Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (8): 977-987.DOI: 10.17521/cjpe.2023.0165 cstr: 32100.14.cjpe.2023.0165
• Research Articles • Previous Articles Next Articles
ZHANG Peng, JIAO Liang*(), XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian
Received:
2023-06-07
Accepted:
2024-02-07
Online:
2024-08-20
Published:
2024-03-12
Contact:
*JIAO Liang(jiaoliang@nwnu.edu.cn)
Supported by:
ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains[J]. Chin J Plant Ecol, 2024, 48(8): 977-987.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0165
Fig. 1 Locations of sampling points of Picea crassifolia at different altitudes and weather station and landscape of sample plots in western Qilian Mountains. HA, high altitude; LA, low altitude; MA, medium altitude.
Fig. 2 Monthly mean air temperature, monthly precipitation, annual mean air temperature, and annual precipitation from 1951 to 2020 in western Qilian Mountains.
年表参数 Dendrochronological parameter | 海拔 Altitude (m) | ||
---|---|---|---|
2 650 | 2 869 | 3 070 | |
树/样芯 Number of cores | 25/50 | 25/50 | 25/50 |
时间跨度 Time span | 1947-2020 | 1946-2020 | 1934-2020 |
平均敏感度 Mean sensitivity | 0.330 | 0.212 | 0.179 |
标准差 Standard deviation | 0.293 | 0.233 | 0.243 |
一阶序列自相关 Autocorrelation coefficient | 0.174 | 0.477 | 0.610 |
序列间相关系数 Correlation coefficient (r) | 0.579 | 0.618 | 0.442 |
树内平均相关度 Mean correlation in a tree (r1) | 0.843 | 0.650 | 0.576 |
树间平均相关度 Mean correlation between trees (r2) | 0.594 | 0.607 | 0.438 |
第一个主分量方差 Variance in the first principal component | 0.638 | 0.640 | 0.486 |
信噪比 Signal to noise ratio | 25.221 | 40.514 | 32.510 |
样本的总体信号 Expressing population signal | 0.962 | 0.976 | 0.970 |
Table 1 Statistical characteristics of chronology of Picea crassifolia across different altitudes in western Qilian Mountains
年表参数 Dendrochronological parameter | 海拔 Altitude (m) | ||
---|---|---|---|
2 650 | 2 869 | 3 070 | |
树/样芯 Number of cores | 25/50 | 25/50 | 25/50 |
时间跨度 Time span | 1947-2020 | 1946-2020 | 1934-2020 |
平均敏感度 Mean sensitivity | 0.330 | 0.212 | 0.179 |
标准差 Standard deviation | 0.293 | 0.233 | 0.243 |
一阶序列自相关 Autocorrelation coefficient | 0.174 | 0.477 | 0.610 |
序列间相关系数 Correlation coefficient (r) | 0.579 | 0.618 | 0.442 |
树内平均相关度 Mean correlation in a tree (r1) | 0.843 | 0.650 | 0.576 |
树间平均相关度 Mean correlation between trees (r2) | 0.594 | 0.607 | 0.438 |
第一个主分量方差 Variance in the first principal component | 0.638 | 0.640 | 0.486 |
信噪比 Signal to noise ratio | 25.221 | 40.514 | 32.510 |
样本的总体信号 Expressing population signal | 0.962 | 0.976 | 0.970 |
SPEI | 分类 Classification |
---|---|
2.00-3.00 | 极端湿润 Extreme wet |
1.50-2.00 | 严重湿润 Severe wet |
1.00-1.50 | 中等湿润 Moderate wet |
0.00-1.00 | 轻度湿润 Mild wet |
-1.00-0.00 | 轻度干旱 Mild drought |
-1.50- -1.00 | 中等干旱 Moderate drought |
-2.00- -1.50 | 严重干旱 Severe drought |
-3.00- -2.00 | 极端干旱 Extreme drought |
Table 2 Classification of dry and wet grades according to standardized precipitation evapotranspiration index (SPEI) values
SPEI | 分类 Classification |
---|---|
2.00-3.00 | 极端湿润 Extreme wet |
1.50-2.00 | 严重湿润 Severe wet |
1.00-1.50 | 中等湿润 Moderate wet |
0.00-1.00 | 轻度湿润 Mild wet |
-1.00-0.00 | 轻度干旱 Mild drought |
-1.50- -1.00 | 中等干旱 Moderate drought |
-2.00- -1.50 | 严重干旱 Severe drought |
-3.00- -2.00 | 极端干旱 Extreme drought |
Fig. 3 Correlation coefficients between radial growth of Picea crassifolia and climatic factors at different altitudes in western Qilian Mountains. HA, high altitude; LA, low altitude; MA, medium altitude. Pre, precipitation; SPEI, standardized precipitation evapotranspiration index; Tmean, mean monthly air temperature. p denotes the month of the previous year. *, p < 0.05; **, p < 0.01.
Fig. 4 Trends of tree ring width indices with drought intensity in Picea crassifolia at different altitudes in western Qilian Mountains (mean ± SE). HA, high altitude; LA, low altitude; MA, medium altitude. SPEI, standardized precipitation evapotranspiration index. Different lowercase letters in A-C indicate significant differences (p < 0.05) in tree ring width in dry and wet conditions. Shading in D represents SE.
Fig. 5 Effects of drought intensity on resistance (Rt), recovery (Rc), resilience (Rs) of Picea crassifolia at different altitudes in western Qilian Mountains (mean ± SE). ED, extreme drought; MD, moderate drought; SD, severe drought. HA, high altitude; LA, low altitude; MA, medium altitude. Different lowercase letters represent significant differences in drought indices under different drought intensities (p < 0.05).
Fig. 6 Recovery trajectories of Picea crassifolia at different altitudes in western Qilian Mountains during drought (year 0) and 1-2 years after drought (mean ± SE). ED, extreme drought; MD, moderate drought; SD, severe drought. HA, high altitude; LA, low altitude; MA, medium altitude. Different lowercase letters represent significant differences in growth recovery among years (p < 0.05).
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Ted Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[3] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[4] | Arend M, Sever K, Pflug E, Gessler A, Schaub M (2016). Seasonal photosynthetic response of European beech to severe summer drought: limitation, recovery and post- drought stimulation. Agricultural and Forest Meteorology, 220, 83-89. |
[5] |
Ault TR (2020). On the essentials of drought in a changing climate. Science, 368, 256-260.
DOI PMID |
[6] |
Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013). Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany, 112, 1431-1437.
DOI PMID |
[7] | Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado- Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, Karger DN, et al. (2021). Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 784, 147222. DOI: 10.1016/j.scitotenv.2021.147222. |
[8] |
Bottero A, Forrester DI, Cailleret M, Kohnle U, Gessler A, Michel D, Bose AK, Bauhus J, Bugmann H, Cuntz M, Gillerot L, Hanewinkel M, Lévesque M, Ryder J, Sainte-Marie J, et al. (2021). Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: contrasting responses to mild and severe droughts. Global Change Biology, 27, 4403-4419.
DOI PMID |
[9] | Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644. |
[10] |
Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188, 533-542.
DOI PMID |
[11] | Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C, Esper J (2008). Testing for tree-ring divergence in the European Alps. Global Change Biology, 14, 2443-2453. |
[12] | Chen L, Huang J, Stadt KJ, Comeau PG, Zhai L, Dawson A, Alam SA (2017). Drought explains variation in the radial growth of white spruce in western Canada. Agricultural and Forest Meteorology, 233, 133-142. |
[13] | Chen XL, Zhang P, Zhang T, Chen NL, Chen T (2009). Study on antioxidase activities of Picea crassifolia and Juniperus przewalskii at different altitude gradients. Journal of Gansu Agricultural University, 44(1), 118-122. |
[陈晓莉, 张鹏, 张涛, 陈年来, 陈拓 (2009). 不同海拔青海云杉与祁连圆柏叶片抗氧化酶活性的研究. 甘肃农业大学学报, 44(1), 118-122.] | |
[14] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[15] | Cook ER (1985). A Time Series Analysis Approach to Tree Ring Standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). PhD dissertation, University of Arizona, Tucson, USA. |
[16] | Dittmar C, Zech W, Elling W (2003). Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—A dendroecological study. Forest Ecology and Management, 173, 63-78. |
[17] | Feng Y, Ma KM, Zhang YX, Qi J (2008). DCCA analysis of plant species distributions in different strata of oak (Quercus liaotungensis) forest along an altitudinal gradient in Dongling Mountain, China. Journal of Plant Ecology (Chinese Version), 32, 568-573. |
[冯云, 马克明, 张育新, 祁建 (2008). 辽东栎林不同层植物沿海拔梯度分布的DCCA分析. 植物生态学报, 32, 568-573.]
DOI |
|
[18] | Fritts HC, Shatz DJ (1975). Selecting and characterizing tree-ring chronologies for dendroclimatic analysis. Tree- Ring Bulletin, 35, 31-40. |
[19] | Gao LL, Gou XH, Deng Y, Liu WH, Yang MX, Zhao ZQ (2013). Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, Northwest China. Trees, 27, 379-388. |
[20] | Gessler A, Bottero A, Marshall J, Arend M (2020). The way back: recovery of trees from drought and its implication for acclimation. New Phytologist, 228, 1704-1709. |
[21] |
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218, 15-28.
DOI PMID |
[22] |
Hevia A, Sánchez-Salguero R, Camarero JJ, Querejeta JI, Sangüesa-Barreda G, Gazol A (2019). Long-term nutrient imbalances linked to drought-triggered forest dieback. Science of the Total Environment, 690, 1254-1267.
DOI |
[23] | Holmes R (1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 51-67. |
[24] |
Huang M, Wang X, Keenan T, Piao S (2018). Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24, 3546-3559.
DOI PMID |
[25] | Kannenberg SA, Maxwell JT, Pederson N, D’Orangeville L, Ficklin DL, Phillips RP (2019). Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 22, 119-127. |
[26] | Kohler M, Kunz J, Herrmann J, Hartmann P, Jansone L, Puhlmann H, von Wilpert K, Bauhus J (2019). The potential of liming to improve drought tolerance of Norway spruce [Picea abies (L.) Karst.]. Frontiers in Plant Science, 10, 382. DOI: 10.3389/fpls.2019.00382. |
[27] | Li C, Barclay H, Roitberg B, Lalonde R (2021). Ecology and prediction of compensatory growth: from theory to application in forestry. Frontiers in Plant Science, 12, 655417. DOI: 10.3389/fpls.2021.655417. |
[28] | Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363-373. |
[29] | Lloret F, Keeling EG, Sala AN (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920. |
[30] | Loehle C (2009). A mathematical analysis of the divergence problem in dendroclimatology. Climatic Change, 94, 233-245. |
[31] | Lv P, Rademacher T, Huang X, Zhang B, Zhang X (2022). Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees. Agricultural and Forest Meteorology, 326, 109183. DOI: 10.1016/j.agrformet.2022.109183. |
[32] | Meyer BF, Buras A, Rammig A, Zang C (2020). Higher susceptibility of beech to drought in comparison to oak. Dendrochronologia, 64, 125780. DOI: 10.1016/j.dendro.2020.125780. |
[33] | Mira E, Cochard H, Evette A, Dulormne M (2023). Growth, xylem vulnerability to cavitation and leaf cell response to dehydration in tree seedlings of the Caribbean dry forest. Forests, 14, 697. DOI: 10.3390/f14040697. |
[34] | Ovenden TS, Perks MP, Clarke TK, Mencuccini M, Jump AS (2021). Life after recovery: increased resolution of forest resilience assessment sheds new light on post-drought compensatory growth and recovery dynamics. Journal of Ecology, 109, 3157-3170. |
[35] | Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17, 3228-3239. |
[36] | Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling SN, Grillakis M, Gudmundsson L, Hanasaki N, Kim H, Koutroulis A, Liu J, Papadimitriou L, et al. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11, 226-233. |
[37] | Potop V, Boroneanţ C, Možný M, Štěpánek P, Skalák P (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115, 563-581. |
[38] | Seidel H, Matiu M, Menzel A (2019). Compensatory growth of Scots pine seedlings mitigates impacts of multiple droughts within and across years. Frontiers in Plant Science, 10, 519. DOI: 10.3389/fpls.2019.00519. |
[39] | Serra-Maluquer X, Granda E, Camarero JJ, Vilà-Cabrera A, Jump AS, Sánchez-Salguero, Sangüesa-Barreda G, Imbert JB, Gazol A (2021). Impacts of recurrent dry and wet years alter long-term tree growth trajectories. Journal of Ecology, 109, 1561-1574. |
[40] |
Trugman AT, Detto M, Bartlett MK, Medvigy D, Anderegg WRL, Schwalm C, Schaffer B, Pacala SW (2018). Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 21, 1552-1560.
DOI PMID |
[41] | Vicente-Serrano SM, Beguería S, López-Moreno JI (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718. |
[42] | Yang B, He M, Melvin T, Zhao Y, Briffa K (2013). Climate control on tree growth at the upper and lower treelines: a case study in the Qilian Mountains, Tibetan Plateau. PLoS ONE, 8, e69065. DOI: 10.1371/journal.pone.0069065. |
[43] | Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai, Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 24-35. |
[于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 (2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.]
DOI |
|
[44] | Zeng XM, Wei CF, Liu XH, Zhang LN (2020). Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabuliformis) show high vulnerability and similar resilience to early-growing-season drought in the Helan Mountains, China. Ecological Indicators, 110, 105871. DOI: 10.1016/j.ecolind.2019.105871. |
[45] | Zhang X, Fan Z, Shi Z, Pan L, Kwon S, Yang X, Liu Y (2022). Tree characteristics and drought severity modulate the growth resilience of natural Mongolian pine to extreme drought episodes. Science of the Total Environment, 830, 154742. DOI: 10.1016/j.scitotenv.2022.154742. |
[46] | Zhang Z, Chang J, Xu C, Zhou Y, Wu Y, Chen X, Jiang S, Duan Z (2018). The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment, 635, 443-451. |
[1] | SHI Qian, TONG Xiao-Juan, XU Ling-Ling, MENG Ping, YU Pei-Yang, LI Jun, YANG Ming-Xin. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables [J]. Chin J Plant Ecol, 2024, 48(8): 988-1000. |
[2] | LI Shi-Jie, WANG Li, DU Ying-Jun, ZHENG Lei, ZENG Fan-Suo, XIN Ying. Radial growth response of natural Fraxinus mandshurica to climate in the Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1011-1020. |
[3] | CHEN Yi-Heng, Yusufujiang RUSULI, Abdureheman WUSIMAN. Analysis of spatial and temporal variation in grassland vegetation cover in Xinjiang section of Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[6] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[7] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[8] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[9] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[10] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[11] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[12] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[13] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[14] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[15] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn