DH, Sun XK, Zhao Q, Hu YL (2017). Experimental manipulation of precipitation affects soil nitrogen availability in semiarid Mongolian pine (Pinus sylvestris var. mongolica) plantation. Water, 9, 208. DOI: 10.3390/w9030208.
DOI URL |
[15] | Fang YT (2005). Effects of Nitrogen Deposition on Soil Nitrogen Process in Dinghushan Forest. PhD dissertation, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou. |
[ 方运霆 (2005). 氮沉降对鼎湖山森林土壤氮素过程的影响. 博士学位论文, 中国科学院华南植物园, 广州.] | |
[16] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[17] |
Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017). Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. Journal of Geophysical Research: Biogeosciences, 122, 3260-3272.
DOI URL |
[18] | IPCC (2013). The physical science basis//Stocker TF. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Press, UK. |
[19] |
Jongen M, Lecomte X, Unger S, Fangueiro D, Pereira JS (2013). Precipitation variability does not affect soil respiration and nitrogen dynamics in the understorey of a Mediterranean oak woodland. Plant and Soil, 372, 235-251.
DOI URL |
[20] |
Li H, Yang S, Xu Z, Yan Q, Li X, Van Nostrand JD, He Z, Yao F, Han XG, Zhou J, Deng Y, Jiang Y (2017). Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology & Biochemistry, 104, 18-29.
DOI URL |
[21] | Li MJ (2012). Effects of Litter on Soil Carbon and Nitrogen and Nitrogen Net Mineralization in Two Forests. Master degree dissertation, Central South University of Forestry & Technology, Changsha. |
[ 李茂金 (2012). 凋落物输入对两种森林土壤碳氮及氮矿化的影响. 硕士学位论文, 中南林业科技大学, 长沙.] | |
[22] |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
[23] |
Liu L, Gundersen P, Zhang T, Mo J (2012). Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology & Biochemistry, 44, 31-38.
DOI URL |
[24] |
Liu XR, Dong YS, Ren JQ, Li SG (2010). Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia, China. Nutrient Cycling in Agroecosystems, 87, 59-69.
DOI URL |
[25] | Liu YH, Li Y, Niu L, Wang YL (2014). Effects of temperature and moisture on nitrogen mineralization in Inner Mongolia grassland, China. Pratacultural Science, 31, 349-354. |
[ 刘颖慧, 李悦, 牛磊, 王亚林 (2014). 温度和湿度对内蒙古草原土壤氮矿化的影响. 草业科学, 31, 349-354.] | |
[26] | Losos EC, Leigh Jr EG (2004). Tropical Forest Diversity and Dynamism: Findings from a Large-scale Plot Network. University of Chicago Press, Chicago. |
[27] |
Miller KS, Geisseler D (2018). Temperature sensitivity of nitrogen mineralization in agricultural soils. Biology and Fertility of Soils, 54, 853-860.
DOI URL |
[28] | Misson L, Rocheteau A, Rambal S, Ourcival JM, Limousin JM, Rodriguez R (2010). Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Global Change Biology, 16, 2461-2475. |
[29] |
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hamotani Y, Gobara Y, Kawabata C, Kuwashima K, Nakayama Y, Hardjono A (2013). Soil greenhouse gas fluxes and C stocks as affected by phosphorus addition in a newly established Acacia mangium plantation in Indonesia. Forest Ecology and Management, 310, 643-651.
DOI URL |
[30] |
Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C (2014). Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20, 1481-1497.
DOI URL |
[31] |
Potter CS, Matson PA, Vitousek PM, Davidson EA (1996). Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research: Atmospheres, 101, 1361-1377.
DOI URL |
[32] | Qi LH, Liang CQ, Mao C, Qin XS, Fan SH, Du WW, Kong XH (2014). Species composition and geographic elements of the tropical lowland secondary rain forest of Ganshiling, Hainan Island, China. Chinese Journal of Ecology, 33, 922-929. |
[ 漆良华, 梁昌强, 毛超, 秦新生, 范少辉, 杜文闻, 孔祥河 (2014). 海南岛甘什岭热带低地次生雨林物种组成与地理成分. 生态学杂志, 33, 922-929.] | |
[33] |
Raison RJ, Connell MJ, Khanna PK (1987). Methodology for studying fluxes of soil mineral-N in situ. Soil Biology & Biochemistry, 19, 521-530.
DOI URL |
[34] | Ren YL (2012). Effects of precipitation change on inorganic nitrogen and net nitrogen mineralization rate at a plantation of Mongolian pine. Acta Scientiarum Naturalium Universitatis Pekinensis, 48, 925-932. |
[ 任艳林 (2012). 降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响. 北京大学学报(自然科学版), 48, 925-932.] | |
[35] |
Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999). Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology & Biochemistry, 31, 831-838.
DOI URL |
[36] |
Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, Anas I, Djajakirana G, Erasmi S, Hertel D, Leitner D, Leuschner C, Michalzik B, Propastin P, Tjoa A, Tscharntke T,van Straaten O (2010). Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Global Change Biology, 16, 1515-1530.
DOI URL |
[37] | Su YQ (2016). Effects of N, P Additions and Roots on Soil N Mineralization Rates in a Subtropical Evergreen Broad- leaf Forest. Master degree dissertation, East China Normal University, Shanghai. |
[ 苏渝钦 (2016). 氮磷添加和植物根系对中亚热带常绿阔叶林土壤氮矿化的影响. 硕士学位论文, 华东师范大学, 上海.] | |
[38] |
Tanner EVJ, Vitousek PM, Cuevas E (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10-22.
DOI URL |
[39] |
Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9, 9-17.
DOI URL |
[40] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[41] |
Vitousek PM, Farrington H (1997). Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 63-75.
DOI URL |
[42] |
Wang FM, Li J, Wang XL, Zhang W, Zou B, Neher DA, Li ZA (2014). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615. DOI: 10.1038/srep05615.
DOI URL |
[43] |
Wang WT, Wang JX, Liu XZ, Zhou GY, Yan JH (2016). Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China. Scientific Reports, 6, 28640. DOI: 10.1038/srep28640.
DOI URL |
[44] |
Wang YP, Houlton BZ (2009). Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon- climate feedback. Geophysical Research Letters, 36, L24403. DOI: 10.1029/2009gl041009.
DOI URL |
[45] |
White JR, Reddy KR (1999). Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Science Society of America Journal, 63, 1945-1954.
DOI URL |
[46] |
Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138.
DOI URL |
[47] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[ 武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[48] |
Wu XC, Liu HY, Li XY, Ciais P, Babst F, Guo WC, Zhang CC, Magliulo V, Pavelka M, Liu SM, Huang YM, Wang P, Shi CM, Ma YJ (2018). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24, 504-516.
DOI URL |
[49] | Xiao SH, Gao CJ, Cai J, Pan W, Zhu BZ, Wei L (2018). Soil fertility of pure and mixed forest of Cunninghamia lanceolata and Castanopsis hystrix in south subtropical area. Journal of Forest and Environment, 38, 142-148. |
[ 肖石红, 高常军, 蔡坚, 潘文, 朱报著, 魏龙 (2018). 南亚热带杉木和红椎林及其混交林的土壤肥力. 森林与环境学报, 38, 142-148.] | |
[50] | Xing J (2013). The effects of clay content on soil moisture constant. Inner Mongolia Agricultural Science and Technology, (6), 31-32. |
[ 邢杰 (2013). 粘粒含量对砂壤土水分常数的影响. 内蒙古农业科技, (6), 31-32.] | |
[51] | Zheng BZ (2013). A Technical Guide to Soil Analysis. China Agriculture Press, Beijing. |
[ 郑必昭 (2013). 土壤分析技术指南. 中国农业出版社, 北京.] | |
[52] |
Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17, 3736-3746.
DOI URL |
[53] |
Zhou LG, Liu YT, Zhang YP, Sha LQ, Song QH, Zhou WJ, Balasubramanian D, Palingamoorthy G, Gao JB, Lin YX, Li J, Zhou RW, Zar Myo ST, Tang XH, Zhang J, Zhang P, Wang SS, Grace J (2019). Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China. Soil Biology & Biochemistry, 138, 107564. DOI: 10.1016/j.soilbio.2019.107564.
DOI URL |
[54] |
Zhou ZF, Shi XJ, Zheng Y, Qin ZX, Xie DT, Li ZL, Guo T (2014). Abundance and community structure of ammonia- oxidizing bacteria and Archaea in purple soil under long- term fertilization. European Journal of Soil Biology, 60, 24-33.
DOI URL |
[1] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[2] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[3] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[4] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[5] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[6] | YU Jun-Rui, WAN Chun-Yan, ZHU Shi-Dan. Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests [J]. Chin J Plant Ecol, 2023, 47(11): 1576-1584. |
[7] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
[8] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[9] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[10] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[11] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[12] | Fei LI, Ming-Wei SUN, Shang-Zhi ZHONG, Wen-Zheng SONG, Xiao-Yue ZHONG, Wei SUN. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration [J]. Chin J Plant Ecol, 2022, 46(1): 74-87. |
[13] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[14] | XUE Feng, JIANG Yuan, DONG Man-Yu, WANG Ming-Chang, DING Xin-Yuan, YANG Xian-Ji, CUI Ming-Hao, KANG Mu-Yi. Influence of different de-trending methods on stem water relations of Picea meyeri derived from Dendrometer measurements [J]. Chin J Plant Ecol, 2021, 45(8): 880-890. |
[15] | FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin [J]. Chin J Plant Ecol, 2021, 45(6): 641-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn