Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (2): 227-237.DOI: 10.17521/cjpe.2022.0100
• Research Articles • Previous Articles Next Articles
LIU Mei-Jun1,2, CHEN Qiu-Wen1,2, LÜ Jin-Lin3,4, LI Guo-Qing1,3, DU Sheng1,3,*()
Received:
2022-03-18
Accepted:
2022-07-06
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region[J]. Chin J Plant Ecol, 2023, 47(2): 227-237.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0100
树种 Species | 样树编号 Sample tree No. | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 1 | 6.9 | 20.2 |
2 | 6.9 | 25.9 | |
3 | 6.9 | 17.5 | |
刺槐 R. pseudoacacia | 4 | 8.1 | 13.3 |
5 | 8.8 | 16.1 | |
6 | 9.1 | 12.9 |
Table 1 Basic information of the sample trees of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in the loess hilly region
树种 Species | 样树编号 Sample tree No. | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 1 | 6.9 | 20.2 |
2 | 6.9 | 25.9 | |
3 | 6.9 | 17.5 | |
刺槐 R. pseudoacacia | 4 | 8.1 | 13.3 |
5 | 8.8 | 16.1 | |
6 | 9.1 | 12.9 |
Fig. 1 Dynamics of daily precipitation, average daily air temperature, average daily photosynthetically active radiation and daily maximum stem diameter variation of Quercus mongolica var. liaotungensis and Robinia pseudoacacia during the experiment. I, average daily air temperature and 15-day moving average; II, average daily photosynthetically active radiation and 15-day moving average; III, maximum daily variation in stem diameter and 15-day moving average of Q. mongolica var. liaotungensis; IV, maximum daily variation in stem diameter and 15-day moving average of R. pseudoacacia; P, precipitation.
Fig. 2 Radial growth pattern of stem diameter of Quercus mongolica var. liaotungensis and Robinia pseudoacacia during the growing season. I, daily maximum stem diameter variation of Q. mongolica var. liaotungensis; II, boundary points of daily maximum diameter variation of Q. mongolica var. liaotungensis; III, upper boundary line; IV, daily maximum stem diameter variation of R. pseudoacacia; V, boundary points of daily maximum diameter variation of R. pseudoacacia; VI, upper boundary line. Day of the growing season starts April 1, 2019.
Fig. 4 Diurnal variation of stem diameter and environmental factors in non-growing (A) and growing seasons (B) in typical sunny days. PAR, average daily photosynthetically active radiation; T, average daily air temperature; VPD, vapor pressure deficit.
时期 Period | 树种 Tree species | 空气温度 T (℃) | 空气相对湿度 RH (%) | 空气水汽压亏缺 VPD (kPa) | 光合有效辐射 PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
非生长季 Non-growing season (n = 32) | 辽东栎 Q. mongolica var. liaotungensis | -0.622** | 0.308 | -0.536** | 0.198 |
刺槐 R. pseudoacacia | -0.732** | 0.151 | -0.554** | 0.214 | |
生长季盛期 Growing season (n = 30) | 辽东栎 Q. mongolia var. liaotungensis | 0.554** | -0.513** | 0.610** | 0.525** |
刺槐 R. pseudoacacia | 0.370* | -0.354* | 0.393* | 0.372* |
Table 2 Correlation analysis of maximum daily shrinkage with meteorological factors during non-growing (January to February) and active growing (July to September) seasons of Quercus mongolica var. liaotungensis and Robinia pseudoacacia
时期 Period | 树种 Tree species | 空气温度 T (℃) | 空气相对湿度 RH (%) | 空气水汽压亏缺 VPD (kPa) | 光合有效辐射 PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
非生长季 Non-growing season (n = 32) | 辽东栎 Q. mongolica var. liaotungensis | -0.622** | 0.308 | -0.536** | 0.198 |
刺槐 R. pseudoacacia | -0.732** | 0.151 | -0.554** | 0.214 | |
生长季盛期 Growing season (n = 30) | 辽东栎 Q. mongolia var. liaotungensis | 0.554** | -0.513** | 0.610** | 0.525** |
刺槐 R. pseudoacacia | 0.370* | -0.354* | 0.393* | 0.372* |
树种 Species | 项目 Item | 土壤水分较高时段 High soil water content period | 土壤水分较低时段 Low soil water content period |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 土壤含水量 Soil water content (%) | 14.18 ± 0.55a | 10.20 ± 0.32b |
MDS (μm) | 204.16 ± 43.69b | 304.08 ± 53.22a | |
MDS/VPD (μm·kPa-1) | 151.04 ± 31.35a | 145.57 ± 23.31a | |
TWD (μm) | 106.98 ± 37.02a | 73.62 ± 51.83a | |
TWD/VPD (μm·kPa-1) | 91.90 ± 25.58a | 34.28 ± 22.45b | |
刺槐 R. pseudoacacia | 土壤含水量 Soil water content (%) | 10.80 ± 0.71a | 9.80 ± 0.28b |
MDS (μm) | 125.38 ± 27.56a | 136.88 ± 54.72a | |
MDS/VPD (μm·kPa-1) | 91.90 ± 13.54a | 65.25 ± 23.32a | |
TWD (μm) | 58.90 ± 21.42a | 72.96 ± 98.84a | |
TWD/VPD (μm·kPa-1) | 42.67 ± 12.18a | 34.55 ± 44.14a |
Table 3 Significance analysis of the differences in the daily variation of diameter and its response to transpiration drivers under different soil moisture conditions of Quercus mongolica var. liaotungensis and Robinia pseudoacacia (mean ± SD)
树种 Species | 项目 Item | 土壤水分较高时段 High soil water content period | 土壤水分较低时段 Low soil water content period |
---|---|---|---|
辽东栎 Q. mongolica var. liaotungensis | 土壤含水量 Soil water content (%) | 14.18 ± 0.55a | 10.20 ± 0.32b |
MDS (μm) | 204.16 ± 43.69b | 304.08 ± 53.22a | |
MDS/VPD (μm·kPa-1) | 151.04 ± 31.35a | 145.57 ± 23.31a | |
TWD (μm) | 106.98 ± 37.02a | 73.62 ± 51.83a | |
TWD/VPD (μm·kPa-1) | 91.90 ± 25.58a | 34.28 ± 22.45b | |
刺槐 R. pseudoacacia | 土壤含水量 Soil water content (%) | 10.80 ± 0.71a | 9.80 ± 0.28b |
MDS (μm) | 125.38 ± 27.56a | 136.88 ± 54.72a | |
MDS/VPD (μm·kPa-1) | 91.90 ± 13.54a | 65.25 ± 23.32a | |
TWD (μm) | 58.90 ± 21.42a | 72.96 ± 98.84a | |
TWD/VPD (μm·kPa-1) | 42.67 ± 12.18a | 34.55 ± 44.14a |
[1] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. Springer, New York. |
[2] |
Deslauriers A, Anfodillo T, Rossi S, Carraro V (2007a). Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiology, 27, 1125-1136.
DOI URL |
[3] | Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
[4] |
Deslauriers A, Rossi S, Anfodillo T (2007b). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124.
DOI URL |
[5] | Dietrich L, Zweifel R, Kahmen A (2018). Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiology, 38, 941-952. |
[6] |
Dong MY, Wang BQ, Jiang Y, Ding XY (2019). Environmental controls of diurnal and seasonal variations in the stem radius of Platycladus orientalis in Northern China. Forests, 10, 784. DOI: 10.3390/f10090784.
DOI |
[7] | Downes G, Beadle C, Worledge D (1999). Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14, 102-111. |
[8] |
Du S, Wang Y, Kume T, Zhang J, Otsuki K, Yamanaka N, Liu G (2011). Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10.
DOI URL |
[9] |
Duchesne L, Houle D (2011). Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. Forest Ecology and Management, 262, 863-872.
DOI URL |
[10] | Duchesne L, Houle D, D’Orangeville L (2012). Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agricultural and Forest Meteorology, 162- 163, 108-114. |
[11] | Guan W, Xiong W, Wang YH, Yu PT, He CQ, Du AP, Liu HL (2007). Stem diameter growth of Larix principis-rupprechtii and its response to meteorological factors in the north of Liupan Mountain. Scientia Silvae Sinicae, 43(9), 1-6. |
[管伟, 熊伟, 王彦辉, 于澎涛, 何常清, 杜阿朋, 刘海龙 (2007). 六盘山北侧华北落叶松树干直径生长变化及其对环境因子的响应. 林业科学, 43(9), 1-6.] | |
[12] |
Intrigliolo DS, Castel JR (2007). Evaluation of grapevine water status from trunk diameter variations. Irrigation Science, 26, 49-59.
DOI URL |
[13] |
Ji QW, Zheng CY, Zhang L, Zeng FX (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 44, 257-265.
DOI URL |
[季倩雯, 郑成洋, 张磊, 曾发旭 (2020). 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 44, 257-265.]
DOI |
|
[14] |
Jin Y, Wang CK, Sang Y (2011). Contribution of stem water storage to daily transpiration of three temperate trees in northeastern China. Chinese Journal of Plant Ecology, 35, 1310-1317.
DOI URL |
[金鹰, 王传宽, 桑英 (2011). 三种温带树种树干储存水对蒸腾的贡献. 植物生态学报, 35, 1310-1317.]
DOI |
|
[15] | Kang SZ, Zhang JH, Liang JS (1999). Combined effects of soil water content and temperature on plant root hydraulic conductivity. Acta Phytoecologica Sinica, 23, 211-219. |
[康绍忠, 张建华, 梁建生 (1999). 土壤水分与温度共同作用对植物根系水分传导的效应. 植物生态学报, 23, 211-219.] | |
[16] |
King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013). Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agricultural and Forest Meteorology, 168, 36-46.
DOI URL |
[17] |
Klepper B, Browning VD, Taylor HM (1971). Stem diameter in relation to plant water status. Plant Physiology, 48, 683-685.
DOI PMID |
[18] | Li YY, Shi H, Zhang AB, Tan HC (2007). Daily changes in radial growth of several tree stems and their response to environmental factors in loess hilly region. Journal of Soil and Water Conservation, 21, 170-173. |
[李秧秧, 石辉, 张安邦, 谭红朝 (2007). 黄土丘陵区几种林木茎干径向生长的日变化及其对环境因素的响应. 水土保持学报, 21, 170-173.] | |
[19] | Liu MJ, Lyu JL, Chen QW, Yang J, Li GQ, Du S (2021). Dynamics and influencing factors of stem diameter micro-variations during the growing season in two typical forestation species in the loess hilly region, China. Chinese Journal of Applied Ecology, 32, 1673-1680. |
[刘美君, 吕金林, 陈秋文, 杨洁, 李国庆, 杜盛 (2021). 黄土丘陵区两典型造林树种生长季树干直径微变化动态及其影响因素. 应用生态学报, 32, 1673-1680.]
DOI |
|
[20] |
Lyu J, He Q, Yang J, Chen Q, Cheng R, Yan M, Yamanaka N, Du S (2020). Sap flow characteristics in growing and non-growing seasons in tree species in the semiarid Loess Plateau region of China. Trees, 34, 943-955.
DOI |
[21] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[22] |
Ortuño MF, Alarcón JJ, Nicolás E, Torrecillas A (2005). Sap flow and trunk diameter fluctuations of young lemon trees under water stress and rewatering. Environmental and Experimental Botany, 54, 155-162.
DOI URL |
[23] |
Ortuño MF, Conejero W, Moreno F, Moriana A, Intrigliolo DS, Biel C, Mellisho CD, Pérez-Pastor A, Domingo R, Ruiz-Sánchez MC, Casadesus J, Botany J, Torrecillas A (2010). Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agricultural Water Management, 97, 1-11.
DOI URL |
[24] |
Ortuño MF, García-Orellana Y, Conejero W, Ruiz-Sánchez MC, Alarcón JJ, Torrecillas A (2006). Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 20, 1-8.
DOI URL |
[25] |
Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17, 696-707.
DOI URL |
[26] |
Rossi S, Deslauriers A, Morin H (2003). Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21, 33-39.
DOI URL |
[27] |
Sakai A (1982). Freezing tolerance of shoot and flower primordia of coniferous buds by extraorgan freezing. Plant and Cell Physiology, 23, 1219-1227.
DOI URL |
[28] |
Simonneau T, Habib R, Goutouly JP, Huguet JG (1993). Diurnal changes in stem diameter depend upon variations in water content: direct evidence in peach trees. Journal of Experimental Botany, 44, 615-621.
DOI URL |
[29] | Sun HZ, Li YP, Wang C, Zhou XF (2005). Comparative study on stem sap flow of non- and ring-porous tree species. Chinese Journal of Ecology, 24, 1434-1439. |
[孙慧珍, 李夷平, 王翠, 周晓峰 (2005). 不同木材结构树干液流对比研究. 生态学杂志, 24, 1434-1439.] | |
[30] |
Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83.
DOI URL |
[31] |
Tian Y, Zhang QL, Liu X, Meng M, Wang B (2019). The relationship between stem diameter shrinkage and tree bole moisture loss due to transpiration. Forests, 10, 290. DOI: 10.3390/f10030290.
DOI |
[32] | Wang YR, Liu ZB, Wang YH, Xiong W, Yu PT, Xu LH, Ma J (2020). Variation of stem radius of Larix principis- rupprechtii and its influencing factors in the semi-humid Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3313-3321. |
[王亚蕊, 刘泽彬, 王彦辉, 熊伟, 于澎涛, 徐丽宏, 马菁 (2020). 六盘山半湿润区华北落叶松树干半径变化特征及其影响因素. 应用生态学报, 31, 3313-3321.]
DOI |
|
[33] | Williams M, Bond BJ, Ryan MG (2001). Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine. Plant, Cell & Environment, 24, 679-690. |
[34] |
Xiong W, Wang YH, Yu PT, Liu HL, Shi ZJ, Guan W (2007). The growth in stem diameter of Larix principis-rupprechtii and its response to meteorological factors in the south of Liupan Mountain. Acta Ecologica Sinica, 27, 432-441.
DOI URL |
[熊伟, 王彦辉, 于澎涛, 刘海龙, 时忠杰, 管伟 (2007). 六盘山南坡华北落叶松(Larix principis-rupprechtii)树干直径生长及其对气象因子的响应. 生态学报, 27, 432-441.] | |
[35] |
Zhan JW, Wang YK, Zhang LJ, Zhang P, He JQ (2009). Micro-variation in peach diameter and its relationship with soil water potential and meteorological factors. Chinese Journal of Eco-Agriculture, 17, 489-494.
DOI URL |
[湛景武, 汪有科, 张陆军, 张平, 贺军奇 (2009). 桃树茎直径微变化与土壤水势及气象因子的关系. 中国生态农业学报, 17, 489-494.] | |
[36] | Zhang JG, Kume T, Otsuki K, Yamanaka N, Du S (2011). Sap flow dynamics of dominant trees of Quercus liaotungensis forest in the semiarid Loess Plateau region. Scientia Silvae Sinicae, 47(4), 64-69. |
[张建国, 久米朋宣, 大规恭一, 山中典和, 杜盛 (2011). 黄土高原半干旱区辽东栎的树干液流动态. 林业科学, 47(4), 64-69.] | |
[37] | Zhang JY, Duan AW, Meng ZJ, Liu ZG, Chen JP, Liu ZD (2005). Stem diameter variations of cotton under different water conditions. Transactions of the Chinese Society of Agricultural Engineering, 21(5), 7-11. |
[张寄阳, 段爱旺, 孟兆江, 刘祖贵, 陈金平, 刘战东 (2005). 不同水分状况下棉花茎直径变化规律研究. 农业工程学报, 21(5), 7-11.] | |
[38] | Zhao P (2010). Compensation of tree water storage for hydraulic limitation: research progress. Chinese Journal of Applied Ecology, 21, 1565-1572. |
[赵平 (2010). 树木储存水对水力限制的补偿研究进展. 应用生态学报, 21, 1565-1572.] | |
[39] | Zweifel R (2016). Radial stem variations—A source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39, 231-232. |
[40] |
Zweifel R, Häsler R (2000). Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology, 102, 213-222.
DOI URL |
[41] |
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459.
PMID |
[1] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[2] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[3] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
[4] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[5] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[6] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[7] | KANG Jian, LIANG Han-Xue, JIANG Shao-Wei, ZHU Huo-Xing, ZHOU Peng, HUANG Jian-Guo. Effects of competition and climate on tree radial growth of Pinus sibirica in Altai Mountains, Xinjiang, China [J]. Chin J Plant Ecol, 2020, 44(12): 1195-1202. |
[8] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[9] | LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 532-542. |
[10] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[11] | Xia-Li GUO, Bi-Yun YU, Han-Xue LIANG, Jian-Guo HUANG. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chin J Plan Ecolo, 2017, 41(7): 795-804. |
[12] | Xin-Qi WANG, Yi HAN, Chuan-Kuan WANG. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, Northeast China [J]. Chin J Plant Ecol, 2017, 41(6): 597-609. |
[13] | Fei XU, Chuan-Kuan WANG. Seasonality and drivers of stem CO2 efflux for four temperate coniferous tree species [J]. Chin J Plan Ecolo, 2017, 41(4): 396-408. |
[14] | Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plant Ecol, 2017, 41(3): 279-289. |
[15] | Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plant Ecol, 2017, 41(1): 71-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn