Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (9): 1077-1085.DOI: 10.17521/cjpe.2021.0481
• Research Articles • Previous Articles Next Articles
LI Yi-Ding1, SANG Qing-Tian1, ZHANG Hao2, LIU Long-Chang1, PAN Qing-Min3, WANG Yu1,*(), LIU Wei3,*(), YUAN Wen-Ping4
Received:
2021-12-17
Accepted:
2022-04-13
Online:
2022-09-20
Published:
2022-10-19
Contact:
WANG Yu,LIU Wei
About author:
(Wang Y, yuwang911@163.com;Supported by:
LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China[J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0481
Fig. 2 Effects of air and soil humidification on vapor pressure deficit (VPD)(A) and soil moisture (B)(mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
Fig. 3 Effects of air and soil humidification on leaf area (A), leaf number of one twig (B), and total leaf area on one twig (C) of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
Fig. 4 Temporal changes in leaf water holding capacity of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification.
Fig. 5 Temporal changes in twig growth (A) and the effects of air and soil humidification on twig length (B) and twig diameter (C) of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
Fig. 6 Effects of air and soil humidification on the stem radial growth of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
Fig. 7 Structural equation modeling analysis for the effects of air and soil humidification on the growth of leaf, twig and radial in Pinus sylvestris var. mongolica. Standardized regression coefficients and significance are shown next to the arrow for each path, dashed arrows indicate insignificant effects (p > 0.05). R2 represents the degree of explanation for the total change of the target dependent variable. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
VPD | SM | |
---|---|---|
叶面积 Leaf area | -0.207 | 0.435 |
叶密度 Leaf density | -0.395 | - |
枝条长 Twig length | -0.304 | 0.637 |
枝条直径 Twig diameter | -0.320 | 0.671 |
径向生长 Radial growth | -0.375 | 0.535 |
Table 1 Standardized total effects of vapor pressure deficit (VPD) and soil moisture (SM) on the leaf, twig and radial growth in Pinus sylvestris var. mongolica
VPD | SM | |
---|---|---|
叶面积 Leaf area | -0.207 | 0.435 |
叶密度 Leaf density | -0.395 | - |
枝条长 Twig length | -0.304 | 0.637 |
枝条直径 Twig diameter | -0.320 | 0.671 |
径向生长 Radial growth | -0.375 | 0.535 |
[1] |
Adams HD, Collins AD, Briggs SP, Vennetier M, Dickman LT, Sevanto SA, Garcia-Forner N, Powers HH, McDowell NG (2015). Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Global Change Biology, 21, 4210-4220.
DOI PMID |
[2] |
Braun S, Schindler C, Rihm B, Flückiger W (2007). Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone. Environmental Pollution, 146, 624-628.
DOI URL |
[3] | Campbell GS, Norman JM (1977). An Introduction to Environmental Biophysics. Springer, New York. |
[4] | Cao JC, Zheng YF, Zhao H, Xu JX (2018). Influence of open- top chamber on growth and yield of winter wheat. Crops, (1), 88-95. |
[曹嘉晨, 郑有飞, 赵辉, 徐静馨 (2018). 开顶式气室对冬小麦的生长及产量的影响. 作物杂志, (1), 88-95.] | |
[5] | Cunningham SC (2004). Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees, 18, 399-407. |
[6] | Du QJ, Song XM, Bai P, Jiao XC, Ding JP, Zhang JY, Li JM, Ding M (2020). Effects of different vapor pressure deficits on gas exchange parameters and growth of tomatoes and comprehensive evaluation. Acta Agriculturae Boreali- Occidentalis Sinica, 29, 66-74. |
[杜清洁, 宋小明, 柏萍, 焦晓聪, 丁崌平, 张嘉宇, 李建明, 丁明 (2020). 不同水汽压差对番茄气体交换参数和生长的影响及综合评价. 西北农业学报, 29, 66-74.] | |
[7] | Eller CB, Lima AL, Oliveira RS (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytologist, 199, 151-162. |
[8] | Huo ZG, Bai YM, Wen M, Chen L, Hu YL, Ye CL (2001). The experimental research on water stress effects on growth and development of winter wheat. Acta Ecologica Sinica, 21, 1527-1535. |
[霍治国, 白月明, 温民, 陈林, 胡延龙, 叶彩玲 (2001). 水分胁迫效应对冬小麦生长发育影响的试验研究. 生态学报, 21, 1527-1535.] | |
[9] | Johnson JD (1984). A rapid technique for estimating total surface area of pine needles. Forest Science, 30, 913-921. |
[10] |
Kupper P, Sõber J, Sellin A, Lõhmus K, Tullus A, Räim O, Lubenets K, Tulva I, Uri V, Zobel M, Kull O, Sõber A (2011). An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environmental and Experimental Botany, 72, 432-438.
DOI URL |
[11] |
Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E (2016). Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen. Journal of Experimental Botany, 67, 4367-4378.
DOI PMID |
[12] |
Lyu LX, Büntgen U, Treydte K, Yu KL, Liang HX, Reinig F, Nievergelt D, Li MH, Cherubini P (2019). Tree rings reveal hydroclimatic fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau. Climate Dynamics, 53, 1023-1037.
DOI URL |
[13] | Ma XY, Zhou GS, Li G (2020). Classification of drought degree during vegetative growth stage of maize based on threshold indicator taxa analysis (TITAN). Chinese Journal of Agrometeorology, 41, 446-458. |
[麻雪艳, 周广胜, 李根 (2020). 基于阈值指标分类法的玉米营养生长阶段受旱程度分级. 中国农业气象, 41, 446-458.] | |
[14] |
Niglas A, Kupper P, Tullus A, Sellin A (2014). Responses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions. AoB PLANTS, 6, plu021. DOI: 10.1093/aobpla/plu021.
DOI |
[15] | Pan ZL, Guo W, Wang T, Li YP, Yang SJ (2021). Research progress on foliar water uptake. Plant Physiology Journal, 57(1), 19-32. |
[潘志立, 郭雯, 王婷, 李永萍, 杨石建 (2021). 叶片吸收水分的研究进展. 植物生理学报, 57(1), 19-32.] | |
[16] |
Qi JH, Zhang YJ, Zhang YP, Liu YH, Lu ZY, Wu CS, Wen HD (2013). The impacts of the Southwest China drought on the litterfall and leaf area index of an evergreen broadleaf forest on Ailao Mountain. Acta Ecologica Sinica, 33, 2877-2885.
DOI URL |
[杞金华, 章永江, 张一平, 刘玉洪, 鲁志云, 武传胜, 温韩东 (2013). 西南干旱对哀牢山常绿阔叶林凋落物及叶面积指数的影响. 生态学报, 33, 2877-2885. | |
[17] | Qin L, Shang HM, Yu SL, Zhang HL, Jiang SX, Zhang TW, Liu KX, Gou XX, Zhang RB (2021). Response of tree-ring growth and intrinsic water-use efficiency to climate elements in the western Tianshan Mountains under global change. Desert and Oasis Meteorology, 15(3), 1-9. |
[秦莉, 尚华明, 喻树龙, 张合理, 姜盛夏, 张同文, 刘可祥, 苟晓霞, 张瑞波 (2021). 全球变化背景下天山西部雪岭云杉径向生长和水分利用效率对气候要素的响应. 沙漠与绿洲气象, 15(3), 1-9.] | |
[18] |
Rosenvald K, Lõhmus K, Rohula-Okunev G, Lutter R, Kupper P, Tullus A (2020). Elevated atmospheric humidity prolongs active growth period and increases leaf nitrogen resorption efficiency of silver birch. Oecologia, 193, 449-460.
DOI PMID |
[19] |
Sellin A, Niglas A, Õunapuu-Pikas E, Kupper P (2014). Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity. BMC Plant Biology, 14, 72. DOI: 10.1186/1471-2229-14-72.
DOI |
[20] |
Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012). Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLOS ONE, 7, e42648. DOI: 10.1371/journal.pone.0042648.
DOI |
[21] | Wimmer R, Grabner M (1997). Effects of climate on vertical resin duct density and radial growth of Norway spruce. Trees, 11, 271-276. |
[22] |
Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514.
DOI URL |
[夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.]
DOI |
|
[23] | Xu ZZ, Wang CA, Li H (2004). Effects of soil drought on photosynthesis, nitrogen and nitrogen translocation efficiency in wheat leaves. Agricultural Research in the Arid Areas, 22, 75-79. |
[许振柱, 王崇爱, 李晖 (2004). 土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响. 干旱地区农业研究, 22, 75-79.] | |
[24] | Yin J, Qiu GY, He F, He KN, Tian JH, Zhang WQ, Xiong YJ, Zhao SH, Liu JX (2008). Leaf area characteristics of plantation stands in semi-arid loess hill-gully region of China. Journal of Plant Ecology (Chinese Version), 32, 440-447. |
[尹婧, 邱国玉, 何凡, 贺康宁, 田晶会, 张卫强, 熊育久, 赵少华, 刘建新 (2008). 半干旱黄土丘陵区人工林叶面积特征. 植物生态学报, 32, 440-447.]
DOI |
|
[25] | Yu GR, Niu SL, Li FD, Zhang LM, Chen WN (2021). Manipulative experiments networks on response and adaptation of terrestrial ecosystems to environmental changes: building the research methods and technology system. Chinese Journal of Applied Ecology, 32, 2275-2289. |
[于贵瑞, 牛书丽, 李发东, 张雷明, 陈卫楠 (2021). 陆地生态系统环境控制实验的研究方法及技术体系. 应用生态学报, 32, 2275-2289.]
DOI |
|
[26] | Zeng DH, Jiang FQ, Fan ZP, Zhu JJ (1996). Stability of Mongolian pine plantations on sandy land. Chinese Journal of Applied Ecology, 7, 337-343. |
[曾德慧, 姜凤岐, 范志平, 朱教君 (1996). 樟子松人工固沙林稳定性的研究. 应用生态学报, 7, 337-343.] | |
[27] | Zhang B, Lin JH, Lin RX, Gao J, Zeng SC (2016). Study on water holding capacity of leaves of four tree species in South China. Journal of Central South University of Forestry & Technology, 36, 47-51. |
[张兵, 林佳慧, 林荣晓, 高婕, 曾曙才 (2016). 华南地区4个树种叶片持水能力研究. 中南林业科技大学学报, 36, 47-51.] | |
[28] |
Zhang HM, Wu BF, Yan NN (2014). Remote sensing estimates of vapor pressure deficit: an overview. Advances in Earth Science, 29, 559-568.
DOI |
[张红梅, 吴炳方, 闫娜娜 (2014). 饱和水汽压差的卫星遥感研究综述. 地球科学进展, 29, 559-568.]
DOI |
|
[29] | Zhang M, Shi SL, Shi CM, Bai H, Li ZS, Peng PH (2021). Radial growth responses of four typical coniferous species to climatic factors in the Western Sichuan Plateau, China. Chinese Journal of Ecology, 40, 1947-1957. |
[张萌, 石松林, 石春明, 白海, 李宗善, 彭培好 (2021). 川西高原4种典型针叶树径向生长对气候因子的响应. 生态学杂志, 40, 1947-1957.] | |
[30] | Zhang P (2021). Measurement and Simulation of the Effects of Varied Vapour Pressure Deficits and Soil Water Deficits on Crop Water Use Efficiency. PhD dissertation, Northwest A&E University, Yangling, Shaanxi. 86. |
[ 张鹏 (2021). 不同饱和水汽压亏缺和土壤干旱环境对作物水分利用效率的影响机理及模拟研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 86.] | |
[31] |
Zhu B, Chen Y (2020). Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 330-339.
DOI |
[朱彪, 陈迎 (2020). 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44, 330-339.]
DOI |
|
[32] |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Takeshi M (2003). Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestris var. mongolica on sandy land. Journal of Forestry Research, 14, 103-111.
DOI URL |
[33] | Zhu JJ, Kang HZ, Li ZH, Wang GC, Zhang RS (2005). Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 25, 2527-2533. |
[朱教君, 康宏樟, 李智辉, 王国臣, 张日升 (2005). 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 25, 2527-2533.] |
[1] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[2] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[3] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[4] | YU Jun-Rui, WAN Chun-Yan, ZHU Shi-Dan. Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests [J]. Chin J Plant Ecol, 2023, 47(11): 1576-1584. |
[5] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
[6] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[7] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[8] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[9] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[10] | Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests [J]. Chin J Plant Ecol, 2022, 46(1): 102-113. |
[11] | Fei LI, Ming-Wei SUN, Shang-Zhi ZHONG, Wen-Zheng SONG, Xiao-Yue ZHONG, Wei SUN. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration [J]. Chin J Plant Ecol, 2022, 46(1): 74-87. |
[12] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[13] | XUE Feng, JIANG Yuan, DONG Man-Yu, WANG Ming-Chang, DING Xin-Yuan, YANG Xian-Ji, CUI Ming-Hao, KANG Mu-Yi. Influence of different de-trending methods on stem water relations of Picea meyeri derived from Dendrometer measurements [J]. Chin J Plant Ecol, 2021, 45(8): 880-890. |
[14] | FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin [J]. Chin J Plant Ecol, 2021, 45(6): 641-649. |
[15] | SONG Lin, LUO Wen-Tao, MA Wang, HE Peng, LIANG Xiao-Sa, WANG Zheng-Wen. Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland [J]. Chin J Plant Ecol, 2020, 44(6): 669-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn