Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 459-468.DOI: 10.17521/cjpe.2023.0032 cstr: 32100.14.cjpe.2023.0032
• Research Articles • Previous Articles Next Articles
LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui*()()
Received:
2023-02-06
Accepted:
2023-05-19
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (quanxiankui@nefu.edu.cn)
Supported by:
LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming[J]. Chin J Plant Ecol, 2024, 48(4): 459-468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0032
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 1月平均气温 Mean air temperature in January (℃) | 7月平均气温 Mean air temperature in July (℃) | 无霜期 Frost-free period (d) | 树木基径 Base diameter (cm) | 树高 Height (m) |
---|---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | -18.50 | 22.00 | 140.00 | ||
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | -22.00 | 20.30 | 139.00 | 3.42 | 0.77 |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | -25.50 | 19.50 | 90.00 | 4.36 | 1.72 |
松岭 Songling | 50.72 | 124.42 | -0.54 | 525.36 | -26.30 | 17.60 | 93.80 | 2.62 | 2.99 |
塔河 Tahe | 52.52 | 124.65 | -2.30 | 463.44 | -25.50 | 16.70 | 89.70 | 1.17 | 3.06 |
Table 1 Geographical and climatic characteristics of Larix gmelinii at four transplanting sites and common garden
地点 Site | 纬度 Latitude (° N) | 经度 Longitude (° E) | 年平均气温 Annual mean air temperature (℃) | 平均年降水量 Mean annual precipitation (mm) | 1月平均气温 Mean air temperature in January (℃) | 7月平均气温 Mean air temperature in July (℃) | 无霜期 Frost-free period (d) | 树木基径 Base diameter (cm) | 树高 Height (m) |
---|---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 45.40 | 127.50 | 3.10 | 629.00 | -18.50 | 22.00 | 140.00 | ||
带岭 Dailing | 47.08 | 128.90 | 1.34 | 621.27 | -22.00 | 20.30 | 139.00 | 3.42 | 0.77 |
黑河 Heihe | 49.22 | 127.20 | 0.62 | 554.08 | -25.50 | 19.50 | 90.00 | 4.36 | 1.72 |
松岭 Songling | 50.72 | 124.42 | -0.54 | 525.36 | -26.30 | 17.60 | 93.80 | 2.62 | 2.99 |
塔河 Tahe | 52.52 | 124.65 | -2.30 | 463.44 | -25.50 | 16.70 | 89.70 | 1.17 | 3.06 |
参数 Parameter | 处理 Treatment | 地点 Site | 处理 × 地点 Treatment × site | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
DBH | 81.22 | <0.01 | 235.29 | <0.01 | 20.13 | <0.01 |
D10 | 90.49 | <0.01 | 197.33 | <0.01 | 22.34 | <0.01 |
树叶生物量占比 Proportion of leaf biomass | 7.09 | <0.01 | 75.61 | <0.01 | 13.93 | <0.01 |
树枝生物量占比 Proportion of branch biomass | 51.71 | <0.01 | 36.73 | <0.01 | 9.59 | <0.01 |
树干生物量占比 Proportion of stem biomass | 84.32 | <0.01 | 165.94 | <0.01 | 22.68 | <0.01 |
树根生物量占比 Proportion of root biomass | 47.24 | <0.01 | 107.10 | <0.01 | 14.81 | <0.01 |
地上生物量占比 Proportion of aboveground biomass | 47.26 | <0.01 | 107.11 | <0.01 | 14.88 | <0.01 |
根冠比 Root to shoot ratio | 49.98 | <0.01 | 91.53 | <0.01 | 16.14 | <0.01 |
Table 2 Two-way analysis of variance of radial growth characteristics of Larix gmelinii
参数 Parameter | 处理 Treatment | 地点 Site | 处理 × 地点 Treatment × site | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
DBH | 81.22 | <0.01 | 235.29 | <0.01 | 20.13 | <0.01 |
D10 | 90.49 | <0.01 | 197.33 | <0.01 | 22.34 | <0.01 |
树叶生物量占比 Proportion of leaf biomass | 7.09 | <0.01 | 75.61 | <0.01 | 13.93 | <0.01 |
树枝生物量占比 Proportion of branch biomass | 51.71 | <0.01 | 36.73 | <0.01 | 9.59 | <0.01 |
树干生物量占比 Proportion of stem biomass | 84.32 | <0.01 | 165.94 | <0.01 | 22.68 | <0.01 |
树根生物量占比 Proportion of root biomass | 47.24 | <0.01 | 107.10 | <0.01 | 14.81 | <0.01 |
地上生物量占比 Proportion of aboveground biomass | 47.26 | <0.01 | 107.11 | <0.01 | 14.88 | <0.01 |
根冠比 Root to shoot ratio | 49.98 | <0.01 | 91.53 | <0.01 | 16.14 | <0.01 |
Fig. 1 Comparison of stem diameter at breast height (DBH) and at 10 cm from the ground (D10) of Larix gmelinii among treatments and sites (mean ± SE, n = 4). DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. Different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), different uppercase letters indicate significant differences between trees at original sites (p < 0.05), * indicates significant effects of treatment on DBH and D10 (p < 0.05).
Fig. 2 Relative increasing rate and relative increasing rate per centigrade of radial growth of Larix gmelinii. D10, diameter at 10 cm from the ground; DBH, diameter at breast height.
来源 Origin | 处理(胸径范围) Treatment (DBH range) | 组分 Component | a | b | R2 |
---|---|---|---|---|---|
带岭 Dailing | 来源地 | 总体 Total | 1.582 | 2.798 | 0.975 |
Original site (8.85-15.40 cm) | 地上部分 Aboveground | 1.496 | 2.853 | 0.976 | |
根 Root | 1.288 | 1.901 | 0.921 | ||
干 Stem | 1.477 | 2.799 | 0.952 | ||
枝 Branch | 0.138 | 3.242 | 0.986 | ||
叶 Leaf | 0.057 | 2.959 | 0.955 | ||
同质园 | 总体 Total | 1.883 | 2.469 | 0.995 | |
Common garden (6.90-18.85 cm) | 地上部分 Aboveground | 1.779 | 2.539 | 0.995 | |
根 Root | 1.723 | 1.482 | 0.996 | ||
干 Stem | 1.778 | 2.495 | 0.994 | ||
枝 Branch | -0.089 | 3.074 | 0.971 | ||
叶 Leaf | 0.152 | 2.852 | 0.945 | ||
黑河 Heihe | 来源地 | 总体 Total | 1.709 | 2.685 | 0.977 |
Original site (6.73-17.00 cm) | 地上部分 Aboveground | 1.631 | 2.730 | 0.975 | |
根 Root | 1.145 | 2.105 | 0.999 | ||
干 Stem | 1.574 | 2.724 | 0.963 | ||
枝 Branch | 0.327 | 2.926 | 0.971 | ||
叶 Leaf | 0.423 | 2.648 | 0.995 | ||
同质园 | 总体 Total | 1.808 | 2.512 | 0.960 | |
Common garden (6.60-16.90 cm) | 地上部分 Aboveground | 1.764 | 2.529 | 0.960 | |
根 Root | 0.860 | 2.237 | 0.948 | ||
干 Stem | 1.695 | 2.538 | 0.957 | ||
枝 Branch | 0.719 | 2.464 | 0.944 | ||
叶 Leaf | 0.482 | 2.504 | 0.962 | ||
松岭 Songling | 来源地 | 总体 Total | 2.138 | 2.192 | 0.962 |
Original site (4.41-8.00 cm) | 地上部分 Aboveground | 1.955 | 2.346 | 0.964 | |
根 Root | 1.990 | 1.244 | 0.812 | ||
干 Stem | 1.863 | 2.328 | 0.957 | ||
枝 Branch | 1.103 | 2.390 | 0.971 | ||
叶 Leaf | 0.670 | 2.493 | 0.956 | ||
同质园 | 总体 Total | 2.103 | 2.132 | 0.945 | |
Common garden (5.90-13.50 cm) | 地上部分 Aboveground | 2.001 | 2.194 | 0.948 | |
根 Root | 1.638 | 1.490 | 0.870 | ||
干 Stem | 1.890 | 2.222 | 0.946 | ||
枝 Branch | 1.081 | 2.215 | 0.939 | ||
叶 Leaf | 1.148 | 1.809 | 0.894 | ||
塔河 Tahe | 来源地 | 总体 Total | 2.861 | 0.974 | 0.886 |
Original site (1.61-4.30 cm) | 地上部分 Aboveground | 2.628 | 1.195 | 0.878 | |
根 Root | 2.504 | 0.484b | 0.882 | ||
干 Stem | 2.343 | 1.378 | 0.829 | ||
枝 Branch | 2.025 | 0.978b | 0.784 | ||
叶 Leaf | 1.897 | 0.974 | 0.838 | ||
同质园 | 总体 Total | 2.503 | 1.737 | 0.949 | |
Common garden (3.50-11.20 cm) | 地上部分 Aboveground | 2.320 | 1.865 | 0.954 | |
根 Root | 2.266 | 1.056a | 0.887 | ||
干 Stem | 2.188 | 1.901 | 0.952 | ||
枝 Branch | 1.254 | 2.018a | 0.917 | ||
叶 Leaf | 1.669 | 1.395 | 0.911 |
Table 3 Allometric equations relating biomass components to diameter at breast height of Larix gmelinii
来源 Origin | 处理(胸径范围) Treatment (DBH range) | 组分 Component | a | b | R2 |
---|---|---|---|---|---|
带岭 Dailing | 来源地 | 总体 Total | 1.582 | 2.798 | 0.975 |
Original site (8.85-15.40 cm) | 地上部分 Aboveground | 1.496 | 2.853 | 0.976 | |
根 Root | 1.288 | 1.901 | 0.921 | ||
干 Stem | 1.477 | 2.799 | 0.952 | ||
枝 Branch | 0.138 | 3.242 | 0.986 | ||
叶 Leaf | 0.057 | 2.959 | 0.955 | ||
同质园 | 总体 Total | 1.883 | 2.469 | 0.995 | |
Common garden (6.90-18.85 cm) | 地上部分 Aboveground | 1.779 | 2.539 | 0.995 | |
根 Root | 1.723 | 1.482 | 0.996 | ||
干 Stem | 1.778 | 2.495 | 0.994 | ||
枝 Branch | -0.089 | 3.074 | 0.971 | ||
叶 Leaf | 0.152 | 2.852 | 0.945 | ||
黑河 Heihe | 来源地 | 总体 Total | 1.709 | 2.685 | 0.977 |
Original site (6.73-17.00 cm) | 地上部分 Aboveground | 1.631 | 2.730 | 0.975 | |
根 Root | 1.145 | 2.105 | 0.999 | ||
干 Stem | 1.574 | 2.724 | 0.963 | ||
枝 Branch | 0.327 | 2.926 | 0.971 | ||
叶 Leaf | 0.423 | 2.648 | 0.995 | ||
同质园 | 总体 Total | 1.808 | 2.512 | 0.960 | |
Common garden (6.60-16.90 cm) | 地上部分 Aboveground | 1.764 | 2.529 | 0.960 | |
根 Root | 0.860 | 2.237 | 0.948 | ||
干 Stem | 1.695 | 2.538 | 0.957 | ||
枝 Branch | 0.719 | 2.464 | 0.944 | ||
叶 Leaf | 0.482 | 2.504 | 0.962 | ||
松岭 Songling | 来源地 | 总体 Total | 2.138 | 2.192 | 0.962 |
Original site (4.41-8.00 cm) | 地上部分 Aboveground | 1.955 | 2.346 | 0.964 | |
根 Root | 1.990 | 1.244 | 0.812 | ||
干 Stem | 1.863 | 2.328 | 0.957 | ||
枝 Branch | 1.103 | 2.390 | 0.971 | ||
叶 Leaf | 0.670 | 2.493 | 0.956 | ||
同质园 | 总体 Total | 2.103 | 2.132 | 0.945 | |
Common garden (5.90-13.50 cm) | 地上部分 Aboveground | 2.001 | 2.194 | 0.948 | |
根 Root | 1.638 | 1.490 | 0.870 | ||
干 Stem | 1.890 | 2.222 | 0.946 | ||
枝 Branch | 1.081 | 2.215 | 0.939 | ||
叶 Leaf | 1.148 | 1.809 | 0.894 | ||
塔河 Tahe | 来源地 | 总体 Total | 2.861 | 0.974 | 0.886 |
Original site (1.61-4.30 cm) | 地上部分 Aboveground | 2.628 | 1.195 | 0.878 | |
根 Root | 2.504 | 0.484b | 0.882 | ||
干 Stem | 2.343 | 1.378 | 0.829 | ||
枝 Branch | 2.025 | 0.978b | 0.784 | ||
叶 Leaf | 1.897 | 0.974 | 0.838 | ||
同质园 | 总体 Total | 2.503 | 1.737 | 0.949 | |
Common garden (3.50-11.20 cm) | 地上部分 Aboveground | 2.320 | 1.865 | 0.954 | |
根 Root | 2.266 | 1.056a | 0.887 | ||
干 Stem | 2.188 | 1.901 | 0.952 | ||
枝 Branch | 1.254 | 2.018a | 0.917 | ||
叶 Leaf | 1.669 | 1.395 | 0.911 |
Fig. 4 Comparison of biomass proportion of each component of Larix gmelinii by treatment and sites (mean ± SE, n = 10). DL, Dailing; HH, Heihe; SL, Songling; TH, Tahe. Different lowercase letters indicate significant differences between trees in the common garden (p < 0.05), different uppercase letters indicate significant differences between trees at original sites (p < 0.05), * indicates significant effects of treatment on biomass proportion (p < 0.05).
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[2] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[3] |
Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.
PMID |
[4] | Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X (2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289. |
[常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 (2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.]
DOI |
|
[5] | D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 60, 289-305. |
[6] | Dawes MA, Philipson CD, Fonti P, Bebi P, Hättenschwiler S, Hagedorn F, Rixen C (2015). Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Global Change Biology, 21, 2005-2021. |
[7] |
Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, et al. (2012). Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology, 18, 2681-2693.
DOI PMID |
[8] | Gruber A, Oberhuber W, Wieser G (2018). Nitrogen addition and understory removal but not soil warming increased radial growth of Pinus cembra at treeline in the central Austrian Alps. Frontiers in Plant Science, 9, 711. DOI: 10.3389/fpls.2018.00711. |
[9] | Han S, Lee SJ, Yoon TK, Han S, Lee J, Kim S, Hwang J, Cho MS, Son Y (2015). Species-specific growth and photosynthetic responses of first-year seedlings of four coniferous species to open-field experimental warming. Turkish Journal of Agriculture and Forestry, 39, 342-349. |
[10] | Jarvis P, Linder S (2000). Constraints to growth of boreal forests. Nature, 405, 904-905. |
[11] | Jia B, Sun H, Shugart HH, Xu Z, Zhang P, Zhou G (2021). Growth variations of Dahurian larch plantations across northeast China: understanding the effects of temperature and precipitation. Journal of Environmental Management, 292, 112739. DOI: 10.1016/j.jenvman.2021.112739. |
[12] |
Ju YL, Wang CK, Wang N, Quan XK (2022). Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity. Tree Physiology, 42, 2521-2533.
DOI PMID |
[13] |
Kasurinen A, Biasi C, Holopainen T, Rousi M, Mäenpää M, Oksanen E (2012). Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737-751.
DOI PMID |
[14] | Kumarathunge DP, Drake JE, Tjoelker MG, López R, Pfautsch S, Vårhammar A, Medlyn BE (2020). The temperature optima for tree seedling photosynthesis and growth depend on water inputs. Global Change Biology, 26, 2544-2560. |
[15] | Li F, Zhou GS, Cao MC (2006). Responses of Larix gmelinii geographical distribution to future climate change: a simulation study. Chinese Journal of Applied Ecology, 17, 2255-2260. |
[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟. 应用生态学报, 17, 2255-2260.] | |
[16] | Li W, Wang CK, Zhang QZ (2015). Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees. Acta Ecologica Sinica, 35, 1679-1687. |
[李巍, 王传宽, 张全智 (2015). 林木分化对兴安落叶松异速生长方程和生物量分配的影响. 生态学报, 35, 1679-1687.] | |
[17] |
Lin DL, Xia JY, Wan SQ (2010). Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188, 187-198.
DOI PMID |
[18] | National Forestry and Grassland Administration (2019). China Forest Resourses Report 2014-2018. China Forestry Publishing House, Beijing. |
[ 国家林业和草原局 (2019). 中国森林资源报告2014- 2018. 中国林业出版社, 北京.] | |
[19] | Nissinen K, Virjamo V, Kilpeläinen A, Ikonen VP, Pikkarainen L, Ärväs IL, Kirsikka-aho S, Peltonen A, Sobuj N, Sivadasan U, Zhou X, Ge Z, Salminen T, Julkunen- Tiitto R, Peltola H (2020). Growth responses of boreal Scots pine, Norway spruce and silver birch seedlings to simulated climate warming over three growing seasons in a controlled field experiment. Forests, 11, 943. DOI: 10.3390/f11090943. |
[20] | Prior LD, Bowman DMJS (2014). Big Eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Global Change Biology, 20, 2793-2799. |
[21] |
Pumpanen J, Heinonsalo J, Rasilo T, Villemot J, Ilvesniemi H (2012). The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Tree Physiology, 32, 724-736.
DOI PMID |
[22] | Reich PB, Bermudez R, Montgomery RA, Rich RL, Rice KE, Hobbie SE, Stefanski A (2022). Even modest climate change may lead to major transitions in boreal forests. Nature, 608, 540-545. |
[23] | Reich PB, Sendall KM, Rice KR, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5, 148-152. |
[24] | Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016). Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531, 633-636. |
[25] |
Sendall KM, Reich PB, Zhao C, Hou J, Wei X, Stefanski A, Rice KR, Rich RL, Montgomery RA (2015). Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 21, 1342-1357.
DOI PMID |
[26] | Štraus I, Mrak T, Ferlan M, Železnik P, Kraigher H (2015). Influence of soil temperature on growth traits of European beech seedlings. Canadian Journal of Forest Research, 45, 246-251. |
[27] |
Taeger S, Sparks TH, Menzel A (2015). Effects of temperature and drought manipulations on seedlings of Scots pine provenances. Plant Biology, 17, 361-372.
DOI PMID |
[28] | Tan ND, Li X, Wu T, Lie ZY, Liu XJ, Liu SZ, Chen P, Liu JX (2021). Effects of warming on biomass allocation patterns and nutrient accumulations of four dominant tree species in mixed forest of Dinghushan, China. Journal of Tropical and Subtropical Botany, 29, 389-400. |
[谭钠丹, 李旭, 吴婷, 列志旸, 刘旭军, 刘世忠, 陈平, 刘菊秀 (2021). 增温对鼎湖山混交林中4种优势树种生物量分配和养分积累的影响. 热带亚热带植物学报, 29, 389-400.] | |
[29] | Vospernik S, Nothdurft A (2018). Can trees at high elevations compensate for growth reductions at low elevations due to climate warming? Canadian Journal of Forest Research, 48, 650-662. |
[30] | Wan LN, Wang CK, Quan XK (2019). Effects of latitudinal transplanting on temperature sensitivity of leaf dark respiration for Larix gmelinii. Chinese Journal of Applied Ecology, 30, 1659-1666. |
[万丽娜, 王传宽, 全先奎 (2019). 纬度梯度移栽对兴安落叶松针叶暗呼吸温度敏感性的影响. 应用生态学报, 30, 1659-1666.]
DOI |
|
[31] | Wang CK (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16. |
[32] | Wang JC, Duan BL, Zhang YB (2012). Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecology, 213, 47-55. |
[33] | Wang X, Zhang Y, McRae DJ (2009). Spatial and age- dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885. |
[34] |
Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 30, 669-688.
DOI PMID |
[35] | Zhang XS (1993). A vegetation-climate classification system for global change studies in China. Quaternary Sciences, 13, 157-169. |
[张新时 (1993). 研究全球变化的植被-气候分类系统. 第四纪研究, 13, 157-169.] | |
[36] |
Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210.
DOI PMID |
[37] | Zhou L, Zhou X, He Y, Fu Y, Du Z, Lu M, Sun X, Li C, Lu C, Liu R, Zhou G, Bai S, Thakur MP (2022). Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association. Nature Communications, 13, 4914. DOI: 10.1038/s41467-41022-32671-41469. |
[38] | Zhou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science and Technology Press, Harbin. 34-37. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江科学出版社, 哈尔滨. 34-37.] |
[1] | ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 977-987. |
[2] | SHI Qian, TONG Xiao-Juan, XU Ling-Ling, MENG Ping, YU Pei-Yang, LI Jun, YANG Ming-Xin. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables [J]. Chin J Plant Ecol, 2024, 48(8): 988-1000. |
[3] | SUN Long, LI Wen-Bo, LOU Hu, YU Cheng, HAN Yu, HU Tong-Xin. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(6): 770-779. |
[4] | CHEN Yi-Heng, Yusufujiang RUSULI, Abdureheman WUSIMAN. Analysis of spatial and temporal variation in grassland vegetation cover in Xinjiang section of Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[7] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[8] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[9] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[10] | WANG Yu-Ting, LIU Xu-Jing, TANG Chi-Fei, CHEN Wei-Yu, WANG Mei-Juan, XIANG Song-Zhu, LIU Mei, YANG Lin-Sen, FU Qiang, YAN Zhao-Gui, MENG Hong-Jie. Community characteristics and population dynamics of Acer miaotaiense, an extremely small population species in Shennongjia, China [J]. Chin J Plant Ecol, 2024, 48(1): 80-91. |
[11] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[12] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[13] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[14] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[15] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn