Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (8): 919-931.DOI: 10.17521/cjpe.2021.0253
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
LI Xiao1, PIALUANG Bounthong1, KANG Wen-Hui1, JI Xiao-Dong1, ZHANG Hai-Jiang2, XUE Zhi-Guo2, ZHANG Zhi-Qiang1,*()
Received:
2021-07-06
Accepted:
2021-11-15
Online:
2022-08-20
Published:
2022-08-20
Contact:
ZHANG Zhi-Qiang
Supported by:
LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China[J]. Chin J Plant Ecol, 2022, 46(8): 919-931.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0253
样地 Site | 海拔 Altitude (m) | 坡向 Slope aspect | 样芯数 Number of cores | 平均胸径(平均值±标准差) Average DBH (mean ± SD) (cm) | 平均树高(平均值±标准差) Average height (mean ± SD) (m) | 序列时段 Period |
---|---|---|---|---|---|---|
B1350 | 1 350 | 阴 Shady | 32 | 15.70 ± 3.76 | 11.09 ± 1.13 | 1980-2018 |
B1550 | 1 550 | 阴 Shady | 30 | 21.60 ± 4.60 | 13.70 ± 1.49 | 1974-2018 |
B1750 | 1 750 | 阴 Shady | 32 | 16.80 ± 3.30 | 11.70 ± 1.02 | 1978-2018 |
B1950 | 1 950 | 阴 Shady | 30 | 19.10 ± 2.41 | 11.10 ± 1.99 | 1966-2018 |
Table 1 Information on field sites of secondary Betula platyphylla forests in the mountains of northwest Hebei, China
样地 Site | 海拔 Altitude (m) | 坡向 Slope aspect | 样芯数 Number of cores | 平均胸径(平均值±标准差) Average DBH (mean ± SD) (cm) | 平均树高(平均值±标准差) Average height (mean ± SD) (m) | 序列时段 Period |
---|---|---|---|---|---|---|
B1350 | 1 350 | 阴 Shady | 32 | 15.70 ± 3.76 | 11.09 ± 1.13 | 1980-2018 |
B1550 | 1 550 | 阴 Shady | 30 | 21.60 ± 4.60 | 13.70 ± 1.49 | 1974-2018 |
B1750 | 1 750 | 阴 Shady | 32 | 16.80 ± 3.30 | 11.70 ± 1.02 | 1978-2018 |
B1950 | 1 950 | 阴 Shady | 30 | 19.10 ± 2.41 | 11.10 ± 1.99 | 1966-2018 |
Fig. 1 Temporal trend of annual average air temperature (T), annual precipitation (P), standardized precipitation-evapotranspiration index (SPEI) and potential evapotranspiration (ET0) of Taizicheng River Watershed during 1960-2018.
样地 Site | 公共区间 Common intervals | 年平均生长速率 Mean annual growth rate (mm∙a-1) | 标准差 Standard deviation | 序列间相关系数 Inter-series mean correlations (r) | 平均敏感度 Mean sensitivity | 信噪比 Signal to noise ratio | 样本总体解释量 Expressed population signal | 第一主成分解释量 Variance expressed by the first principal component |
---|---|---|---|---|---|---|---|---|
B1350 | 1980-2018 | 1.345 | 0.16 | 0.35 | 0.37 | 16.93 | 0.892 | 58.90 |
B1550 | 1980-2018 | 1.286 | 0.24 | 0.25 | 0.25 | 9.74 | 0.855 | 60.10 |
B1750 | 1980-2018 | 1.541 | 0.21 | 0.22 | 0.28 | 9.18 | 0.854 | 59.75 |
B1950 | 1980-2018 | 1.290 | 0.30 | 0.29 | 0.31 | 13.07 | 0.871 | 49.42 |
Table 2 Statistics of standard tree ring-width chronologies for Betula platyphylla in secondary forests in the mountains of northwest Hebei, China
样地 Site | 公共区间 Common intervals | 年平均生长速率 Mean annual growth rate (mm∙a-1) | 标准差 Standard deviation | 序列间相关系数 Inter-series mean correlations (r) | 平均敏感度 Mean sensitivity | 信噪比 Signal to noise ratio | 样本总体解释量 Expressed population signal | 第一主成分解释量 Variance expressed by the first principal component |
---|---|---|---|---|---|---|---|---|
B1350 | 1980-2018 | 1.345 | 0.16 | 0.35 | 0.37 | 16.93 | 0.892 | 58.90 |
B1550 | 1980-2018 | 1.286 | 0.24 | 0.25 | 0.25 | 9.74 | 0.855 | 60.10 |
B1750 | 1980-2018 | 1.541 | 0.21 | 0.22 | 0.28 | 9.18 | 0.854 | 59.75 |
B1950 | 1980-2018 | 1.290 | 0.30 | 0.29 | 0.31 | 13.07 | 0.871 | 49.42 |
B1350 | B1550 | B1750 | B1950 | |
---|---|---|---|---|
B1350 | 1.000 | |||
B1550 | 0.354* | 1.000 | ||
B1750 | 0.237 | 0.445** | 1.000 | |
B1950 | 0.218 | 0.194 | 0.464** | 1.000 |
Table 3 Correlation coefficients (r) of standard chronologies for Betula platyphylla in secondary forests in the mountains of northwest Hebei, China
B1350 | B1550 | B1750 | B1950 | |
---|---|---|---|---|
B1350 | 1.000 | |||
B1550 | 0.354* | 1.000 | ||
B1750 | 0.237 | 0.445** | 1.000 | |
B1950 | 0.218 | 0.194 | 0.464** | 1.000 |
Fig. 2 Tree growth trend of Betula platyphylla in secondary forests in the mountains of northwest Hebei during 1980-1989 and 1989-2018 at four elevations. Grey shadow indicates the standard deviation range of four chronologies. Site B1350, B1550, B1750 and B1950 see Table 1.
Fig. 3 Correlation coefficient (r) between monthly climatic factors and chronologies of Betula platyphylla in secondary forests in the mountains of northwest Hebei at different elevations during 1980-1989 (A-D) and 1989-2018 (E-H). p, previous year. ET0, potential evapotranspiration; P, precipitation; SPEI, standardized precipitation-evapotranspiration index; T, average air temperature; Tmax, average maximum air temperature; Tmin, average minimum air temperature. *, p < 0.05; **, p < 0.01.
时段 Period | 样地 Site | 时间尺度 Time scale | T | Tmax | Tmin | P | SPEI | ET0 | SSD | K5 | GL |
---|---|---|---|---|---|---|---|---|---|---|---|
1980-1989 | B1350 | LGS | 0.64* | 0.57 | 0.55 | -0.02 | -0.06 | 0.31 | - | - | - |
GS | 0.36 | 0.60 | 0.05 | 0.12 | 0.17 | -0.50 | - | - | - | ||
Y | 0.48 | 0.51 | 0.43 | 0.01 | -0.12 | -0.12 | 0.48 | 0.35 | 0.37 | ||
B1550 | LGS | 0.54 | 0.44 | 0.56 | 0.33 | -0.35 | 0.16 | - | - | - | |
GS | 0.44 | 0.64* | -0.10 | 0.27 | -0.19 | -0.35 | - | - | - | ||
Y | 0.35 | 0.39 | 0.36 | 0.33 | -0.42 | -0.26 | 0.53 | 0.20 | 0.39 | ||
B1750 | LGS | 0.50 | 0.30 | 0.67* | 0.21 | -0.26 | -0.27 | - | - | - | |
GS | 0.18 | 0.32 | -0.12 | 0.35 | -0.21 | -0.25 | - | - | - | ||
Y | 0.53 | 0.59 | 0.42 | 0.47 | -0.53 | -0.31 | 0.43 | 0.07 | 0.17 | ||
B1950 | LGS | 0.60 | 0.61 | 0.46 | 0.15 | 0.12 | 0.15 | - | - | - | |
GS | 0.04 | 0.36 | 0.23 | 0.11 | -0.12 | -0.35 | - | - | - | ||
Y | 0.24 | 0.25 | 0.23 | 0.25 | -0.29 | 0.00 | 0.25 | 0.04 | 0.34 | ||
1989-2018 | B1350 | LGS | -0.34 | -0.33 | 0.32 | 0.37* | -0.35 | -0.18 | - | - | - |
GS | -0.27 | -0.24 | 0.31 | 0.05 | -0.09 | -0.26 | - | - | - | ||
Y | -0.35 | -0.38* | 0.35 | 0.08 | -0.16 | -0.24 | 0.16 | -0.31 | 0.03 | ||
B1550 | LGS | -0.26 | -0.17 | 0.28 | 0.05 | -0.36 | -0.12 | - | - | - | |
GS | -0.27 | -0.26 | 0.13 | 0.28 | -0.29 | -0.08 | - | - | - | ||
Y | 0.12 | -0.03 | 0.21 | 0.32 | -0.31 | -0.06 | 0.08 | -0.09 | 0.23 | ||
B1750 | LGS | -0.36 | -0.36* | 0.43* | 0.12 | -0.24 | -0.12 | - | - | - | |
GS | -0.36 | -0.43* | 0.29 | 0.34 | -0.28 | -0.22 | - | - | - | ||
Y | -0.10 | -0.20 | 0.04 | 0.33 | -0.34 | -0.18 | 0.23 | -0.30 | 0.29 | ||
B1950 | LGS | -0.16 | -0.13 | 0.22 | 0.23 | -0.22 | 0.03 | - | - | - | |
GS | -0.17 | -0.25 | 0.07 | 0.38* | -0.22 | -0.16 | - | - | - | ||
Y | 0.13 | 0.08 | 0.11 | 0.26 | -0.21 | -0.03 | 0.12 | -0.02 | 0.29 |
Table 4 Correlation coefficient between climatic factors and standard chronologies of Betula platyphylla in secondary forests in the mountains of northwest Hebei at different elevations during 1980-1989 and 1989-2018
时段 Period | 样地 Site | 时间尺度 Time scale | T | Tmax | Tmin | P | SPEI | ET0 | SSD | K5 | GL |
---|---|---|---|---|---|---|---|---|---|---|---|
1980-1989 | B1350 | LGS | 0.64* | 0.57 | 0.55 | -0.02 | -0.06 | 0.31 | - | - | - |
GS | 0.36 | 0.60 | 0.05 | 0.12 | 0.17 | -0.50 | - | - | - | ||
Y | 0.48 | 0.51 | 0.43 | 0.01 | -0.12 | -0.12 | 0.48 | 0.35 | 0.37 | ||
B1550 | LGS | 0.54 | 0.44 | 0.56 | 0.33 | -0.35 | 0.16 | - | - | - | |
GS | 0.44 | 0.64* | -0.10 | 0.27 | -0.19 | -0.35 | - | - | - | ||
Y | 0.35 | 0.39 | 0.36 | 0.33 | -0.42 | -0.26 | 0.53 | 0.20 | 0.39 | ||
B1750 | LGS | 0.50 | 0.30 | 0.67* | 0.21 | -0.26 | -0.27 | - | - | - | |
GS | 0.18 | 0.32 | -0.12 | 0.35 | -0.21 | -0.25 | - | - | - | ||
Y | 0.53 | 0.59 | 0.42 | 0.47 | -0.53 | -0.31 | 0.43 | 0.07 | 0.17 | ||
B1950 | LGS | 0.60 | 0.61 | 0.46 | 0.15 | 0.12 | 0.15 | - | - | - | |
GS | 0.04 | 0.36 | 0.23 | 0.11 | -0.12 | -0.35 | - | - | - | ||
Y | 0.24 | 0.25 | 0.23 | 0.25 | -0.29 | 0.00 | 0.25 | 0.04 | 0.34 | ||
1989-2018 | B1350 | LGS | -0.34 | -0.33 | 0.32 | 0.37* | -0.35 | -0.18 | - | - | - |
GS | -0.27 | -0.24 | 0.31 | 0.05 | -0.09 | -0.26 | - | - | - | ||
Y | -0.35 | -0.38* | 0.35 | 0.08 | -0.16 | -0.24 | 0.16 | -0.31 | 0.03 | ||
B1550 | LGS | -0.26 | -0.17 | 0.28 | 0.05 | -0.36 | -0.12 | - | - | - | |
GS | -0.27 | -0.26 | 0.13 | 0.28 | -0.29 | -0.08 | - | - | - | ||
Y | 0.12 | -0.03 | 0.21 | 0.32 | -0.31 | -0.06 | 0.08 | -0.09 | 0.23 | ||
B1750 | LGS | -0.36 | -0.36* | 0.43* | 0.12 | -0.24 | -0.12 | - | - | - | |
GS | -0.36 | -0.43* | 0.29 | 0.34 | -0.28 | -0.22 | - | - | - | ||
Y | -0.10 | -0.20 | 0.04 | 0.33 | -0.34 | -0.18 | 0.23 | -0.30 | 0.29 | ||
B1950 | LGS | -0.16 | -0.13 | 0.22 | 0.23 | -0.22 | 0.03 | - | - | - | |
GS | -0.17 | -0.25 | 0.07 | 0.38* | -0.22 | -0.16 | - | - | - | ||
Y | 0.13 | 0.08 | 0.11 | 0.26 | -0.21 | -0.03 | 0.12 | -0.02 | 0.29 |
时段 Period | 海拔 Altitude (m) | 回归模型 Multiple stepwise regression model | |
---|---|---|---|
1980-1989 | 1 350 | $\text{RW}{{\text{I}}_{1350}}=0.14{{T}_{\max \text{-L}10}}-0.08{{\text{P}}_{2}}+0.06{{T}_{\text{LGS}}}+0.06{{T}_{\max \text{-}10}}$ | ${{R}^{2}}=0.96, p<0.05$ |
1 550 | $\text{RW}{{\text{I}}_{1550}}=0.09{{T}_{\text{max-L}10}}-0.08\text{SPE}{{\text{I}}_{3}}$ | ${{R}^{2}}=0.82, p<0.05$ | |
1 750 | $\text{RW}{{\text{I}}_{1750}}=0.13{{T}_{\text{min-LGS}}}-0.13\text{SPE}{{\text{I}}_{\text{L}6}}$ | ${{R}^{2}}=0.55, p<0.05$ | |
1 950 | $\text{RW}{{\text{I}}_{1950}}=0.11{{\text{P}}_{\text{L}6}}-0.09\text{SPE}{{\text{I}}_{6}}$ | ${{R}^{2}}=0.69, p<0.05$ | |
1989-2018 | 1 350 | $\text{RW}{{\text{I}}_{1350}}=-0.36{{T}_{\text{max-}2}}-0.17{{\text{P}}_{\text{L}11}}-0.08\text{E}{{\text{T}}_{0\text{-L}6}}+0.11{{\text{P}}_{\text{L}7}}-0.07\text{E}{{\text{T}}_{0\text{-}4}}-0.23{{T}_{2}}$ | ${{R}^{2}}=0.57, p<0.05$ |
1 550 | $\text{RW}{{\text{I}}_{1550}}=0.12{{\text{P}}_{6}}-0.09{{T}_{\text{L}6}}$ | ${{R}^{2}}=0.44, p<0.01$ | |
1 750 | $\text{RW}{{\text{I}}_{1750}}=-0.15\text{E}{{\text{T}}_{0\text{-}4}}-0.08{{T}_{\text{max-}8}}-0.08{{T}_{\text{min-LGS}}}-0.07\text{SPE}{{\text{I}}_{4}}$ | ${{R}^{2}}=0.72, p<0.05$ | |
1 950 | $\text{RW}{{\text{I}}_{1950}}=-0.09\text{E}{{\text{T}}_{0\text{-}6}}-0.17\text{SPE}{{\text{I}}_{\text{L}8}}$ | ${{R}^{2}}=0.46, p<0.05$. |
Table 5 Estimates of the multiple stepwise regression model for the effect of climate on the radial growth of Betula platyphylla in secondary forests in the mountains of northwest Hebei, China
时段 Period | 海拔 Altitude (m) | 回归模型 Multiple stepwise regression model | |
---|---|---|---|
1980-1989 | 1 350 | $\text{RW}{{\text{I}}_{1350}}=0.14{{T}_{\max \text{-L}10}}-0.08{{\text{P}}_{2}}+0.06{{T}_{\text{LGS}}}+0.06{{T}_{\max \text{-}10}}$ | ${{R}^{2}}=0.96, p<0.05$ |
1 550 | $\text{RW}{{\text{I}}_{1550}}=0.09{{T}_{\text{max-L}10}}-0.08\text{SPE}{{\text{I}}_{3}}$ | ${{R}^{2}}=0.82, p<0.05$ | |
1 750 | $\text{RW}{{\text{I}}_{1750}}=0.13{{T}_{\text{min-LGS}}}-0.13\text{SPE}{{\text{I}}_{\text{L}6}}$ | ${{R}^{2}}=0.55, p<0.05$ | |
1 950 | $\text{RW}{{\text{I}}_{1950}}=0.11{{\text{P}}_{\text{L}6}}-0.09\text{SPE}{{\text{I}}_{6}}$ | ${{R}^{2}}=0.69, p<0.05$ | |
1989-2018 | 1 350 | $\text{RW}{{\text{I}}_{1350}}=-0.36{{T}_{\text{max-}2}}-0.17{{\text{P}}_{\text{L}11}}-0.08\text{E}{{\text{T}}_{0\text{-L}6}}+0.11{{\text{P}}_{\text{L}7}}-0.07\text{E}{{\text{T}}_{0\text{-}4}}-0.23{{T}_{2}}$ | ${{R}^{2}}=0.57, p<0.05$ |
1 550 | $\text{RW}{{\text{I}}_{1550}}=0.12{{\text{P}}_{6}}-0.09{{T}_{\text{L}6}}$ | ${{R}^{2}}=0.44, p<0.01$ | |
1 750 | $\text{RW}{{\text{I}}_{1750}}=-0.15\text{E}{{\text{T}}_{0\text{-}4}}-0.08{{T}_{\text{max-}8}}-0.08{{T}_{\text{min-LGS}}}-0.07\text{SPE}{{\text{I}}_{4}}$ | ${{R}^{2}}=0.72, p<0.05$ | |
1 950 | $\text{RW}{{\text{I}}_{1950}}=-0.09\text{E}{{\text{T}}_{0\text{-}6}}-0.17\text{SPE}{{\text{I}}_{\text{L}8}}$ | ${{R}^{2}}=0.46, p<0.05$. |
Fig. 4 Pie chart of contributions of climatic factors in explaining radial growth of Betula platyphylla in secondary forests in the mountains of northwest Hebei in optimized regression model at different elevations during 1980-1989 (A-D) and 1989-2018 (E-H). Red portion represents the factor of temperature, and green portion represents the factor of water. Site B1350, B1550, B1750 and B1950 see Table 1. ET0-4, ET0-6, the potential evapotranspiration in April, June, respectively; ET0-L6, the potential evapotranspiration in June of last year; P2, P6, the precipitation in February, June, respectively; PL6, PL7, PL11, the precipitation in June, July, November of last year, respectively; SPEI3, SPEI4, SPEI6, the standardized precipitation-evapotranspiration index (SPEI) in March, April, June, respectively; SPEIL6, SPEIL8, the SPEI in June, August of last year; T2, the average air temperature in February; TL6, the average air temperature in June of last year; TLGS, the average air temperature in the growth season of last year; Tmax-2, Tmax-8, the highest air temperature in February, August; Tmax-L10, the highest air temperature in October of last year; Tmin-10, the lowest air temperature in October; Tmin-LGS, the lowest air temperature in the growth season of last year.
[1] | Bai TJ, Deng WP, Kuang YW, Liu YQ, Ye Q, Niu JH, Wen LS, Huang R (2020). Response of tree ring width in Cryptomeria japonica to climatic factors at different elevations in Lushan Mountain. Chinese Journal of Ecology, 39, 57-66. |
[白天军, 邓文平, 旷远文, 刘苑秋, 叶清, 牛杰慧, 温林生, 黄榕 (2020). 庐山不同海拔日本柳杉年轮宽度对气候因子的响应. 生态学杂志, 39, 57-66.] | |
[2] |
Bai XP, Zhang XL, Li JX, Duan XY, Jin YT, Chen ZJ (2019). Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Science of the Total Environment, 670, 466-477.
DOI URL |
[3] |
Black BA, van der Sleen P, di Lorenzo E, Griffin D, Sydeman WJ, Dunham JB, Rykaczewski RR, García-Reyes M, Safeeq M, Arismendi I, Bograd SJ (2018). Rising synchrony controls western North American ecosystems. Global Change Biology, 24, 2305-2314.
DOI PMID |
[4] | Chen F, Yuan YJ, Wang LL, Wei WS, Li Y, Nievergelt D, Yu SL (2011). Climatic response of Larix sibirica tree-ring density parameters in Tacheng, Xinjiang. Journal of Arid Land Resources and Environment, 25(6), 182-187. |
[陈峰, 袁玉江, 王丽丽, 魏文寿, 李扬, Nievergelt D, 喻树龙 (2011). 塔城西伯利亚落叶松树轮密度的气候响应研究. 干旱区资源与环境, 25(6), 182-187.] | |
[5] |
Chen L, Huang JG, Alam SA, Zhai L, Dawson A, Stadt KJ, Comeau PG (2017). Drought causes reduced growth of trembling aspen in western Canada. Global Change Biology, 23, 2887-2902.
DOI PMID |
[6] |
Chu H, Xiang X, Yang J, Adams JM, Zhang K, Li YT, Shi Y (2016). Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere, 26, 226-234.
DOI URL |
[7] | Cook ER (1985). A Time Series Approach to Tree-Ring Standardization. PhD dissertation, University of Arizona, Tucson, USA. |
[8] | Fan HT, Chen LB, Chen ZZ, Gu JC (2019). Response of radial growth of Pinus tabulaeformis and Larix gmelinii to meteorological factors in mountainous region of northern Hebei Province. Journal of Central South University of Forestry & Technology, 39(1), 52-57. |
[范慧涛, 陈立标, 陈忠震, 谷建才 (2019). 冀北山地油松、落叶松径向生长对气象因子的响应. 中南林业科技大学学报, 39(1), 52-57.] | |
[9] |
Gao LL, Gou XH, Deng Y, Yang MX, Zhang F (2017). Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees, 31, 393-404.
DOI URL |
[10] |
Gewehr S, Drobyshev I, Berninger F, Bergeron Y (2014). Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Canadian Journal of Forest Research, 44, 487-498.
DOI URL |
[11] | Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016). No growth stimulation of Canadaʼs boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113, E8406-E8414. |
[12] |
Guo MM, Zhang YD, Liu SR, Gu FX, Wang XC, Li ZS, Shi CM, Fan ZX (2019). Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming. Agricultural and Forest Meteorology, 276-277, 107631. DOI: 10.1016/j.agrformet.2019.107631.
DOI |
[13] |
Guo MM, Zhang YD, Wang XC, Gu FX, Liu SR (2018). The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. Forest Ecology and Management, 425, 21-26.
DOI URL |
[14] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78. |
[15] |
Jacoby GC, DʼArrigo RD (1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9, 227-234.
DOI URL |
[16] |
Keenan TF, Hollinger DY, Bohrer G, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499, 324-327.
DOI URL |
[17] |
Li GQ, Bai F, Sang WG (2011). Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 35, 500-511.
DOI URL |
[李广起, 白帆, 桑卫国 (2011). 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 35, 500-511.]
DOI |
|
[18] | Liu YL, Xin ZB, Li ZS, Maierdang Keyimu (2020). Climate effect on the radial growth of Populus simonii in Northwest of Hebei for last four decades. Acta Ecologica Sinica, 40, 9108-9119. |
[刘亚玲, 信忠保, 李宗善, 买尔当·克依木 (2020). 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异. 生态学报, 40, 9108-9119.] | |
[19] | Lyu ZY, Yun RX, Wu T, Ma YJ, Chen ZJ, Jin YT, Li JX (2020). Altitudinal differentiation in the radial growth of Betula platyphylla and its response to climate in cold temperate forest: a case of Oakley Mountain, northeast China. Chinese Journal of Applied Ecology, 31, 1889-1897. |
[吕朝阳, 贠瑞鑫, 吴涛, 马艳军, 陈振举, 靳雨婷, 李俊霞 (2020). 寒温带森林白桦径向生长的海拔差异及其气候响应--以奥克里堆山为例. 应用生态学报, 31, 1889-1897.]
DOI |
|
[20] |
Matías L, Jump AS (2014). Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany, 65, 299-310.
DOI PMID |
[21] |
Natalini F, Correia AC, Vázquez-Piqué J, Alejano R (2015). Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Annals of Forest Science, 72, 1023-1033.
DOI URL |
[22] | National Climate Center of China Meteorological Administration(2020). Blue Book on Climate Change in China 2020. Science Press, Beijing. |
[中国气象局气候变化中心 (2020). 中国气候变化蓝皮书(2020). 科学出版社, 北京.] | |
[23] |
Panthi S, Fan ZX, van der Sleen P, Zuidema PA (2020). Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Global Change Biology, 26, 1778-1794.
DOI PMID |
[24] | Qiao JJ, Wang T, Pan L, Sun YJ (2019). Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes. Chinese Journal of Applied Ecology, 30, 2231-2240. |
[乔晶晶, 王童, 潘磊, 孙玉军 (2019). 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 30, 2231-2240.]
DOI |
|
[25] |
Reed CC, Ballantyne AP, Cooper LA, Sala AN (2018). Limited evidence for CO2-related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients. Global Change Biology, 24, 3922-3937.
DOI URL |
[26] | Ren XM, Gong YQ, Wang PA, Bo FJ, Zhang YX, Guo JP (2020). Coupling effects of regional temperature and precipitation on radial growth of Larix principis- rupprechtii at different altitudes in Guandishan. Chinese Journal of Ecology, 39, 1548-1557. |
[任旭明, 宫渊奇, 王平安, 薄夫京, 张芸香, 郭晋平 (2020). 区域气温和降水对关帝山不同海拔华北落叶松径向生长的耦合效应. 生态学杂志, 39, 1548-1557.] | |
[27] |
Shen JY, Li SF, Huang XB, Lei ZQ, Shi XQ, Su JR (2019). Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin. Chinese Journal of Plant Ecology, 43, 946-958.
DOI URL |
[申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣 (2019). 南盘江流域云南松径向生长对气候暖干化的响应. 植物生态学报, 43, 946-958.]
DOI |
|
[28] |
Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, Knorre AA, Linares JC, de Dios VR, Sánchez- Salguero R, Voltas J (2016). Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 662-667.
DOI PMID |
[29] |
Shestakova TA, Gutiérrez E, Voltas J (2018). A roadmap to disentangling ecogeographical patterns of spatial synchrony in dendrosciences. Trees, 32, 359-370.
DOI URL |
[30] | Shrestha KB, Chhetri PK, Bista R (2017). Growth responses of Abies spectabilis to climate variations along an elevational gradient in Langtang National Park in the central Himalaya, Nepal. Journal of Forest Research, 22, 274-281. |
[31] |
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.
DOI URL |
[32] |
Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011). Climate change and plant regeneration from seed. Global Change Biology, 17, 2145-2161.
DOI URL |
[33] |
Wang XM, Zhao XH, Gao LS (2013). Climatic response of Betula ermanii along an altitudinal gradient in the northern slope of Changbai Mountain, China. Dendrobiology, 70, 99-107.
DOI URL |
[34] |
Wang XP, Fang JY, Tang ZY, Zhu B (2006). Climatic control of primary forest structure and DBH-height allometry in Northeast China. Forest Ecology and Management, 234, 264-274.
DOI URL |
[35] |
Wilmking M, Juday GP (2005). Longitudinal variation of radial growth at Alaska’s northern treeline-Recent changes and possible scenarios for the 21st century. Global and Planetary Change, 47, 282-300.
DOI URL |
[36] | Wu Y, Wang X, Ouyang S, Xu K, Hawkins BA, Sun OJ (2016). A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in northeast China. Journal of Plant Ecology, 10, 415-425. |
[37] |
Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 24-35.
DOI URL |
[于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 (2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.]
DOI |
|
[38] | Zhang H, Shao XM, Zhang Y (2012). Research progress on the response of radial growth to climatic factors at different altitudes. Journal of Earth Environment, 3, 845-854. |
[张慧, 邵雪梅, 张永 (2012). 不同海拔高度树木径向生长对气候要素响应的研究进展. 地球环境学报, 3, 845-854.] | |
[39] | Zhang Q, Yu RD, Zheng HW, Yang ML, Gan M (2018). Response analysis of Larix sibirica to climate warming at different elevations in the eastern Tianshan Mountains. Bulletin of Botanical Research, 38, 14-25. |
[张晴, 于瑞德, 郑宏伟, 杨美琳, 甘淼 (2018). 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析. 植物研究, 38, 14-25.] | |
[40] |
Zhou FF, Fang KY, Zhang F, Dong ZP, Chen D (2016). Climate-driven synchronized growth of alpine trees in the southeast Tibetan Plateau. PLOS ONE, 11, e0156126. DOI: 10.1371/journal.pone.0156126.
DOI URL |
[41] | Zhou P, Huang JG, Liang HX, Li JY (2019). Effect of temperature and precipitation on radial growth of Larix sibirica along altitudinal gradient on Altay Mountains, Xinjiang, China. Journal of Tropical and Subtropical Botany, 27, 623-632. |
[周鹏, 黄建国, 梁寒雪, 黎敬业 (2019). 不同海拔温度和降水对新疆阿尔泰山西伯利亚落叶松径向生长的影响. 热带亚热带植物学报, 27, 623-632.] | |
[42] |
Zhou P, Huang JG, Liang HX, Rossi S, Bergeron Y, Shishov VV, Jiang SW, Kang J, Zhu HX, Dong ZC (2021). Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 304-305, 108392. DOI: 10.1016/j.agrformet.2021.108392.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn