Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 946-958.doi: 10.17521/cjpe.2019.0169

• Research Articles • Previous Articles     Next Articles

Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin

SHEN Jia-Yan1,LI Shuai-Feng1,HUANG Xiao-Bo1,LEI Zhi-Quan2,SHI Xing-Quan2,SU Jian-Rong1,*()   

  1. 1Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China
    2State-owned Haizhai Forest Farm of Qujing, Qujing, Yunnan 655000, China
  • Received:2019-07-02 Accepted:2019-10-22 Online:2020-03-26 Published:2019-11-20
  • Contact: SU Jian-Rong E-mail:jianrongsu@vip.sina.com
  • Supported by:
    Supported by the Yunnan Science and Technology Innovation Talent Program(2018HC013)

Abstract:

Aims Forests in Nanpan River Basin are under severe effects by drought because of the warming and drying climate. As the typical dominant coniferous forests in this region, Pinus yunnanensis forests occur over a broad range and present a good potential for dendroclimatological studies. However, little is known about the relationship between radial growth and climate in this tree species. Our objectives were to determine the constraining factors of radial growth and examine the stability of growth-climate relationships in P. yunnanensis in response to climate warming and drying.Methods We used standardized dendrochronological method, combined with trend analysis of meteorological data from 1952 to 2016, to study the effects of climate variabilities on the radial growth in P. yunnanensis. We extracted increment cores from 87 trees and measured annual ring-width. Response analysis and multiple regression analysis were used to determine the constraining factors of radial growth. Moving correlation was used to detect the stability of growth-climate response.Important findings The annual mean temperature (Tmp), mean maximum temperature (Tmx), and mean minimum temperature (Tmn) in the research region have increased at a rate of 0.044, 0.041 and 0.050 °C·a -1, respectively. The annual total precipitation showed a significant decreasing trend at a rate of 6.02 mm·a -1 during 1985-2016. The growth of P. yunnanensis trees was less sensitive to temperature but more sensitive to moisture; prior to and after warming and drying period, the explainable variance of radial growth by temperature decreased from 44.95% to 21.97%, and that by moisture-related factors increased from 55.05% to 78.03%. Warming and drying climate enhanced the influence of climatic factors on radial growth of the current year and weakened the influence of climatic factors of the previous year, while increasing the climatic factors of the current year significantly affecting radial growth by three and explanation rate by 16.05%. The “hysteresie effect” weakened and the effects of climate change on growth became more promptly. The growth-climate relationship in P. yunnanensis could become more moisture sensitive under a warming and drying climate. Tree growth and forest productivity of P. yunnanensis in the Nanpan River Basin is likely to decline if the warming and drying climate trend continues.

Key words: Pinus yunnanensis, annual rings, climate warming and drying, climate response, stability

Fig. 1

Monthly mean temperature, monthly mean maximum temperature, monthly mean minimum temperature and precipitation in Zhanyi District Meteorological Station, Qujing,Yunnan (1952-2016). Pre, monthly precipitation; Tmn, monthly mean minimum temperature; Tmp, monthly mean temperature; Tmx, monthly mean maximum temperature."

Table 1

Statistics of tree-ring width standard chronology (STD) and common interval analysis of Pinus yunanensis in Nanpan River Basin"

统计特征 Statistic feature 标准年表 STD
样本量(树/样芯) Sample size (trees/radii) 62/95
年表时段 Chronology span 1954-2018
平均敏感度 Mean sensitivity 0.18
公共区间 Common period (year) 1968-2015
公共区间统计量 Statistics of common interval analysis
第一特征向量百分比 Variance in first eigenvector (%) 28.26
标准偏差 Standard deviation 0.39
一阶自相关系数 First order autocorrelation 0.125
信噪比 Signal-to-noise ratio 14.31
样本总体代表性 Expressed population signal 0.94
样芯间相关系数 Correlations between cores 0.254

Fig. 2

Tree ring-width index (RWI) and sample size of Pinus yunanensis in Nanpan River Basin."

Fig. 3

Long-term trends of temperature and precipitation during 1952-1984 and 1985-2016 in Nanpan River Basin research region. Tmn, monthly mean minimum temperature; Tmp, monthly mean temperature; Tmx, monthly mean maximum temperature."

Fig. 4

Palmer Drought Standard Index (PDSI) and basal area increment (BAI) over time in Nanpan River Basin research region."

Fig. 5

Relationships of ring-width chronology of Pinus yunanensis with major climatic factors in Nanpan River Basin. PDSI, Palmer Drought Standard Index; Pre, monthly precipitation; RH, average air relative humidity; Tmn, monthly mean minimum temperature; Tmp, monthly mean temperature; Tmx, monthly mean maximum temperature."

Fig. 6

Response relationships of tree ring-width chronology with monthly climatic factors during different time periods in Nanpan River Basin. Pre, monthly precipitation; PDSI, Palmer Drought Standard Index; RH, average air relative humidity; Tmn, monthly mean minimum temperature; Tmp, monthly mean temperature; Tmx, monthly mean maximum temperature."

Fig. 7

Pie chart of variance in radial growth in Pinus yunanensis explainable by different climatic factors in optimized regression model. CPDSI 11, Palmer Drought Standard Index of current November; cRH1, mean relative humidity of current January; cRH6, mean relative humidity of current June; pRH7, mean relative humidity of last July; pRH10, mean relative humidity of last October; pTmn7, mean minimum temperature of last July; pTmp7, mean temperature of last July; pTmx12, mean maximum temperature of last December."

Fig. 8

Sliding response analysis of ring width chronology in Pinus yunanensis with main climatic factors from May of the previous year to November of the current year. The window size is 25 years, and the windows have been offset by one year. A, Sliding response analysis of radial growth and monthly mean temperature (Tmp). B, Sliding response analysis of radial growth and monthly precipitation (Pre). C, Sliding response analysis of radial growth and Palmer Drought Standard Index (PDSI)."

[1] Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ ( 2007). Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 13, 804-815.
[2] Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC ( 2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5, eaat4313. DOI: 10.1126/sciadv.aat4313.
[3] Bryukhanova M, Fonti P, Kirdyanov A, Saurer M, Siegwolf R, Pochebit N, Sidorova O, Prokushkin A ( 2013). Growth of trees on permafrost: Habitat driven response to climate. Geophysical Research Abstracts, 15, EGU2013-11233.
[4] Bunn AG ( 2010). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28, 251-258.
[5] Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X ( 2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289.
[ 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 ( 2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.]
[6] Chen XQ, Hu B, Yu R ( 2005). Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11, 1118-1130.
[7] Cleaveland MK, Stahle DW, Therrell MD, Villanueva-Diaz J, Burns BT ( 2003). Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change, 59, 369-388.
[8] Cullen LE, Palmer JG, Duncan RP, Stewart GH ( 2001). Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research, 31, 1981-1991.
[9] Deng XQ, Huang BL, Wen QZ, Hua CL, Tao J ( 2013). A research on the distribution of Pinus yunnanensis forest in Yunnan Province. Journal of Yunnan University (Natural Science Edition), 35, 843-848.
[ 邓喜庆, 皇宝林, 温庆忠, 华朝朗, 陶晶 ( 2013). 云南松林在云南的分布研究. 云南大学学报(自然科学版), 35, 843-848.]
[10] Deng XQ, Huang BL, Wen QZ, Hua CL, Tao J, Zheng JX ( 2014). Dynamic of Pinus yunnanensis forest resources in Yunnan. Journal of Natural Resources, 29, 1411-1419.
[ 邓喜庆, 皇宝林, 温庆忠, 华朝朗, 陶晶, 郑进烜 ( 2014). 云南松林资源动态研究. 自然资源学报, 29, 1411-1419.]
[11] Deng Y, Gou XH, Gao LL, Zhang F, Xu XY, Yang MX ( 2016). Tree-ring recorded drought variability in the northern Min Mountains of northwestern China. International Journal of Climatology, 36, 3550-3560.
[12] Du S, Yamanaka N, Yamamoto F, Otsuki K, Wang SQ, Hou QC ( 2007). The effect of climate on radial growth of Quercus liaotungensis forest trees in Loess Plateau, China. Dendrochronologia, 25, 29-36.
[13] Fan ZX, Bräuning A, Cao KF, Zhu SD ( 2009). Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. Forest Ecology and Management, 258, 306-313.
[14] Fan ZX, Bräuning A, Thomas A, Li JB, Cao KF ( 2011). Spatial and temporal temperature trends on the Yunnan Plateau (southwest China) during 1961-2004. International Journal of Climatology, 31, 2078-2090.
[15] Fang KY, Gou XH, Chen FH, Peng JF, Liu PX, Wang M, Zhu YM ( 2008). The advance in dendroecology. Journal of Glaciology and Geocryology, 30, 825-834.
[ 方克艳, 勾晓华, 陈发虎, 彭剑峰, 刘普幸, 王茂, 朱有明 ( 2008). 树轮生态学研究进展. 冰川冻土, 30, 825-834.]
[16] Forest Resources Management Department of the State Forestry Administration ( 2010). The 7th national forest resources inventory and forest resources status. Forest Resources Management,( 1), 1-8.
[ 国家林业局森林资源管理司 ( 2010). 第七次全国森林资源清查及森林资源状况. 林业资源管理, ( 1), 1-8.]
[17] Fritts HC ( 1966). Growth-rings of trees: Their correlation with climate. Science, 154, 973-979.
[18] Fritts HC ( 1976). Tree-Rings and Climate. Elsevier, New York.
[19] Fritts HC, Smith DG, Cardis JW, Budelsky CA ( 1965b). Tree-ring characteristics along a vegetation gradient in Northern Arizona. Ecology, 46, 393-401.
[20] Fritts HC, Smith DG, Stokes MA ( 1965a). The biological model for paleoclimatic interpretation of mesa verde tree-ring series. Memoirs of the Society for American Archaeology, 19, 101-121.
[21] Graumlich LJ ( 1991). Subalpine tree growth, climate, and increasing CO2: An assessment of recent growth trends. Ecology, 72, 1-11.
[22] Guo BD ( 2016). Differences in Response to Climate Change of Picea purpurea and Abies faxoniana at Different Elevations and Slopes in Western Sichuan Plateau, China. PhD dissertation, Northeast Forestry University, Harbin.
[ 郭滨德 ( 2016). 川西高原不同坡向和海拔云冷杉树轮对气候变化的响应差异. 博士学位论文, 东北林业大学, 哈尔滨.]
[23] Jia CQ, Dong YJ, Peng JT, Rong YS, Wang L ( 2014). Spatial- temporal laws of droughts and floods cross Nanpan River Basin. Journal of Arid Land Resources and Environment, 28, 104-108.
[ 贾春强, 董延军, 彭俊台, 荣艳淑, 王琳 ( 2014). 南盘江流域旱涝时空分布规律研究. 干旱区资源与环境, 28, 104-108.]
[24] Jiang P, Liu H, Wu XC, Wang HY ( 2017). Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A.D. 1820 and links to westerly circulation. International Journal of Climatology, 37, 2863-2872.
[25] Jump AS, Hunt JM, Penuelas J ( 2006). Rapid climate change- related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 2163-2174.
[26] Komer, Christian ( 2001). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin.
[27] Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto T, Takeda T, Tokumoto M, Matsuura Y ( 2007). Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia. Journal of Wood Science, 53, 87-93.
[28] Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT ( 2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116, 8419-8424.
[29] Li T, He XY, Chen ZJ ( 2014). Response of radial growth of Quercus mongolica to climate change in the south of northeast China—Taking Qianshan as an example. Chinese Journal of Applied Ecology, 25, 1841-1848.
[ 李腾, 何兴元, 陈振举 ( 2014). 东北南部蒙古栎径向生长对气候变化的响应——以千山为例. 应用生态学报, 25, 1841-1848.]
[30] Li ZS, Liu GH, Zhang QB, Hu CJ, Luo SZ, Liu XL, He F ( 2010). Tree ring reconstruction of summer temperature variations over the past 159 years in Wolong National Natural Reserve, western Sichuan, China. Chinese Journal of Plant Ecology, 34, 628-641.
[ 李宗善, 刘国华, 张齐兵, 胡婵娟, 罗淑政, 刘兴良, 何飞 ( 2010). 利用树木年轮宽度资料重建川西卧龙地区过去159年夏季温度的变化. 植物生态学报, 34, 628-641.]
[31] Liu YJ, Gu ZX, Wang XC ( 2017). Impact of simulated climate warming on the radial growth of Larix gmelinii in northeast China. Acta Ecologica Sinica, 37, 2684-2693.
[ 刘玉佳, 顾卓欣, 王晓春 ( 2017). 模拟气候变暖对东北兴安落叶松径向生长的影响. 生态学报, 37, 2684-2693.]
[32] Ma ZG, Ren XB ( 2007). Drying trend over China from 1951 to 2006. Advances in Climate Change Research, 3, 195-201.
[ 马柱国, 任小波 ( 2007). 1951-2006年中国区域干旱化特征. 气候变化研究进展, 3, 195-201.]
[33] Nie CY, Zhang QB, Lyu L ( 2017). Millennium-long tree-ring chronology reveals megadroughts on the southeastern Tibetan Plateau. Tree-Ring Research, 73, 1-10.
[34] Panthi S, Bräuning A, Zhou ZK, Fan ZX ( 2018). Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 47, 1-9.
[35] Rathgeber C, Nicault A, Guiot J, Keller T, Guibal F, Roche P ( 2000). Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26, 405-421.
[36] Shao XM, Wu XD ( 1994). Tree-ring chronologies for Pinus armandi franch from Huashan, China. Acta Geographica Sinica, 61, 174-181.
[ 邵雪梅, 吴祥定 ( 1994). 华山树木年轮年表的建立. 地理学报, 61, 174-181.]
[37] Shao XM, Wu XD ( 1997). Reconstruction of climate change on Changbai Mountain, northeast China using tree-ring data. Quaternary Studies, 17, 76-85.
[ 邵雪梅, 吴祥定 ( 1997). 利用树轮资料重建长白山区过去气候变化. 第四纪研究, 17, 76-85.]
[38] Shen CC, Wang L, Li MY ( 2016). The altitudinal variability and temporal instability of the climate-tree-ring growth relationships for Changbai larch ( Larix olgensis Henry) in the Changbai mountains area, Jilin, Northeastern China. Trees, 30, 901-912.
[39] Su XC, Wang L, Li QL ( 2014). Study on surface dry and wet conditions in southwest China in recent 50 years. Journal of Natural Resources, 29, 104-116.
[ 苏秀程, 王磊, 李奇临 ( 2014). 近50a中国西南地区地表干湿状况研究. 自然资源学报, 29, 104-116.]
[40] van der Maaten-Theunissen M, van der Maaten E, Bouriaud O ( 2015). PointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia, 35, 34-38.
[41] Wang T, Yu D, Li JF, Ma KP ( 2003). Advances in research on the relationship between climatic change and tree-ring width. Acta Phytoecologica Sinica, 27, 23-33.
[ 王婷, 于丹, 李江风, 马克平 ( 2003). 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 27, 23-33.]
[42] Wang WZ, Jia M, Wang GX, Zhu WZ, McDowell NG ( 2017). Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. Forest Ecology and Management, 402, 135-144.
[43] Wang XC, Song LP, Zhang YD ( 2011). Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China. Chinese Journal of Plant Ecology, 35, 294-302.
[ 王晓春, 宋来萍, 张远东 ( 2011). 大兴安岭北部樟子松树木生长与气候因子的关系. 植物生态学报, 35, 294-302.]
[44] Wang Y, Yan XD ( 2006). The response of the forest ecosystem in China to global climate change. Chinese Journal of Atmospheric Sciences, 30, 1009-1018.
[ 王叶, 延晓冬 ( 2006). 全球气候变化对中国森林生态系统的影响. 大气科学, 30, 1009-1018.]
[45] Wei J, Ma ZG ( 2003). Comparison of palmer drought severity index, percentage of precipitation anomaly and surface humid index. Acta Geographica Sinica, 58, 117-124.
[ 卫捷, 马柱国 ( 2003). Palmer干旱指数、地表湿润指数与降水距平的比较. 地理学报, 58, 117-124.]
[46] Wu XD ( 1990). Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 10, 188-196.
[ 吴祥定 ( 1990). 树木年轮分析在环境变化研究中的应用. 第四纪研究, 10, 188-196.]
[47] Wu XD, Shao XM ( 1993). Status of dendroclimatological study and its prospects in China. Advance in Earth Sciences, 8, 31-35.
[ 吴祥定, 邵雪梅 ( 1993). 中国树木年轮气候学研究动态与展望. 地球科学进展, 8, 31-35.]
[48] Yang B, He MH, Shishov V, Tychkov I, Vaganov E, Rossi S, Ljungqvist FC, Bräuning A, Grießinger J ( 2017). New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 114, 6966-6971.
[49] Yang ML, Wang L, Gao R, Yang R, Fu B ( 2013). Temporal and spatial distribution characteristics of seasonal drought in the Nanpan River Basin. People’s Yangtze River, 44(11), 5-8.
[ 杨茂灵, 王龙, 高瑞, 杨蕊, 付奔 ( 2013). 南盘江流域季节性干旱时空分布特征研究. 人民长江, 44(11), 5-8.]
[50] Yang RQ, Fan ZX, Li ZS, Wen QZ ( 2018). Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China. Acta Ecologica Sinica, 38, 8983-8991.
[ 杨绕琼, 范泽鑫, 李宗善, 温庆忠 ( 2018). 滇西北玉龙雪山不同海拔云南松径向生长对气候因子的响应. 生态学报, 38, 8983-8991.]
[51] Yao YB, Zhang Q, Wang JS, Shang JL, Wang Y, Shi J, Han LY ( 2014). Response characteristics of drought in southwest China to climate warming. Journal of Ecology and Environment, 23, 1409-1417.
[ 姚玉璧, 张强, 王劲松, 尚军林, 王莺, 石界, 韩兰英 ( 2014). 中国西南干旱对气候变暖的响应特征. 生态环境学报, 23, 1409-1417.]
[52] Yin DC, Sun M, Zhang WG, Yue HT, Zhang Y, Tian K, Xiao DR, Zhang Y ( 2019). Effects of climate warming on radial growth of Picea brachytyla in Shangri-La, southwestern China. Journal of Northeast Forestry University, 47(3), 3-9.
[ 尹定财, 孙梅, 张卫国, 岳海涛, 张勇, 田昆, 肖德荣, 张贇 ( 2019). 气候变暖对香格里拉油麦吊云杉径向生长的影响. 东北林业大学学报, 47(3), 3-9.]
[53] Yin H, Li YH ( 2013). Summary of advance on drought study in southwest China. Journal of Arid Meteorology, 31, 182-193.
[ 尹晗, 李耀辉 ( 2013). 我国西南干旱研究最新进展综述. 干旱气象, 31, 182-193.]
[54] Yu DP, Liu JQ, Benard J L, Zhou L, Zhou WM, Fang XM, Wei YW, Jiang SW, Dai LM ( 2013). Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China. Forest Ecology and Management, 300, 96-105.
[55] Yu DP, Wang SZ, Tang LN, Dai LM, Wang QL, Wang SX ( 2005). Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climae change. Chinese Journal of Applied Ecology, 16, 14-20.
[ 于大炮, 王顺忠, 唐立娜, 代力民, 王庆礼, 王绍先 ( 2005). 长白山北坡落叶松年轮年表及其与气候变化的关系. 应用生态学报, 16, 14-20.]
[56] Yu J, Liu QJ, Zhou G, Meng SW, Zhou H, Xu ZZ, Shi JN, Du WX ( 2017). Response of radial growth of Pinus koraiensis and Picea jezoensis to climate change in Xiaoxing’anling Mountains, Northeast China. Chinese Journal of Applied Ecology, 28, 3451-3460.
[ 于健, 刘琪璟, 周光, 孟盛旺, 周华, 徐振招, 史景宁, 杜文先 ( 2017). 小兴安岭红松和鱼鳞云杉径向生长对气候变化的响应. 应用生态学报, 28, 3451-3460.]
[57] Yu JL, Zhang WG, Tian K, Song WH, Li QP, Yang R, Zhang Y ( 2017). Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China. Journal of Beijing Forestry University, 39(1), 43-51.
[ 余佳霖, 张卫国, 田昆, 松卫红, 李秋平, 杨荣, 张赟 ( 2017). 普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应. 北京林业大学学报, 39(1), 43-51.]
[58] Yuan YJ, Li JF ( 1999). Reconstruction and analysis of 450 years’ winter temperature series in the Urumqi River source of Tianshan Mountains. Journal of Glaciolgy and Geocryology, 21(1), 64-70.
[ 袁玉江, 李江风 ( 1999). 天山乌鲁木齐河源450 a冬季温度序列的重建与分析. 冰川冻土, 21(1), 64-70.]
[59] Zang C, Biondi F ( 2013). Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia, 31, 68-74.
[60] Zhang WG, Xiao DR, Tian K, Chen GL, He RH, Zhang Y ( 2017). Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong snow Mountain. Acta Ecologica Sinica, 37, 3796-3804.
[ 张卫国, 肖德荣, 田坤, 陈广磊, 和荣华, 张赟 ( 2017). 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应. 生态学报, 37, 3796-3804.]
[61] Zhang XL, Cui MX, Ma YJ, Wu T, Chen ZJ, Ding WH ( 2010). Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing’an Mountains. Chinese Journal of Applied Ecology, 21, 2501-2507.
[ 张先亮, 崔明星, 马艳军, 吴涛, 陈振举, 丁玮航 ( 2010). 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系. 应用生态学报, 21, 2501-2507.]
[62] Zhang Y, Yin DC, Sun M, Li LP, Tian K, Zhang WG ( 2018a). Radial growth response of two conifers to temperature and precipitation at upper forest limits in Shika Snow Mountain, Northwestern Yunnan Plateau. Acta Ecologica Sinica, 38, 2442-2449.
[ 张赟, 尹定财, 孙梅, 李丽萍, 田昆, 张卫国 ( 2018a). 滇西北石卡雪山2个针叶树种森林上限径向生长对温度和降水的响应. 生态学报, 38, 2442-2449.]
[63] Zhang Y, Yin DC, Tian K, He RH, He MZ, Li YC, Sun DC, Zhang WG ( 2018b). Relationship between radial growth of Abies georgei and climate factors at different altitudes on the eastern slope of Yulong Snow Mountain, China. Chinese Journal of Applied Ecology, 29, 2355-2361.
[ 张贇, 尹定财, 田昆, 和荣华, 和茂珍, 李玉春, 孙大成, 张卫国 ( 2018 b). 玉龙雪山东坡不同海拔长苞冷杉径向生长与气候因子的关系. 应用生态学报, 29, 2355-2361.]
[64] Zhang Y, Yin DC, Zhang WG, Yue HT, Du JCD, Li QP, Yang R, Tian K ( 2018c). Response of radial growth of two conifers to temperature and precipitation in Potatso National Park, Southwest China. Acta Ecologica Sinica, 38, 5383-5392.
[ 张贇, 尹定财, 张卫国, 岳海涛, 杜杰次丹, 李秋平, 杨荣, 田昆 ( 2018c). 普达措国家公园2个针叶树种径向生长对温度和降水的响应. 生态学报, 38, 5383-5392.]
[65] Zhao ZP, Wu XP, Li G, Li JS ( 2015). Drought in southwestern China and its impact on the net primary productivity of vegetation from 2009-2011. Acta Ecologica Sinica, 35, 350-360.
[ 赵志平, 吴晓莆, 李果, 李俊生 ( 2015). 2009-2011年我国西南地区旱灾程度及其对植被净初级生产力的影响. 生态学报, 35, 350-360.]
[66] Zheng JY, Ge QS, Hao ZX, Wang WC ( 2006). Spring phenophases in recent decades over Eastern China and its possible link to climate changes. Climatic Change, 77, 449-462.
[67] Zhu BL, Zhao EX, Zhao G, Wan YX ( 2015). Interannual/ interdecadal variabilities and trend forecasting on Nanpanjiang Basin in the major flooding season. Journal of Yunnan University (Natural Science Edition), 37, 861-869.
[ 朱保林, 赵尔旭, 赵刚, 万云霞 ( 2015). 南盘江流域主汛期降雨量年(代)际变率研究及趋势预测. 云南大学学报(自然科学版), 37, 861-869.]
[68] Zhu JH, Hou ZH, Zhang ZJ, Luo YJ, Zhang XQ ( 2007). Climate change and forest ecosystem: Impacts, vulnerability and adaptation. Scientia Silvae Sinicae, 43(11), 138-145.
[ 朱建华, 侯振宏, 张治军, 罗云建, 张小全 ( 2007). 气候变化与森林生态系统:影响、脆弱性与适应性. 林业科学, 43(11), 138-145.]
[1] YUAN Dan-Yang, ZHU Liang-Jun, ZHANG Yuan-Dong, LI Zong-Shan, ZHAO Hui-Ying, WANG Xiao-Chun. Comparison of elevational changes in relationships of blue intensity and ring width index in Picea jezoensis with climatic responses in Laobai Mountain of Jilin, China [J]. Chin J Plant Ecol, 2019, 43(12): 1061-1078.
[2] Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest [J]. Biodiv Sci, 2017, 25(11): 1182-1191.
[3] YU Hong, ZHENG Shu-Song, HUANG Rui-Fu, . Polymorphism of male cones in populations of Pinus yunnanensis Franch. [J]. Biodiv Sci, 1998, 06(4): 267-271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenxia Wang;Shuguang Li;Xiaoming Zhao;Bingcheng Lin;Yuguang Du. Effects of Oligochitosan on Transcription of Genes Involved in Jasmonic Acid Biosynthesis in Tobacco Suspension Cells[J]. Chin Bull Bot, 2008, 25(05): 526 -532 .
[2] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution[J]. Chin Bull Bot, 2008, 25(04): 401 -406 .
[3] Lei Zhang Baoshi Zhang. Mapping and Cloning of Quantitative Trait Genes in Plants[J]. Chin Bull Bot, 2007, 24(04): 553 -560 .
[4] Cai Ji-jing. Scanning Electron Microscopy Method for the Direct Observation of Fresh Plant Specimen[J]. Chin Bull Bot, 1983, 1(02): 55 -56 .
[5] LI AI-Fen;CHEN Min and ZHOU Bai-Cheng. Studies on Characterization of Fluorescence Emission Spectra of Brown Algae at 77K[J]. Chin Bull Bot, 1999, 16(03): 274 -279 .
[6] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development[J]. Chin Bull Bot, 2012, 47(2): 101 -110 .
[8] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China[J]. Chin Bull Bot, 2012, 47(5): 491 -499 .
[9] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana[J]. Chin Bull Bot, 2017, 52(2): 202 -209 .
[10] Chen Guoliang, Liu Duhui. A Preliminary Study on the Rational Eco-Economic Structure Model of Agriculture, Forestry and Animal Husbandry in the Loess Hilly Regions[J]. Chin J Plan Ecolo, 1983, 7(3): 215 -221 .