Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (6): 641-649.DOI: 10.17521/cjpe.2021.0020
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
FANG Ou-Ya1,*(), ZHANG Yong2, ZHANG Qi1,3, JIA Heng-Feng1,3
Received:
2021-01-14
Accepted:
2021-04-26
Online:
2021-06-20
Published:
2021-09-09
Contact:
FANG Ou-Ya
Supported by:
FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin[J]. Chin J Plant Ecol, 2021, 45(6): 641-649.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0020
Fig. 1 Geographic location of the tamarisk (Tamarix austromongolica) research sites (A), explanation on sampling directions (B) and the real scenery of the sampling site at Ranguo village, Tongde County (C). BD, Banduo village; LQ, Shanglujuan village; RG, Ranguo village.
Fig. 2 The measured annual total runoff from 1956 to 2018 and May-to-September runoff from 1956 to 2007 at the Tangnag Hydrological Station. ▲, drought year; ▼, flood year.
Fig. 3 Statistics of the resistance indices for two groups of Tamarix austromongolica in the upper Yellow River basin in different directions to extreme drought (A) and flood (B) events.
事件 Event | 组别 Group | 配对t检验 Paired t-test | 配对秩和检验 Wilcoxon signed rank test | |||
---|---|---|---|---|---|---|
t | df | p | V | p | ||
干旱 Drought | 受伤组 Injured group | 0.824 | 19 | 0.420 | 132 | 0.330 |
对照组 Comparative group | 1.526 | 25 | 0.139 (双侧) (two-sides) 0.069* (单侧) (single-side) | 238 | 0.116 (双侧) (two-sides) 0.058* (单侧) (single-side) | |
洪涝 Flood | 受伤组 Injured group | -2.204 | 18 | 0.041** (双侧) (two-sides) 0.020** (单侧) (single-side) | 48 | 0.060* (双侧) (two-sides) 0.030** (单侧) (single-side) |
对照组 Comparative group | - | - | - | 157 | 0.895 |
Table 1 Tests of differences in the resistance indices of Tamarix austromongolica in A and B directions to drought and flood events
事件 Event | 组别 Group | 配对t检验 Paired t-test | 配对秩和检验 Wilcoxon signed rank test | |||
---|---|---|---|---|---|---|
t | df | p | V | p | ||
干旱 Drought | 受伤组 Injured group | 0.824 | 19 | 0.420 | 132 | 0.330 |
对照组 Comparative group | 1.526 | 25 | 0.139 (双侧) (two-sides) 0.069* (单侧) (single-side) | 238 | 0.116 (双侧) (two-sides) 0.058* (单侧) (single-side) | |
洪涝 Flood | 受伤组 Injured group | -2.204 | 18 | 0.041** (双侧) (two-sides) 0.020** (单侧) (single-side) | 48 | 0.060* (双侧) (two-sides) 0.030** (单侧) (single-side) |
对照组 Comparative group | - | - | - | 157 | 0.895 |
Fig. 4 Statistics distributions on of resistance differences between A and B directions in two groups of Tamarix austromongolica in extreme flood events.
采样点 Sampling site | 组别(株数) Group (Number of plants) | 干旱 Drought | 洪涝 Flood | ||
---|---|---|---|---|---|
A方向 Direction A | B方向 Direction B | A方向 Direction A | B方向 Direction B | ||
RG | 受伤组 Injured group (8) | 0.99 | 0.97 | 0.99 | 1.08 |
对照组 Comparative group (9) | 1.05 | 1.03 | 1.03 | 1.02 | |
BD | 受伤组 Injured group (7) | 0.94 | 0.91 | 1.04 | 1.09 |
对照组 Comparative group (13) | 0.96 | 0.92 | 1.02 | 1.02 | |
LQ | 受伤组 Injured group (5) | 0.87 | 0.85 | 1.00 | 1.15 |
对照组 Comparative group (4) | 0.89 | 0.88 | 1.23 | 1.48 |
Table 2 Comparison of the mean resistance indices of Tamarix austromongolica at the RG, BD and LQ sites
采样点 Sampling site | 组别(株数) Group (Number of plants) | 干旱 Drought | 洪涝 Flood | ||
---|---|---|---|---|---|
A方向 Direction A | B方向 Direction B | A方向 Direction A | B方向 Direction B | ||
RG | 受伤组 Injured group (8) | 0.99 | 0.97 | 0.99 | 1.08 |
对照组 Comparative group (9) | 1.05 | 1.03 | 1.03 | 1.02 | |
BD | 受伤组 Injured group (7) | 0.94 | 0.91 | 1.04 | 1.09 |
对照组 Comparative group (13) | 0.96 | 0.92 | 1.02 | 1.02 | |
LQ | 受伤组 Injured group (5) | 0.87 | 0.85 | 1.00 | 1.15 |
对照组 Comparative group (4) | 0.89 | 0.88 | 1.23 | 1.48 |
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mc- Dowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[3] |
Arbellay E, Fonti P, Stoffel M (2012). Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, 63, 3271-3277.
DOI PMID |
[4] |
Bär A, Michaletz ST, Mayr S (2019). Fire effects on tree physiology. New Phytologist, 223, 1728-1741.
DOI URL |
[5] |
DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, et al. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11, 545. DOI: 10.1038/s41467-020-14300-5.
DOI PMID |
[6] |
Devitt DA, Salal A, Mace KA, Smith SD (1997). The effect of applied water on the water use of saltcedar in a desert riparian environment. Journal of Hydrology, 192, 233-246.
DOI URL |
[7] | Dong ZW, Li SY, Zhao Y, Lei JQ, Wang YD, Li CJ (2020). Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China. Journal of Arid Land, 12, 115-129. |
[8] |
Fang OY, Jia HF, Qiu HY, Ren HB(2017). Age of arboreous Tamarix austromongolica and its growth response to environment in Tongde County of Qinghai, China. Chinese Journal of Plant Ecology, 41, 738-748.
DOI URL |
[ 方欧娅, 贾恒锋, 邱红岩, 任海保(2017). 青海省同德县乔木状甘蒙柽柳的年龄及其生长对环境的响应. 植物生态学报, 41, 738-748.] | |
[9] |
Fang OY, Zhang QB (2019). Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 25, 245-253.
DOI URL |
[10] | Flores BM, Holmgren M, Xu C, van Nes EH, Jakovac CC, Mesquita RCG, Scheffer M (2017). Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 114, 4442-4446. |
[11] |
Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26, 166-176.
DOI URL |
[12] |
Ji P, Yuan X, Ma F, Pan M (2020). Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels. Hydrology and Earth System Sciences, 24, 5439-5451.
DOI URL |
[13] | Ji XM, Ning HS, Liang JY, Gao MY, Li L(2012). Comparison of drought resistance and photosynthetic characteristics of Haloxylon ammodendron and Tamarix hohenackeri at seedling stage under different moisture conditions. Journal of Desert Research, 32, 399-406. |
[ 吉小敏, 宁虎森, 梁继业, 高明月, 李磊(2012). 不同水分条件下梭梭和多花柽柳苗期光合特性及抗旱性比较. 中国沙漠, 32, 399-406.] | |
[14] |
Kuang XX, Jiao JJ (2016). Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 121, 3979-4007.
DOI URL |
[15] |
Li CF, Yang F, Zheng XQ, Han ZY, Pan HL, Zhou CL, Ji CR (2021). Changes in distribution and morphology of Tamarix ramosissima nebkhas in an oasis-desert ecotone. Geosciences Journal.DOI: 10.1007/s12303-020-0054-3.
DOI |
[16] | Li CJ, Chen T, Wang B, Xu GB, Zhang XW, Wu GJ(2019). Advances in research on the abnormal structure of tree-rings. Chinese Journal of Ecology, 38, 1538-1550. |
[ 李彩娟, 陈拓, 王波, 徐国保, 张轩文, 吴国菊(2019). 树轮异常结构的研究进展. 生态学杂志, 38, 1538-1550.] | |
[17] | Li CX, Lan HY(2021). Research progress in the stress tolerance mechanisms of desert plant Tamarix spp. Biotechnology Bulletin, 37, 17-29. |
[ 李彩霞, 兰海燕(2021). 荒漠植物柽柳抗逆机制的研究进展. 生物技术通报, 37, 17-29.] | |
[18] |
Li D, Si JH, Zhang XY, Gao YY, Luo H, Qin J, Gao GL (2019). Comparison of branch water relations in two riparian species:Populus euphratica and Tamarix ramosissima. Sustainability, 11, 5461.
DOI URL |
[19] |
Li XY, Liu LY, Gao SY, Shi PJ, Zou XY, Zhang CL (2005). Microcatchment water harvesting for growing Tamarix ramosissima in the semiarid loess region of China. Forest Ecology and Management, 214, 111-117.
DOI URL |
[20] |
Liu HY, Williams AP, Allen CD, Guo DL, Wu XC, Anenkhonov OA, Liang EY, Sandanov DV, Yin Y, Qi ZH, Badmaeva NK (2013). Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500-2510.
DOI URL |
[21] |
Lloret F, Keeling EG, Sala A (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920.
DOI URL |
[22] |
Moreno-Fernández D, Ledo A, Martín-Benito D, Cañellas I, Gea-Izquierdo G (2019). Negative synergistic effects of land-use legacies and climate drive widespread oak decline in evergreen Mediterranean open woodlands. Forest Ecology and Management, 432, 884-894.
DOI |
[23] |
Mou YM, Fang OY, Cheng XH, Qiu HY (2019). Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. Journal of Forestry Research, 30, 1429-1436.
DOI URL |
[24] |
Nippert JB, Butler JJ, Kluitenberg GJ, Whittemore DO, Arnold D, Spal SE, Ward JK (2010). Patterns of Tamarix water use during a record drought. Oecologia, 162, 283-292.
DOI PMID |
[25] |
Schurman JS, Trotsiuk V, Bače R, Cada V, Fraver S, Janda P, Kulakowski D, Labusova J, Mikoláš M, Nagel TA, Seidl R, Synek M, Svobodová K, Chaskovskyy O, Teodosiu M, et al. (2018). Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24, 2169-2181.
DOI URL |
[26] | Sher A, Quigley MF (2013). Tamarix: a Case Study of Ecological Change in the American West. Oxford University Press, Oxford. |
[27] |
Snyder KA, Scott RL (2020). Longer term effects of biological control on tamarisk evapotranspiration and carbon dioxide exchange. Hydrological Processes, 34, 223-236.
DOI URL |
[28] |
Stoffel M (2008). Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia, 26, 53-60.
DOI URL |
[29] |
Stromberg JC, Tluczek MGF, Hazelton AF, Ajami H (2010). A century of riparian forest expansion following extreme disturbance: spatio-temporal change in Populus/Salix/ amarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259, 1181-1189.
DOI URL |
[30] |
Wang PL, Wang LQ, Liu ZY, Zhang TQ, Wang YY, Li YB, Gao CQ (2019). Molecular characterization and expression profiles of GRAS genes in response to abiotic stress and hormone treatment in Tamarix hispida. Trees, 33, 213-225.
DOI URL |
[31] | Wang TS, Sun BP, Feng L, Hu SJ, Yu MH(2013). Effects of different soil moisture contents on root growth characteristics of Tamarix austromongolica seedlings. Chinese Journal of Ecology, 32, 591-596. |
[ 王同顺, 孙保平, 冯磊, 胡生君, 于明含(2013). 不同水分处理对甘蒙柽柳幼苗根系生长特性的影响. 生态学杂志, 32, 591-596.] | |
[32] | Wang WQ, Ma ZJ, Feng LZ(2003). Plant for protecting ridge of terrace fields in hilly area of Qinghai: Tamarix austremongolica Nakai. Research of Soil and Water Conservation, 10, 112-115. |
[ 王文卿, 马占杰, 冯玲正(2003). 青海浅山区梯田护埂植物——甘蒙柽柳. 水土保持研究, 10, 112-115.] | |
[33] | Wei J, Zhang XM, Ma WD, Shan LS, Yan HL(2007). Seedling growth dynamics of Tamarix austromongolica and its acclimation strategy in hinterland of desert. Arid Land Geography, 30, 666-673. |
[ 魏疆, 张希明, 马文东, 单立山, 闫海龙(2007). 甘蒙柽柳幼苗生长动态及其对沙漠腹地生境条件的适应策略. 干旱区地理, 30, 666-673.] | |
[34] |
Xia JB, Lang Y, Zhao QK, Liu P, Su L (2021). Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats. Science of the Total Environment, 761, 143221. DOI: 10.1016/j.scitotenv.2020.143221.
DOI URL |
[35] |
Xiao SC, Xiao HL, Peng XM, Tian QY (2014). Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River. Journal of Arid Land, 6, 498-510.
DOI URL |
[36] | Xu H, Li Y, Xie JX, Cheng L, Zhao Y, Liu R(2010). Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix. Chinese Journal of Plant Ecology, 34, 375-386. |
[ 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉(2010). 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响. 植物生态学报, 34, 375-386.] | |
[37] |
Yang GY, Yu LL, Zhang KM, Zhao YL, Guo YC, Gao CQ (2017). A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiology and Biochemistry, 113, 187-197.
DOI URL |
[38] |
Yang Y, Saatchi SS, Xu L, Yu YF, Choi S, Phillips N, Kennedy R, Keller M, Knyazikhin Y, Myneni RB (2018). Post- drought decline of the Amazon carbon sink. Nature Communications, 9, 3172. DOI: 10.1038/s41467-018-05668-6.
DOI PMID |
[39] |
Yao TD, Thompson LG, Mosbrugger V, Zhang F, Ma YM, Luo TX, Xu BQ, Yang XX, Joswiak DR, Wang WC, Joswiak ME, Devkota LP, Tayal S, Jilani R, Fayziev R (2012). Third pole environment (TPE). Environmental Development, 3, 52-64.
DOI URL |
[40] | Zhang JQ, Qie JZ, Zhang Y(2020). Investigation of the distribution of traumatic resin ducts in Picea crassifolia. Mountain Research, 38, 710-716. |
[ 张建奇, 郄佳志, 张永(2020). 青海云杉创伤树脂道分布调查. 山地学报, 38, 710-716.] | |
[41] |
Zhang L, Li GJ, Dong GQ, Wang M, Di DW, Kronzucker HJ, Shi WM (2019). Characterization and comparison of nitrate fluxes in Tamarix ramosissima and cotton roots under simulated drought conditions. Tree Physiology, 39, 628-640.
DOI PMID |
[42] |
Zhang QB, Fang OY (2020). Tree rings circle an abrupt shift in climate. Science, 370, 1037-1038.
DOI URL |
[43] |
Zhu JF, Liu JT, Lu ZH, Li JS, Sun JK (2018). Water-use strategies of coexisting shrub species in the Yellow River Delta, China. Canadian Journal of Forest Research, 48, 1099-1107.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[3] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[4] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[5] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[6] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[7] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[8] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[9] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[10] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[11] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[12] | YU Jun-Rui, WAN Chun-Yan, ZHU Shi-Dan. Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests [J]. Chin J Plant Ecol, 2023, 47(11): 1576-1584. |
[13] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[14] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[15] | CHEN Tu-Qiang, XU Gui-Qing, LIU Shen-Si, LI Yan. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress [J]. Chin J Plant Ecol, 2023, 47(10): 1407-1421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn