Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (9): 1038-1049.DOI: 10.17521/cjpe.2021.0399
• Research Articles • Previous Articles Next Articles
ZHU Ming-Yang1, LIN Lin1, SHE Yu-Long1, XIAO Cheng-Cai1, ZHAO Tong-Xing1, HU Chun-Xiang2, ZHAO Chang-You2, WANG Wen-Li1,*()
Received:
2021-11-08
Accepted:
2021-12-13
Online:
2022-09-20
Published:
2022-10-19
Contact:
WANG Wen-Li
Supported by:
ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China[J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0399
海拔 Altitude (m) | 编号 No. | 基径 Base diameter (cm) | 胸径 Diameter at breast (cm) | 高度 Height (m) | 树龄 Tree age (a) |
---|---|---|---|---|---|
3 600 | 1 | 32 | 25 | 13.0 | 58 |
2 | 21 | 17 | 11.0 | 27 | |
3 | 23 | 18 | 12.0 | 45 | |
4 | 20 | 16 | 12.0 | 51 | |
5 | 22 | 17 | 12.0 | 40 | |
3 800 | 6 | 45 | 35 | 12.0 | 32 |
7 | 32 | 25 | 11.0 | 24 | |
8 | 16 | 12 | 12.0 | 20 | |
9 | 34 | 27 | 13.0 | 24 | |
10 | 22 | 17 | 10.0 | 18 | |
4 000 | 11 | 20 | 17 | 5.1 | 27 |
12 | 57 | 44 | 6.8 | 55 | |
13 | 19 | 15 | 5.0 | 27 | |
14 | 19 | 15 | 3.9 | 22 | |
15 | 21 | 16 | 5.2 | 20 |
Table 1 Sample trees characteristics of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan
海拔 Altitude (m) | 编号 No. | 基径 Base diameter (cm) | 胸径 Diameter at breast (cm) | 高度 Height (m) | 树龄 Tree age (a) |
---|---|---|---|---|---|
3 600 | 1 | 32 | 25 | 13.0 | 58 |
2 | 21 | 17 | 11.0 | 27 | |
3 | 23 | 18 | 12.0 | 45 | |
4 | 20 | 16 | 12.0 | 51 | |
5 | 22 | 17 | 12.0 | 40 | |
3 800 | 6 | 45 | 35 | 12.0 | 32 |
7 | 32 | 25 | 11.0 | 24 | |
8 | 16 | 12 | 12.0 | 20 | |
9 | 34 | 27 | 13.0 | 24 | |
10 | 22 | 17 | 10.0 | 18 | |
4 000 | 11 | 20 | 17 | 5.1 | 27 |
12 | 57 | 44 | 6.8 | 55 | |
13 | 19 | 15 | 5.0 | 27 | |
14 | 19 | 15 | 3.9 | 22 | |
15 | 21 | 16 | 5.2 | 20 |
Fig. 2 Schematic diagram of each stage of radial growth of Abies georgei var. smithii in Jiaozi Mountain, Yunnan. CZ, dormant cambium; EN, cell enlargement; M, cell maturation; WT, cell wall-thickening.
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | |||||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) |
3 600 | 5.56 | 14.25 | -4.66 | 0.005 9 ± 0.000 7 | 5.82 | 11.26 | -0.39 | 0.005 7 ± 0.000 6 |
3 800 | 4.25 | 10.06 | -7.49 | 4.57 | 11.30 | -3.73 | ||
4 000 | 3.20 | 10.41 | -9.04 | 3.54 | 9.33 | -1.10 |
Table 2 Mean, maximum, minimum temperature and lapse rate (mean ± SE) of air and soil at different altitudes in Jiaozi Mountain, Yunnan in 2020
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | |||||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) |
3 600 | 5.56 | 14.25 | -4.66 | 0.005 9 ± 0.000 7 | 5.82 | 11.26 | -0.39 | 0.005 7 ± 0.000 6 |
3 800 | 4.25 | 10.06 | -7.49 | 4.57 | 11.30 | -3.73 | ||
4 000 | 3.20 | 10.41 | -9.04 | 3.54 | 9.33 | -1.10 |
Fig. 5 Start and end time of each development stage of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE).
Fig. 6 Variation of cell number in each development stage with time of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE).
Fig. 7 Proportion of growth time in each stage of radial growth of Abies georgei var. smithii in Jiaozi Mountain, Yunnan in 2020. CZ, cambium; EN, enlargement; M, maturation; WT, wall-thickening.
形成层细胞 Cambial cell | 细胞膨大 Cell enlarging | 细胞壁加厚 Cell wall-thickening | 细胞成熟 Mature cells | |
---|---|---|---|---|
开始 Onset | 0.001** | 0.001** | 0.016* | 0.826 |
结束 Ending | 0.534 | 0.024* | 0.311 | 0.011* |
持续 Duration | 0.096 | 0.001** | 0.02* | 0.015* |
Table 3 One-way ANOVA for the onset, ending and duration of each stage of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020
形成层细胞 Cambial cell | 细胞膨大 Cell enlarging | 细胞壁加厚 Cell wall-thickening | 细胞成熟 Mature cells | |
---|---|---|---|---|
开始 Onset | 0.001** | 0.001** | 0.016* | 0.826 |
结束 Ending | 0.534 | 0.024* | 0.311 | 0.011* |
持续 Duration | 0.096 | 0.001** | 0.02* | 0.015* |
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 生长季长度 (平均值±标准差) Growing season length (mean ± SD) (d) | ||||||||
3 600 | 0.06 | 14.25 | 8.87 | 1 775.83 | 1 730.18 | 2.80 | 11.26 | 8.78 | 1 718.75 | 1 654.99 | 195 ± 4 | ||||||||
3 800 | 1.52 | 10.06 | 7.63 | 1 419.37 | 1 389.24 | 2.79 | 11.30 | 7.90 | 1 457.26 | 1 420.16 | 177 ± 1 | ||||||||
4 000 | 2.40 | 10.41 | 7.19 | 1 000.10 | 959.21 | 2.70 | 9.33 | 7.33 | 983.20 | 927.57 | 144 ± 16 |
Table 4 Air and soil temperature during the growing season at different altitudes sample sites in Jiaozi Mountain, Yunnan in 2020
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 生长季长度 (平均值±标准差) Growing season length (mean ± SD) (d) | ||||||||
3 600 | 0.06 | 14.25 | 8.87 | 1 775.83 | 1 730.18 | 2.80 | 11.26 | 8.78 | 1 718.75 | 1 654.99 | 195 ± 4 | ||||||||
3 800 | 1.52 | 10.06 | 7.63 | 1 419.37 | 1 389.24 | 2.79 | 11.30 | 7.90 | 1 457.26 | 1 420.16 | 177 ± 1 | ||||||||
4 000 | 2.40 | 10.41 | 7.19 | 1 000.10 | 959.21 | 2.70 | 9.33 | 7.33 | 983.20 | 927.57 | 144 ± 16 |
海拔 Altitude (m) | 细胞总数 Total number of cells | 最大生长速率 Maximum growth rate (cell·d-1) | 加速拐点 Accelerated inflection point (d) | 平均生长速率 Mean growth rate (cell·d-1) | n |
---|---|---|---|---|---|
3 600 | 75.79 ± 3.86 | 0.64 ± 0.03 | 159.90 ± 2.70 | 0.39 ± 0.02 | 5 |
3 800 | 58.81 ± 3.55 | 0.67 ± 0.03 | 157.63 ± 3.26 | 0.41 ± 0.02 | 5 |
4 000 | 82.68 ± 9.13 | 0.76 ± 0.11 | 171.33 ± 9.00 | 0.47 ± 0.07 | 5 |
p | 0.008 | 0.147 | 0.055 | 0.147 |
Table 5 Radial growth volume and rate of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE)
海拔 Altitude (m) | 细胞总数 Total number of cells | 最大生长速率 Maximum growth rate (cell·d-1) | 加速拐点 Accelerated inflection point (d) | 平均生长速率 Mean growth rate (cell·d-1) | n |
---|---|---|---|---|---|
3 600 | 75.79 ± 3.86 | 0.64 ± 0.03 | 159.90 ± 2.70 | 0.39 ± 0.02 | 5 |
3 800 | 58.81 ± 3.55 | 0.67 ± 0.03 | 157.63 ± 3.26 | 0.41 ± 0.02 | 5 |
4 000 | 82.68 ± 9.13 | 0.76 ± 0.11 | 171.33 ± 9.00 | 0.47 ± 0.07 | 5 |
p | 0.008 | 0.147 | 0.055 | 0.147 |
Fig. 9 Pearson’s correlation index of radial growth onset and end of radial growth of Abies georgei var. smithii with temperature variables in 2020. ADDS > 0 °C, air accumulation temperature greater than 0 °C; ADDS > 5 °C, air accumulation temperature greater than 5 °C; SDDS > 0 °C, soil accumulation temperature greater than 0 °C; SDDS > 5 °C, soil accumulation temperature greater than 5 °C; Tamax, maximum air temperature; Tamean, average air temperature; Tamin, minimum air temperature; Tsmax, maximum soil temperature; Tsmean, average soil temperature; Tsmin, minimum soil temperature.
温度变量 Temperature variables | 径向生长开始 Radial growth onset | n | p | 径向生长结束 End of radial growth | n | p | 形成层活动结束 End of cambium active | n | p | |
---|---|---|---|---|---|---|---|---|---|---|
空气温度 Air temperature (℃) | 平均 Mean | 4.78 ± 0.13 | 12 | 0.81 | 5.13 ± 0.20 | 12 | 0.14 | 8.38 ± 0.57 | 12 | 0.64 |
最高 Maximum | 6.91 ± 0.23 | 12 | 0.00** | 6.98 ± 0.38 | 12 | 0.00** | 16.27 ± 8.01 | 12 | 0.38 | |
最低 Minimum | 2.35 ± 0.31 | 12 | 0.00** | 3.27 ± 0.35 | 12 | 0.00** | 5.65 ± 0.30 | 12 | 0.02* | |
土壤温度 Soil temperature (℃) | 平均 Mean | 4.02 ± 0.19 | 12 | 0.10 | 4.96 ± 0.19 | 12 | 0.14 | 8.07 ± 0.50 | 12 | 0.68 |
最高 Maximum | 5.20 ± 0.26 | 12 | 0.00** | 6.33 ± 0.21 | 12 | 0.01* | 8.44 ± 0.57 | 12 | 0.17 | |
最低 Minimum | 2.58 ± 0.22 | 12 | 0.00** | 3.70 ± 0.41 | 12 | 0.00** | 7.81 ± 0.46 | 12 | 0.26 |
Table 6 Temperature thresholds for the onset and end of radial growth of Abies georgei var. smithii (mean ± SE) in 2020
温度变量 Temperature variables | 径向生长开始 Radial growth onset | n | p | 径向生长结束 End of radial growth | n | p | 形成层活动结束 End of cambium active | n | p | |
---|---|---|---|---|---|---|---|---|---|---|
空气温度 Air temperature (℃) | 平均 Mean | 4.78 ± 0.13 | 12 | 0.81 | 5.13 ± 0.20 | 12 | 0.14 | 8.38 ± 0.57 | 12 | 0.64 |
最高 Maximum | 6.91 ± 0.23 | 12 | 0.00** | 6.98 ± 0.38 | 12 | 0.00** | 16.27 ± 8.01 | 12 | 0.38 | |
最低 Minimum | 2.35 ± 0.31 | 12 | 0.00** | 3.27 ± 0.35 | 12 | 0.00** | 5.65 ± 0.30 | 12 | 0.02* | |
土壤温度 Soil temperature (℃) | 平均 Mean | 4.02 ± 0.19 | 12 | 0.10 | 4.96 ± 0.19 | 12 | 0.14 | 8.07 ± 0.50 | 12 | 0.68 |
最高 Maximum | 5.20 ± 0.26 | 12 | 0.00** | 6.33 ± 0.21 | 12 | 0.01* | 8.44 ± 0.57 | 12 | 0.17 | |
最低 Minimum | 2.58 ± 0.22 | 12 | 0.00** | 3.70 ± 0.41 | 12 | 0.00** | 7.81 ± 0.46 | 12 | 0.26 |
[1] |
Alvarez-Uria P, Körner C (2007). Low temperature limits of root growth in deciduous and evergreen temperate tree species. Functional Ecology, 21, 211-218.
DOI URL |
[2] |
Antonucci S, Rossi S, Deslauriers A, Lombardi F, Marchetti M, Tognetti R (2015). Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiology, 35, 1086-1094.
DOI PMID |
[3] |
Bai XP, Zhang XL, Li JX, Duan XY, Jin YT, Chen ZJ (2019). Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Science of the Total Environment, 670, 466-477.
DOI URL |
[4] |
Creber GT, Chaloner WG (1984). Influence of environmental factors on the wood structure of living and fossil trees. The Botanical Review, 50, 357-448.
DOI URL |
[5] |
Cullen LE, Palmer JG, Duncan RP, Stewart GH (2001). Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research, 31, 1981-1991.
DOI URL |
[6] |
Deslauriers A, Morin H, Begin Y (2003). Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 33, 190-200.
DOI URL |
[7] |
Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28, 863-871.
PMID |
[8] | Du XL, Du F, Zeng H, Chen Y, Yao Y, Zhang H, Li ZY (2010). A study on the community of Abies georgei var. smithii in Jiaozi Mountain Nature Reserve. Journal of Yunnan University (Natural Sciences Edition), 32, 358-364. |
[杜小浪, 杜凡, 曾辉, 陈勇, 姚莹, 张辉, 李朝阳 (2010). 轿子山自然保护区急尖长苞冷杉林群落特征研究. 云南大学学报(自然科学版), 32, 358-364.] | |
[9] |
Elliott GP, Bailey SN, Cardinal SJ (2021). Hotter drought as a disturbance at upper treeline in the southern rocky mountains. Annals of the American Association of Geographers, 111, 756-770.
DOI URL |
[10] |
Gao LL, Gou XH, Deng Y, Yang MX, Zhang F (2017). Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees, 31, 393-404.
DOI URL |
[11] |
Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2008). Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees, 23, 623-635.
DOI URL |
[12] | Häsler R, Streule A, Turner H (1999). Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine timberline. Phyton-Annales Rei Botanicae, 39, 47-52. |
[13] | Huang JG, Ma QQ, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang EY, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang JL, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[14] |
James JC, Grace J, Hoad SP (1994). Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. Journal of Ecology, 82, 297-306.
DOI URL |
[15] |
Jiménez-Noriega MS, López-Mata L, Terrazas T (2021). Cambial activity and phenology in three understory species along an altitude gradient in Mexico. Forests, 12, 506. DOI: 10.3390/f12040506.
DOI |
[16] |
Jochner M, Bugmann H, Nötzli M, Bigler C (2018). Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees, 32, 645-660.
DOI URL |
[17] | Körner C (2012). Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springer-Verlag, Heidelberg. |
[18] |
Körner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
DOI URL |
[19] | Lenz A, Hoch G, Körner C (2013). Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecology & Diversity, 6, 365-375. |
[20] |
Li XX, Liang EY, Gričar J, Rossi S, Čufar K, Ellison AM (2017). Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 62, 804-812.
DOI URL |
[21] | Li ZY, Liu K, Chen Y, Yao Y, Du XL, Zhang H (2010). Studies on the vegetation form and distribution characteristics in Jiaozishan Nature Reserve. Journal of Shandong Forestry Science and Technology, 40(2), 32-35. |
[李朝阳, 刘恺, 陈勇, 姚莹, 杜小浪, 张辉 (2010). 轿子山自然保护区植被类型及其分布特点研究. 山东林业科技, 40(2), 32-35.] | |
[22] |
Lin YT, Whitman WB, Coleman DC, Jien SH, Wang HC, Chiu CY (2021). Soil bacterial communities at the treeline in subtropical alpine areas. CATENA, 201, 105205. DOI: 10.1016/j.catena.2021.105205.
DOI |
[23] |
Liu B, Li Y, Eckstein D, Zhu LP, Dawadi B, Liang EY (2013). Has an extending growing season any effect on the radial growth of Smith fir at the timberline on the southeastern Tibetan Plateau? Trees, 27, 441-446.
DOI URL |
[24] |
Luo TX, Liu XS, Zhang L, Li X, Pan YD, Wright IJ (2018). Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests. Agricultural and Forest Meteorology, 248, 469-478.
DOI URL |
[25] |
Malik R, Rossi S, Sukumar R (2020). Cambial phenology in Abies pindrow (Pinaceae) along an altitudinal gradient in northwestern Himalaya. IAWA Journal, 41, 186-201.
DOI URL |
[26] |
McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999). Disturbance response in vegetation—Towards a global perspective on functional traits. Journal of Vegetation Science, 10, 621-630.
DOI URL |
[27] |
Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2009). Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology, 30, 225-233.
DOI URL |
[28] |
Oberhuber W (2004). Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology, 24, 291-301.
PMID |
[29] | Quinn GP, Keough MJ (2002). Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK. |
[30] |
Rahman MH, Kudo K, Yamagishi Y, Nakamura Y, Nakaba S, Begum S, Nugroho WD, Arakawa I, Kitin P, Funada R (2020). Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Scientific Reports, 10, 14341. DOI: 10.1038/S41598-020-70356-9.
DOI |
[31] |
Rathgeber CBK, Rossi S, Bontemps JD (2011). Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 108, 429-438.
DOI PMID |
[32] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang E et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[33] |
Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152, 1-12.
DOI PMID |
[34] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
PMID |
[35] |
Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17, 696-707.
DOI URL |
[36] |
Sakio H, Masuzawa T (1985). Ecological studies on the timberline of Mt. Fuji. The Botanical Magazine, 98, 15-28.
DOI URL |
[37] |
Splechtna BE, Dobrys J, Klinka K (2000). Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annals of Forest Science, 57, 89-100.
DOI URL |
[38] |
Stangler DF, Kahle HP, Raden M, Larysch E, Seifert T, Spiecker H (2021). Effects of intra-seasonal drought on kinetics of tracheid differentiation and seasonal growth dynamics of Norway spruce along an elevational gradient. Forests, 12, 274. DOI: 10.3390/f12030274.
DOI |
[39] |
Treml V, Kašpar J, Kuželová H, Gryc V (2015). Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees, 29, 515-526.
DOI URL |
[40] |
Usmani A, Silvestro R, Zhang SK, Huang JG, Saracino A, Rossi S (2020). Ecotypic differentiation of black spruce populations: temperature triggers bud burst but not bud set. Trees, 34, 1313-1321.
DOI URL |
[41] |
Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400, 149-151.
DOI URL |
[42] |
Verrall B, Pickering CM (2020). Alpine vegetation in the context of climate change: a global review of past research and future directions. Science of the Total Environment, 748, 141344. DOI: 10.1016/j.scitotenv.2020.141344.
DOI |
[43] |
Wei CY, Karger DN, Wilson AM (2020). Spatial detection of alpine treeline ecotones in the Western United States. Remote Sensing of Environment, 240, 111672. DOI: 10.1016/j.rse.2020.111672.
DOI |
[44] | Wilson BF, Wodzicki TJ, Zahner R (1966). Differentiation of cambial derivatives: proposed terminology. Forest Science, 12, 438-440. |
[45] | Yang JW, Cooper DJ, Zhang X, Song WQ, Li ZS, Zhang YD, Zhao HY, Han SJ, Wang XC (2021). Climatic controls of Pinus pumila radial growth along an altitude gradient. New Forests, 2, 319-335. |
[46] |
Zhai LH, Bergeron Y, Huang JG, Berninger F (2012). Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. American Journal of Botany, 99, 827-837.
DOI PMID |
[47] |
Zhang JZ, Alexander MR, Gou XH, Deslauriers A, Fonti P, Zhang F, Pederson N (2020). Extended xylogenesis and stem biomass production in Juniperus przewalskii Kom. during extreme late-season climatic events. Annals of Forest Science, 77, 1-11.
DOI URL |
[48] |
Zhang JZ, Gou XH, Pederson N, Zhang F, Niu HG, Zhao SD, Wang F (2018). Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. Tree Physiology, 38, 840-852.
DOI URL |
[49] |
Zhang YP, Jiang Y, Wen Y, Ding XY, Wang B, Xu JL (2019). Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat. Forests, 10, 574. DOI: 10.3390/f10070574.
DOI |
[50] |
Zhou P, Huang JG, Liang HX, Rossi S, Bergeron Y, Shishov VV, Jiang SW, Kang J, Zhu HX, Dong ZC (2021). Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 304, 108392. DOI: 10.1016/j.agrformet.2021.108392.
DOI |
[1] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[2] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[3] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[4] | KANG Jian, LIANG Han-Xue, JIANG Shao-Wei, ZHU Huo-Xing, ZHOU Peng, HUANG Jian-Guo. Effects of competition and climate on tree radial growth of Pinus sibirica in Altai Mountains, Xinjiang, China [J]. Chin J Plant Ecol, 2020, 44(12): 1195-1202. |
[5] | Xia-Li GUO, Bi-Yun YU, Han-Xue LIANG, Jian-Guo HUANG. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chin J Plan Ecolo, 2017, 41(7): 795-804. |
[6] | Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plant Ecol, 2017, 41(3): 279-289. |
[7] | ZHANG Jun-Zhou, GOU Xiao-Hua, ZHAO Zhi-Qian, LIU Wen-Huo, ZHANG Fen, CAO Zong-Ying, ZHOU Fei-Fei. Improved method of obtaining micro-core paraffin sections in dendroecological research [J]. Chin J Plant Ecol, 2013, 37(10): 972-977. |
[8] | DONG Man-Yu, JIANG Yuan, YANG Hao-Chun, WANG Ming-Chang, ZHANG Wen-Tao, GUO Yuan-Yuan. Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China [J]. Chin J Plant Ecol, 2012, 36(9): 956-964. |
[9] | ZHANG Chun-Yu, GAO Lu-Shuang, ZHAO Ya-Zhou, JIA Yu-Zhen, LI Jin-Xin, ZHAO Xiu-Hai. RESPONSE OF RADIAL GROWTH TO NEIGHBORING COMPETITION AND CLIMATE FACTORS IN TAXUS CUSPIDATA [J]. Chin J Plant Ecol, 2009, 33(6): 1177-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn